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Abstract

Machine learning approaches commonly rely on the assumption of independent
and identically distributed (i.i.d.) data. In reality, however, this assumption is
almost always violated due to distribution shifts between environments. Although
valuable learning signals can be provided by heterogeneous data from changing
distributions, it is also known that learning under arbitrary (adversarial) changes is
impossible. Causality provides a useful framework for modeling distribution shifts,
since causal models encode both observational and interventional distributions.
In this work, we explore the sparse mechanism shift hypothesis, which posits that
distribution shifts occur due to a small number of changing causal conditionals.
Motivated by this idea, we apply it to learning causal structure from heterogeneous
environments, where i.i.d. data only allows for learning an equivalence class of
graphs without restrictive assumptions. We propose the Mechanism Shift Score
(MSS), a score-based approach amenable to various empirical estimators, which
provably identifies the entire causal structure with high probability if the sparse
mechanism shift hypothesis holds. Empirically, we verify behavior predicted by
the theory and compare multiple estimators and score functions to identify the best
approaches in practice. Compared to other methods, we show how MSS bridges
a gap by both being nonparametric as well as explicitly leveraging sparse changes.

1 Introduction

Classical machine learning methods and theory presume data to be independently and identically
distributed (i.i.d.). Although there has been huge success under this assumption, research on topics
including adversarial examples [52, 14], distribution shifts [41, 45, 43, 6], and “spurious” corre-
lations [2] has highlighted its fragility. Open questions remain as to how we can relax the i.i.d.
assumption and still learn useful models, since learning under unrestricted adversarial distribution
shifts seems infeasible [4]. Causal models naturally provide structure to a distribution via a factoriza-
tion into causal mechanisms, the processes by which variables are dependent on their direct causes;
Hence, they are a natural basis for studying distribution shifts. Based on the idea of the independence
of causal mechanisms [36, 45], the sparse mechanism shift hypothesis [46] posits that distribution
shifts are the result of changes in only a subset of the causal model’s mechanisms. This presents a
promising relaxation with many potential applications throughout machine learning [32, 46, 55, 31].
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Figure 1: Sparse shifts yield structure identifiability. In a causal model with a fully connected DAG over
X := {X1, X2, X3}, no edge directions can be learned from i.i.d. observational data. Given multiple datasets
on X across different environments with possible distribution shifts, the PC algorithm [51] can be applied to the
pooled data augmented by the environment index variable E [25]. (A) A mechanism shift E → Xi can allow
orientation of some edges. (B) Yet dense shifts prohibit any orientations [25]. (C) Pooling all environments
leads to dense shifts, even if pairs of environments differ sparsely. Combining structure learned across pairs
of pooled environments leads to identifiability under sparse shifts; under dense shifts, there is no difference.

In particular, causal discovery—the inference of qualitative structure encoded by a graph and un-
derlying causal relationships between variables—is a fundamental scientific problem with broad
applications for which distribution shifts have been successfully leveraged. Classical approaches,
which assume i.i.d. data from a single environment or domain, can be broadly categorized into three
classes. Constraint-based methods, such as the PC [51] and FCI [37] algorithms, perform a series
of statistical independence tests to identify the existence of causal relationships under various as-
sumptions (e.g., causal faithfulness) and then use certain rules to infer causal directions. Score-based
methods, such as GES [3], optimize some score function, such as the penalized likelihood BIC [47],
over the set of possible graphs. These methods all come with asymptotic structure identifiability
guarantees of recovering the (Markov) equivalence class [12], but they will rarely uniquely recover
the true causal graph. Further work on functional-form-based methods, beginning with non-Gaussian
assumptions [50], provides various ways to recover a specific DAG by assuming a certain functional
form of the causal mechanisms [23, 56, 38, 26], at the cost of potential misspecification.

Although identification is possible through actively specified interventions [8, 7, 18, 17, 49], natural
distribution shifts on the same variables across different environments allow for promising approaches
under a relaxation of the i.i.d. assumption [5, 45, 30, 39, 20, 19, 13, 24, 10, 11, 25, 33, 15, 29]. Such
multi-environment methods can learn the direct causes of a specific variable [39, 20] or the entire
causal structure [10, 11, 25] without requiring knowledge of which causal mechanisms change. Yet, as
noted in these work but not studied, performance is dependent on which and how many changes occur.

Overview and contributions. After a review of causal graphical models and formalization of
our setting (§ 2), we discuss key related work on multi-environment causal discovery (§ 3). We
demonstrate that sparse distribution changes provide structure identifiability in the bivariate case, and
useful information in multivariate settings (§ 4). Based on the observation that pairwise comparisons
of environments better leverage sparse changes (see Fig. 1), we propose the Mechanism Shift Score, a
score-based causal discovery algorithm with theoretical guarantees (§ 5). Empirical results confirm
the theory (§ 6). In summary, the present work makes the following contributions:

• We prove that by relaxing the i.i.d. assumption via the sparse mechanism shift assumption, bivariate
causal structure is identifiable without parametric assumptions (Cor. 4.2).

• We introduce the Mechanism Shift Score (MSS), defined as the number of conditional distributions
implied by a graph which change across all pairs of environments (§ 5). We prove that the true
causal (multivariate) graph minimizes the MSS over possible graphs (Prop. 5.1).2

• We provide rates of convergence showing that with a sufficient number of sparsely changing envi-
ronments, the causal graph uniquely minimizes the score function with high probability (Cor. 5.4).
Our rates readily apply to existing literature on learning individual mechanisms [39, 20] and the
entire graph [11, 25], where a study of the role of sparsity was previously missing.

• We demonstrate empirically that sparsity and pairwise comparisons are useful and show how the
MSS accommodates various parametric [39, 10, 11] and nonparametric [20, 25] estimators (§ 6).

2While scores are typically maximized, it is more natural to minimize distribution shifts and hence the MSS.
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2 Problem setting and notation

We start by building up the causal framework needed to understand our work and related literature. It
relies on common graph-theoretic terminology which we review for completeness in Appx. A.

Causal terminology. Causal relationships between variables are encoded in a causal graphical
model (CGM) which links graphical and distributional properties via certain assumptions.
Definition 2.1 (Causal Graphical Model (CGM)). A causal graphical model (CGM)M = (G,PX)
over d random variables X = {X1, ..., Xd} consists of (i) a directed acyclic graph (DAG) G with
vertices X and edges Xi → Xj iff Xi is a direct cause of Xj , (ii) and a joint distribution PX which
factorizes (is Markovian) over G.3 Formally, we have the following Markov or causal factorization:

PX(X1, ..., Xd) =

d∏
j=1

PX(Xj |PAj), (2.1)

where PAj are the parents (direct causes) ofXj inG and PX(Xj |PAj) is the causal mechanism ofXj .

Implicit in the definition is the assumption that there is no hidden confounding, i.e., that any common
cause of two or more observed variables is included in X; for this reason it is also referred to as
causal sufficiency. This is a strong assumption to make and important to keep in mind in applications.

The Markov factorization (2.1) of the CGM encodes various conditional independences between
variables. The Markov equivalence class (MEC) is the set of DAGs which share the same set of con-
ditional independence relations; graphically, it is the set of DAGs which share the same skeleton (set
of edges regardless of direction) and v-structures (Xi → Xj ← Xk, but Xi 6↔ Xk) [40, Lem. 6.25].
A set of DAGs such as the MEC are commonly represented as a completed partially directed acyclic
graph (CPDAG) in which edges are directed if directed in all DAGs in the set, and otherwise left
undirected [16]. Incorrect DAGs in the MEC induce non-causal factorizations containing non-causal
conditionals which differ from the true causal mechanisms. Furthermore, in a CGM (2.1) is equivalent
to the global Markov condition which states that for disjoint vertex sets A,B,Z in G:

A ⊥⊥G B | Z =⇒ A ⊥⊥ B | Z (2.2)

where ⊥⊥G denotes d-separation in G (Appx. A) [40, Thm. 6.22]. While the Markov property allows
us to derive distributional properties from the DAG, causal discovery concerns deriving graphical
properties from distributional properties. This requires the causal faithfulness assumption, effectively
assuming that variables are not statistically independent unless implied by the graph.
Assumption 2.2 (Causal faithfulness). The observational distribution PX is said to be faithful to the
causal graph G if every conditional independence relationship in PX is implied by d-separation in G
(i.e., statistical dependence implies d-connection (2.2) [40, Def. 6.33]).

Multi-environment data. We assume that we observe a collection D of datasets from a set E of
(possibly different) environments, where each datasetDe from environment e contains ne independent
and identically distributed (i.i.d.) observations from some joint distribution Pe

X,

D = {D1, ...,DnE} where De = {Xe,1, . . . ,Xe,ne} i.i.d.∼ Pe
X for e ∈ E = {1, . . . , nE}.

Environments can encapsulate experimental settings, or broader contexts such as climate or time [33].
A key assumption of our setting is that environments arise from different “soft” interventions on an
underlying shared CGMM. Specifically, the CGMM entails a set of interventional distributions,
resulting from changing a subset of the mechanisms PX(Xj |PAj) to some different P̃X(Xj |PAj).4

Assumption 2.3 (Shared mechanisms). Each environment e independently results from M by
intervening on an (unknown) subset Ie ⊆ [d] of mechanisms, i.e., P̃e

X can be written as

P̃e
X(X1, ..., Xd) =

∏
j∈Ie

P̃e
X(Xj |PAj)

 ∏
j∈[d]\I

PX(Xj |PAj). (2.3)

3Throughout, we assume the existence of densities with respect to the Lebesgue measure.
4Note that this includes “hard” interventions P̃X(Xj |PAj) = δ(Xj − x) which fix Xj to a specific value x,

and also “soft” interventions which merely alter the functional relationship.
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We make the following common assumption about how these changes arise.

Assumption 2.4 (Independent causal mechanisms (ICM) [36, 45]). A change in P(Xj | PAj) has no
effect on and provides no information on P(Xk | PAj) for any k 6= j.

Since causal mechanisms are fixed within an environment and potentially vary across them, we can
create an augmented CGM to unify CGMs from different environments. Note that in Asm. 2.3 and the
following definition, the same causal parents and DAG are preserved over different environments; the
distribution changes are limited to soft interventions which do not change a variable’s causal parents.

Definition 2.5 (Augmented CGM [25]). Let {(G,Pe
X)}nEe=1 be a collection of CGMs over the DAG

G = (X, T ) from multiple environments. The augmented CGM is defined asM′ := (G′,PX∪E)
where (i) E is a random environment indicator variable with support E , and (ii) the augmented DAG
G′ has vertices X ∪ E and edge set T ∪ {(E,Xj) : ∃e, e′ ∈ E s.t. Pe

X(Xj |PAG
j ) 6= Pe′

X(Xj |PAG
j )}.

Note that PX∪E is Markovian to G′, inheriting the factorization from the underlying CGMs along
with the added dependence on E. With respect to the augmented DAG, Asm. 2.4 implies that
existence of the edge E → Xi provides no information on the existence of an edge E → Xj

for j 6= i. As discussed by Huang et al. [25], since E can be a common cause of variables in X,
causal sufficiency in the original CGM over X is violated. We instead must assume pseudo-causal
sufficiency. See Appx. C for further discussion of this assumption and the ICM principle.

Assumption 2.6 (Pseudo causal sufficiency [25]). Any unobserved confounders of variables in X
can be written solely as functions of E. Thus, within any given environment e, all unobserved
confounders are fixed and causal sufficiency holds.

Sparse mechanism shift (SMS) hypothesis. Another key assumption, supported Asm. 2.4’s im-
plication that a change to one mechanism does not imply changes to others, is the following:

Assumption 2.7 (SMS [46]). Changes in mechanisms between observed environments are sparse:

0 < |Ie| < d (2.4)

The value of this assumption when met is illustrated in Fig. 1 and will be elaborated upon in § 5.

3 Related work on causal discovery from multiple environments

Causal discovery from changing distributions and causal mechanisms has a long history, going back
to Simon’s invariance criterion, stating that the true causal order is the one that is invariant under the
right sort of intervention [21, 22]. Tian and Pearl [53] infer a causal order by testing which marginal
distributions change under a single intervention. Invariant causal prediction (ICP) [39] can identify the
causal parents of a target variable under the assumption that the target’s causal mechanism is invariant
across environments [45, 39, 20]. However, applying ICP to each variable in order to learn all sets of
causal parents and hence the causal graph is not immediately admissible: the invariance assumption
would imply that all variables are invariant, and thus there are no mechanism changes to learn from.

Learning the MEC from i.i.d. data is a well-studied problem, and under certain assumptions, essen-
tially solved [37, 51, 3]. However, it is still an open question how best to learn the true causal DAG
from the MEC. Ghassami et al. [10] apply ideas from linear ICP to identify the causal DAG. Assuming
linear causal mechanisms in which only the noise distributions change, they compare pairs of envi-
ronments and orient edges to meet this requirement. Ghassami et al. [11] allow for any kind of change
within a linear model. Based on the ICM principle, they demonstrate that non-causal DAGs induce a
larger number of changes in the linear model parameters than the causal DAG. By counting parameter
changes across pairwise environments, they can determine the causal order of variables. Huang et al.
[25] remove any functional restrictions through a two-stage approach. First, they use the PC algorithm
on the augmented CGM, pooling all the data; this both identifies the MEC but more importantly can
also orient additional edges. Since not all edges are guaranteed to be oriented, they propose a second
stage, relying on a novel measure of mechanism dependence to individually orient remaining edges.

A consistent yet sparingly explored theme across all of these methods is the impact of the sparsity of
changes across environments. In ICP, it is briefly noted that the method is applicable when the target
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E

X1 X2

(a) P(X1) changes

E

X1 X2

(b) P(X2 |X1) changes

E

X1 X2

(c) Neither change

E

X1 X2

(d) Both change

Figure 2: (a, b) Visualizations of the two cases explored in the proof of Prop. 4.1. In both cases, X2 6⊥⊥ E
unconditionally and X1 6⊥⊥ E |X2 directly or by conditioning on the potential collider X2. (c, d) The two other
possible situations; neither allow us to orient the edge between X1 and X2.

variable experiences sparse shifts, as long as we assume a maximum degree of sparsity [39, §6.2]. Al-
though not discussed, the performance of methods from Ghassami et al. [10, 11] also depend on spar-
sity. As mentioned by Huang et al. [25], identifiability requires the invariance of some mechanisms,
and their pooled PC approach cannot identify edge directions when both adjacent variables change.

4 Leveraging sparse mechanism changes for causal discovery

The augmented DAG is a powerful tool for understanding the implications of changing causal
mechanisms. We build up intuition in the bivariate setting and then consider the general multivariate
setting. From now on, we assume causal faithfulness on the augmented CGM.

Bivariate case. Given a causal model composed of two associated variables, identifiability of
the causal direction requires assumptions such as the functional form or existence of targeted
interventions [40, §4.1]. We show how sparsely changing mechanisms also provide identifiability.

Proposition 4.1 (Both non-causal conditionals change). Consider the bivariate setting X1 → X2.
If either P(X2 | X1) or P(X1) change, then both P(X1 | X2) and P(X2) change.

Corollary 4.2. (Bivariate identifiability) In the setting of Prop. 4.1, if only one mechanism changes
(sparsity), then the bivariate causal structure is identifiable.

Proof. (Prop. 4.1) We consider each case separately and use a proof by contradiction (of faithfulness).

(i) If P(X1) changes (see Fig. 2a), then GX∪E contains the edge E → X1. If P(X2) remained
invariant, then X2 ⊥⊥ E (unfaithful due to the unblocked path E → X1 → X2). If P(X1 | X2)
remained invariant, then X1 ⊥⊥ E | X2 (unfaithful due to the direct path E → X1).

(ii) If P(X2 | X1) changes (see Fig. 2b), then GX∪E contains the edge E → X2. If P(X2) remained
invariant, then X2 ⊥⊥ E (unfaithful due to the direct path E → X2). If P(X1 | X2) remained
constant, then X1 ⊥⊥ E | X2 (unfaithful due to the unblocked collider path E → X2 ← X1).

Proof. (Cor. 4.2) If either causal mechanism changes, by Prop. 4.1 both conditionals in the non-causal
factorization change. Hence, the causal structure is the one with only one mechanism change.

Multivariate case. Non-causal conditional distributions of Xj may change across environments
even if the causal mechanism P(Xj | PAj) does not change. This occurs if the conditioning set leaves
open a dependence between E and Xj in GX∪E .

Lemma 4.3. For anyXj ∈ X and set Z ⊆ X\{Xj}, the conditional distribution P(Xj | Z) changes
if and only if the following d-connectedness relationship holds:

Xj 6⊥⊥GX∪E E | Z .

The result follows from the Markov property and faithfulness; for all complete proofs, see Appx. B.

Since the Markov equivalence class is relatively easily available and thus often the starting point of
open questions in causal discovery, we specify the implications of Lemma 4.3 in this setting. Note
that due to the shared skeleton of all DAGs in the equivalence class, the conditioning set for any Xj

in any DAG in the MEC is a subset of Xj’s true parents and children PAG
j ∪ CHG

j [51, 29].
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Xj

PA\Zj PA∩Zj

CH\ZjCH∩Zj

E

Case (i): a direct cause

Xj

PA\Zj PA∩Zj

CH\ZjCH∩Zj

E

Case (ii): an unblocked ancestor

Xj

PA\Zj PA∩Zj

CH\ZjCH∩Zj

E

Case (iii): a conditioned child’s ancestor

Figure 3: The three possible cases from Cor. 4.4 with a d-connecting path from E to Xj , conditioned on a
subset of neighbors (colored in grey) in the MEC; these neighbors are a subset of the true parents and children.

Corollary 4.4. For any variable Xj ∈ X and set Z ⊆ (PAG
j ∪ CHG

j ) in the augmented graph, the
conditional distribution P(Xj | Z) changes if and only if at least one of the following holds:

(i) E → Xj [a direct cause].

(ii) ∃WPA ∈ PAG
j \ Z such that WPA 6⊥⊥GX∪E E | Z [unblocked path to unconditioned parent].

(iii) ∃WCH ∈ CHG
j ∩ Z such that WCH 6⊥⊥GX∪E E | Z \WCH [unblocked path to conditioned child].

Proof sketch. These cases are visualized in Fig. 3. The global Markov property and faithfulness
assumption allow us to interchange d-connection and a change of mechanism. In the forward direction,
a changing mechanism implies a d-connecting path which is necessarily captured in one of the three
cases. In the reverse direction, each case opens a d-connecting path between Xj and E.

A direct result of changing causal mechanisms and conditional distributions follows.

Corollary 4.5. Let G∗ denote the true (unaugmented) DAG and let G be any other DAG over the
same variables. For any Xj ∈ X, a change in P(Xj | PAG∗

j ) implies a change in P(Xj | PAG
j ).

Proof. Under the true causal parents given by G∗, a change in mechanism occurs if and only if
E → Xj in G∗X∪E . So, Xj is d-connected to E, no matter the conditioning set Z ⊂ X \ {Xj}. Thus,
by Lemma 4.3, P(Xj | PAG

j ) necessarily changes.

5 Causal discovery via the Mechanism Shift Score (MSS)

We have established that changing mechanisms provide useful information and by Cor. 4.2 can provide
identifiability in the bivariate case under faithfulness and sparse changes. We now study identifiability
in more general graphs along with approaches to developing practical estimators. Motivated by the
novel discovery of the value of comparing pairwise environments if changes are sparse, we propose
the Mechanism Shift Score (MSS) estimand with useful theoretical guarantees over DAGs in the MEC.

The MSS estimand. Given a set G of candidate DAGs over the same d variables X = {X1, ..., Xd}
with data sampled from nE distributions P := {Pe

X}
nE
e=1, we count the number of changing condi-

tional distributions in each graph by defining

MSSj(G;P) =

nE∑
e′>e

I
[
Pe(Xj |PAG

j ) 6= Pe′(Xj |PAG
j )
]

and MSS(G;P) =

d∑
j=1

MSSj(G;P).

MSSj(G;P) is the number of pairs of environments in which the conditional distribution of Xj in G
changes; MSS(G;P) is the total number of changes across all variables and pairs of environments
according to the Markov factorization implied by G. It follows from Cor. 4.5 that the true DAG G∗

minimizes (not necessarily uniquely) the number of changing conditionals among all DAGs.

Proposition 5.1. LetG∗ be the true DAG in the set G of DAGs. Then for allG ∈ G and j ∈ {1, . . . , d}

MSSj(G
∗;P) ≤ MSSj(G;P) and thus MSS(G∗;P) ≤ MSS(G;P).
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Proof. By Cor. 4.5, any change in P(Xj |PAG∗

j ) implies a change in P(Xj |PAG
j ) for any other

DAG G. Thus, any change counted by MSSj on the true DAG will also be detected in every other
DAG and so both lower bounds hold.
Prop. 5.1 can be viewed as the generalization of the Principle of Minimal Changes [11], allowing for
mechanism changes beyond the parametric restrictions of a linear model. Identifiability, however,
requires us to establish a discerning aspect of the true structure. Recall that the Markov equivalence
class GMEC is identifiable. We define the subset

Gmin
MEC := arg minG∈GMEC

MSS(G;P)

of DAGs with minimum MSS, here defined as the number of mechanism shifts across environments.
In practice, we may employ any generic conditional test for change in mechanism or choose to use a
“softer” score (e.g., based on p-values) to quantify changes along a continuous spectrum.

Prop. 5.1 implies that G∗ ∈ Gmin
MEC . Using probabilistic assumptions based on the idea of sparse

changes, we show that, given enough environments, the causal parents and full DAG are identifiable.
Lemma 5.2 (Identifiability of causal parents). Let G∗ be the true DAG in the MEC GMEC and ρi the
probability that the causal mechanism ofXi is different across any two environments. Under Asms. 2.2
to 2.4 and 2.6, for any j ∈ {1, . . . , d}, graph G ∈ GMEC such that PAG∗

j 6= PAG
j , and lower and

upper bounds on the shift probabilities ρLB
i ≤ ρi ≤ ρUB

i for all i, we have that

Pr[MSSj(G
∗;P) < MSSj(G;P)] ≥ 1−

(
1− (1− ρUB

j ) min
i
ρLB
i

)bnE/2c
.

Proof sketch. From Cor. 4.5, we know: MSSj(G
∗;P) ≤ MSSj(G;P). We use the shared skeleton

property of all DAGs in a MEC and Lemma 4.3, for which only case (i) admits a changing
mechanism in the true DAG. Based on the ICM principle, we examine sufficient conditions in a
pair of environments and establish a probabilistic upper bound on all pairs.

Note that this bound is independent of the other DAG G, so long as G is in the MEC and has a
different set of causal parents. As a special case of Lemma 5.2, invariance of the mechanism of Xj

implies ρUB
j = 0 and hence provides a bound relevant to invariant causal prediction [39, 20]. Building

off of Lemma 5.2, we can provide a probabilistic bound on identifiability of the whole graph.
Theorem 5.3 (Identifiability of the graph). Let G∗ be the true DAG in the MEC GMEC and ρj the
probability that the causal mechanism of Xj is different across any two environments. Under
assumptions 2.2, 2.3, 2.4, and 2.6, and bounds ρLB

i ≤ ρi ≤ ρUB
i for all i, we have that

Pr[Gmin
MEC = {G∗}] ≥ 1− |GMEC|

(
1− (1−min

i
ρUB
i ) min

i
ρLB
i

)bnE/2c
.

Proof sketch. From Prop. 5.1, G∗ is always in Gmin
MEC. For each DAG, we use Lemma 5.2 to bound

the probability that all mechanisms exhibit the same number of changes. Then we apply the union
bound to establish an upper bound across all DAGs.

Corollary 5.4. If ρi is bounded away from 0 and 1 for all i, (a probabilistic form of Asm. 2.7),

Pr[Gmin
MEC = {G∗}]→ 1 as nE →∞

That is, with enough environments we can recover the true DAG from the Markov equivalence class.

Proof. The assumption of bounded probability implies that ρUB
i < 1 and ρLB

i > 0 for all i. Hence, by
the rate established in Thm. 5.3, identifiability is achieved in the limit.

The MSS estimator. An MSS estimator of the proposed estimand requires us to be able to test if
two conditional distributions change across two environments. This can be done using conditional
independence tests or equality of distribution tests [34]. Under parametric assumptions, models may
be fit for each mechanism, and these parameters can then be tested across environments [10, 11, 39].
Heinze-Deml et al. [20] provided a comprehensive study of such tests and their power for ICP. More
recent but less studied work by Park et al. [35] has provided a kernel-based approach with strong
guarantees. In practice care must be taken when using equality of conditional distribution tests,
especially if any of their assumptions are violated [48].
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Figure 4: Oracle rates match the theory. From left to right (a-d): (a) With sufficiently many environments, our
MSS approach learns the true DAG while pooled PC recovers only the original MEC. (b) Pairwise comparisons
are less beneficial when shifts are extremely sparse or dense. Differences across the two methods are particularly
pronounced both in (c) sparse and dense DAGs, as well as in (d) smaller DAGs. Shaded regions denote 95%
confidence intervals calculated from bootstrapped data.

Computational complexity. The score function MSS(G;P) is decomposable [16] in that it is the
sum of local scores MSSj(G;P). In the most naïve approach, each mechanism in each of |GMEC|
DAGs must be tested across all pairwise environments, on the overall order of O(|GMEC|dn2E), without
accounting for the complexity of the statistical test. This can be slow, but if the hypothesis test scales
with sample size n faster than O(n2), then pairwise tests may actually be faster than pooling the data.
In practice, the decomposable property permits a speedup: since many mechanisms will be shared
across DAGs, we can test each unique mechanism and then select the results relevant for each DAG.
Experimentally, we find the main bottlenecks to be large sample sizes and numbers of environments.

6 Structure learning experiments

Having established the value of the MSS estimand through theory, we now seek to understand
empirically through simulations: (i) how the oracle MSS and pooled PC approaches compare across
experimental settings, (ii) which possible MSS estimators perform best, and (iii) how the MSS
compares to related approaches. In Appx. D we present a case study application to the real cytometry
dataset [44].5 For ease of comparison, we adapt the simulation setup of Huang et al. [25]. Specifically,
random DAGs are sampled using an Erdős-Rènyi model [9] in which each edge has some fixed
probability of existing or not (the density of edges). In each environment, a random set of variables
experience a change in mechanism according to a fixed number or fraction of sparse shifts. Given a
DAG, each variable j in environment e has a randomly sampled mechanism

Xe
j :=

∑
i∈PAj

bejifji(X
e
i ) + σe

j ε
e
j (6.1)

where bji ∼ U(0.5, 2.5), σe
j ∼ U(1, 3), and εej ∼ N (0, 1) or U(1, 3) with equal probability. The

functions fji are selected uniformly at random from {x2, x3, tanh, sinc}. Mechanisms in an
unobserved baseline environment are sampled and σji = 1 is fixed. Each observed environment
inherits the baseline distributions and mechanisms shifts are resampled per (6.1).

We evaluate the quality of an estimated CPDAG against the true DAG via precision and re-
call [10, 11, 25]. Precision is the fraction of directed edges in the CPDAG which are correctly
oriented. Recall is the fraction of all edges in the CPDAG which are oriented. Thus, the true DAG
has perfect precision and recall. Since all methods start from the MEC, there are no incorrect edges,
only incorrect orientations.

Oracle MSS rates match the theory. Having theory on learning rates bounds under sparsity, we
now seek to understand how the empirical performance of MSS and pooled PC depends on a variety
of graph and sparsity settings, both which our theory does and does not address. We consider random
DAGs over 6 variables with edge density 0.3. Five environments are sampled, in each of which half
of the mechanisms shift. In Fig. 4, we hold all of these settings fixed and vary one at a time across 50
repetitions, comparing the recall of the two methods.6 Precision is always perfect under the oracle test.

In the first two plots, the empirical results match what the theory predicts. First, per Cor. 5.4, with
more environments MSS learns the entire graph while pooled PC learns nothing but the original

5All code and experiments are available at https://github.com/rflperry/sparse_shift
6Oracle methods used code from the causaldag package [3-Clause BSD license].
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Figure 5: Nonparametric hypothesis tests perform well in nonlinear simulations, and soft scores succeed.
Notably, recall converges with increasing environments. KCI appears to best balance high recall and precision.

MEC. Second, per Thm. 5.3, the learning rate decreases when shifts are either uncommon or frequent.
Furthermore, we see that differences between the two approaches are accentuated in sparse and dense
DAGs, as well as in smaller DAGs. Note that sparsity is a fixed fraction of the variables, and hence
larger DAGs experience more shifts in absolute terms. See Appx. D for additional oracle experiments.

MSS performance depends on the chosen estimator. Next, we study how the choice of estimator
and type of score affects performance. We use two popular conditional independence tests, the
Fisher-Z partial correlation test [27] and the Kernel Conditional Independence (KCI) test [57], as
well as the invariant residual test using a generalized additive model (GAM), a top-performing
ICP method [20].7 Each detects a change if the test p-value is less than α := 0.05/d, a Bonferroni
correction to bound the false positive rate for each scored DAG. Although the theory pertains to
counting shifts, in settings where a “hard" hypothesis test has low power, it may be of more value
to use a “softer" score (e.g., based on p-values) to quantify changes along a continuous spectrum.
We propose the following “soft” score (see Appx. C for further details):

M̂SSj(G;D) =
∑nE

e=1,e′>e

[
1− p-value

(
Pe(Xj |PAG

j ) 6= Pe′(Xj |PAG
j )
)]
.

DAGs are generated on six variables with edge density 0.3. Three environments are sampled, with
500 samples and two mechanism shifts per environment. We vary each variable while holding the
others fixed and compare results across 50 repetitions.

As seen in Fig. 5, the Fisher-Z test performs noticeably worse, presumably due to the unmet parametric
assumptions, while the two nonparametric approaches do well, noticeably so at higher sample sizes.
As with the oracle, the true DAG is recovered with enough environments. The “soft” versions achieves
higher recall at the cost of worse precision, since there won’t be ties between candidate mechanism
scores but the score is noisier. The “soft" KCI seems to be best, suggesting it fits the data the best.
In practice, it is crucial for a method to model the data well in order for the p-value to be valid [48].

MSS compares favorably against other methods. We now wish to compare the MSS to relevant
existing methods. Specifically, the Minimal changes (MC) approach [11] tests pairs of environments
for changes in the parameters of a linear model. Huang et al. [25] provides a nonparametric version:
a two-stage approach which first uses PC with the KCI test on the pooled data. We investigate if
pooling data loses information under empirical tests, and how the nonparametric pairwise MSS test
combines the best of both approaches.

In Fig. 6, we compare these approaches in the same experimental setting as previously studied. Pooled
PC has quite high precision and yet suffers from lower recall, especially with more environments
at which point the recall is no better than the base MEC. In contrast, “hard" KCI has much higher
recall at the cost of some precision, although this goes away at larger samples sizes. The parametric
MC works surprisingly well and yet slightly worse than KCI. Overall, we see that MSS combines the
value of the pairwise comparisons from the MC approach with the flexibility of incorporating various
nonparametric estimators. Additional experiments in Appx. D confirm this in the bivariate case.

7KCI and Fisher-Z are implemented by the causal-learn package [GNU General Public License].
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Figure 6: Pairwise approaches improve with more environments, unlike Pooled PC. Although the parametric
MC works surprisingly well across settings, the nonparametric MSS with KCI appears superior.

7 Discussion

Sparse shifts as a relaxation of the i.i.d. assumption. Distribution shifts are a common violation
of the i.i.d. assumption and a problematic source of error in practice. It has been argued that the issue
of robustness to natural shifts is connected to causality [45, 1, 58, 39, 54, 28, 55]. We have shown that
viewing a shift in distribution through the causal factorization permits a useful relaxation of the i.i.d.
assumption, facilitating causal discovery: if there are no shifts (i.i.d.), we can only identify equivalence
classes. If shifts are unrestricted, we cannot meaningfully transfer across distributions [45], and
ideas such as Simon’s invariance criterion [22] and ICP [39] do not help. However, if shifts occur
sparsely—as we formalize—we can provably use this as a learning signal to infer the causal structure.

The Mechanism Shift Score (MSS) and prior methods. The MSS framework extends previous
causal discovery work limited to linear mechanisms [11], just as nonlinear ICP [20] extended the
initially limited ICP approach [39] beyond linear models. Additionally, we have provided a graph-
theoretic analysis proving why pairwise comparisons are actually useful; the learning rates we have
established apply to these previous works and provide insight on the role of sparsity. Although Huang
et al. [25] provide a thorough nonparametric approach and analysis, we have demonstrated that the
first stage of their two-stage-approach is not suited for sparsely-detectable changes since it pools all the
data. The MSS is both nonparametric and explicitly leverages sparsity through pairwise comparisons.

Beyond causal discovery. Once the causal graph is known, conditional distributions and hence an
entire causal graphical model can be learned. This is harder than learning a statistical model, but has
various advantages, especially when distributions shift, as they do in reality. E.g., we may be able to
use such a model for causal reasoning, i.e., estimating a certain causal effect. We also expect that MSS
can serve as a useful inductive bias for causal representation learning, similar to how invariant predic-
tion [45, 39] inspired invariant risk minimization [28]; recent work has started to explore this [29, 31].

Empirical performance and the validity of the sparse mechanism shift hypothesis. We infer
causal structure through a flexible score-based method and, as empirically demonstrated, strong results
can be obtained by multiple estimators and when the assumption of sparsity is met. We conjecture
that under an oracle, the “hard" MSS is equivalent to the PC algorithm pooled pairwise across envi-
ronments. It is worth noting that the “hard" approach may still be useful under dense changes if only
a sparse number of them are large enough to be empirically discernible. Thus the empirical method
can actually outperform the oracle baseline and be useful even if the assumption of sparsity is unmet.

Outlook and conclusion. Imagining causal models on an axis of complexity, from the microscopic
physical laws of nature to a simplified set of variables and relationships, we transition from a system
with no mechanism shifts (effectively a dynamical system) to a system in which all mechanisms
shift (due to many unmeasured causes). In the middle, we posit only a sparse number of shifts to
be empirically discernible. While all (causal) models are wrong, the one which is most invariant
to shifts may be the best candidate for supporting robust and transferable inference.
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A Graph terminology

A directed graph G = (V, T ) is an object consisting of a set of vertices V and a set of ordered pairs
of vertices T ⊂ V × V corresponding to directed edges in G. A path is a sequence of vertices
(Vi1 , . . . , Vin) with n ≥ 2 such that Vik → Vik+1

or Vik ← Vik+1
and in a directed path Vik → Vik+1

for all k. In graph G: the children CHG
j of Vj are all Vm such that Vj → Vm, the parents PAG

j of Vj
are all Vm such that Vm → Vj , the ancestors ANG

j of Vj are all Vm such that there exists a directed
path (Vm, . . . , Vj), and the descendants DEG

j of Vj are Vj and all Vm such that there exists a directed
path (Vj , . . . , Vm). The graph superscript will be omitted unless needed. A cycle is a path such that
Vi1 = Vin and a directed acyclic graph (DAG) is a directed graph with no directed cycles.

On a path (Vi1 , . . . , Vik , . . . , Vin), we say variable Vik is a collider if Vik−1
→ Vik and Vik ← Vik+1

.
A subset Z ∈ V \ {Vi1 , Vin} blocks the path if either (i) Z contains at least one non-collider vertex
on the path or (ii) the path contains a collider with no descendants in Z (this includes the collider
itself by the descendant definition). With this terminology, we say that on the disjoint variable sets
A, B, and Z, A is d-separated from B by Z iff every path between A and B is blocked by Z [40,
Def. 6.1]. This is denoted as A ⊥⊥G B | Z. If A and B are not d-separated, and hence there exists an
unblocked path, we say that they are d-connected.
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(a) W is a parent.
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(b) W is a child and collider.
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(b) W is a child but not a collider.

Figure 7: Cases from the proof of Cor. 4.4. Case (a) iff case (ii). Case (b) induces two subcases either of which
occur iff case (iii).

B Full proofs

B.1 Proof of Lemma 4.3

Lemma 4.3. For anyXj ∈ X and set Z ⊆ X\{Xj}, the conditional distribution P(Xj | Z) changes
if and only if the following d-connectedness relationship holds:

Xj 6⊥⊥GX∪E E | Z .

Proof. (⇒) If P(Xj | Z) changes across environments E, then Xj 6⊥⊥ E | Z. The global Markov
property of the CGM states that d-separation implies conditional independence, and thus by the
contra-positive the d-connectedness relationship follows.

(⇐) d-connectedness implies conditional dependence by faithfulness, and thus a change across
environments.

B.2 Proof of Corollary 4.4

Corollary 4.4. For any variable Xj ∈ X and set Z ⊆ (PAG
j ∪ CHG

j ) in the augmented graph, the
conditional distribution P(Xj | Z) changes if and only if at least one of the following holds:

(i) E → Xj [a direct cause].

(ii) ∃WPA ∈ PAG
j \ Z such that WPA 6⊥⊥GX∪E E | Z [unblocked path to unconditioned parent].

(iii) ∃WCH ∈ CHG
j ∩ Z such that WCH 6⊥⊥GX∪E E | Z \WCH [unblocked path to conditioned child].

Proof. By Lemma 4.3, P(Xj | Z) changes iff Xj 6⊥⊥ GX∪EE | Z (d-connection) and equivalently, iff
there is an unblocked path (E, . . . ,Xj) in GX∪E . We assume a generic path and through casework
establish that it is unblocked if and only if one of cases (i), (ii), or (iii) holds. The casework is
visualized in Figure 7.

Either (E, . . . ,Xj) is just E → Xj [case (i)] or there must exist W such that (E, . . . ,W,Xj) and
W is either (a) a collider or (b) not a collider.

(a) IfW is a collider, it necessarily a child ofXj The collided path in unblocked iffW 6⊥⊥ GX∪EE |Z\
W and some descendantW ′ ∈ DEG

W ofW is conditioned on. ThusW ′ ∈ Z ⊂ PAG
j ∪CHG

j . Without
loss of generality, assume W ′ is the closest descendant to W and hence the path (W, . . . ,W ′) is
unblocked by Z. W ′ cannot be a parent of Xj , else induce the cycle (Xj ,W, . . . ,W

′, Xj), and so
must be a child and case (iii) holds. Specifically, there exists W ′ such that W ′ 6⊥⊥ GX∪EE | Z \W ′
and W ′ is a child in Z.

(b) If W is not a collider, by definition the path is unblocked iff W 6⊥⊥ GX∪EE | Z and W 6∈ Z. If W
is a parent of Xj (since they are adjacent), case (ii) holds. If W is a child of Xj , because E has an
outgoing edge there must exist some collider C on the path such that (E, . . . , C, . . . ,W,Xj) and the
subpath from W to C is directed into C. The condition W 6⊥⊥ GX∪EE | Z holds iff some descendant
W ′ of C is in Z. As before, W ′ cannot be a parent of Xj or else induce a cycle, and so it must be a
child and case (iii) holds.
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B.3 Proof of Lemma 5.2

Lemma 5.2 (Identifiability of causal parents). Let G∗ be the true DAG in the MEC GMEC and ρi the
probability that the causal mechanism ofXi is different across any two environments. Under Asms. 2.2
to 2.4 and 2.6, for any j ∈ {1, . . . , d}, graph G ∈ GMEC such that PAG∗

j 6= PAG
j , and lower and

upper bounds on the shift probabilities ρLB
i ≤ ρi ≤ ρUB

i for all i, we have that

Pr[MSSj(G
∗;P) < MSSj(G;P)] ≥ 1−

(
1− (1− ρUB

j ) min
i
ρLB
i

)bnE/2c
.

Proof. By Assumption 2.3, the distribution Pe
X in each environment e ∈ {1, . . . , nE} is the result of

changing mechanisms from some underlying yet unknown distribution PX. Let ∆e,e′(Xj) denote
the event I[Pe

X(Xj | PAG∗

j ) 6= Pe′

X(Xj | PAG∗

j )] that the mechanism of variable Xj , with respect to

the true graph G∗, changes across environments e and e′. Abbreviate ρe,e
′

j := Pr[∆e,e′(Xj) = 1].

Since PAG∗

j 6= PAG
j and G shares the same skeleton as G∗, at least one edge must be oriented

incorrectly in G. In the conditioning set PAG
j according to the incorrect graph G, there thus

exists either an unconditioned true parent Z ∈ PAG∗

j \ PAG
j or a conditioned-upon true child

Z ∈ CHG∗

j ∩ PAG
j . By Cor. 4.4, we know that if Z is not d-separated from E in the augmented

graph, then the conditional P(Xj | PAG
j ) changes across E. This occurs at least if the mechanism of

Z directly changes, e.g. there is the edge E → Z in the augmented graph.

Consider first the case of two environments. We know from Prop. 5.1 that MSSj(G
∗;P) cannot

be greater than MSSj(G;P), and will be less if the mechanism of Xj remains invariant while the
mechanism of Z changes. By the assumption of independent changing mechanisms,

Pr[MSSj(G
∗; {D1,D2}) = MSSj(G; {D1,D2})]

= 1− Pr[MSSj(G
∗; {D1,D2}) < MSSj(G; {D1,D2})]

≤ 1− Pr[∆1,2(Xj) = 0,∆1,2(Z) = 1]

= 1− Pr[∆1,2(Xj) = 0] Pr[∆1,2(Z) = 1]

= 1− (1− ρ1,2j )ρ1,2Z

Given nE > 2 environments, it follows that
Pr[MSSj(G

∗;P) = MSSj(G;P)]

= Pr

 ⋂
e,e′>e

MSSj(G
∗, {De,De′}) = MSSj(G, {De,De′})


≤ Pr

 ⋂
e∈{1,...,bE/2c}

MSSj(G
∗, {D2e−1,D2e}) = MSSj(G, {D2e−1,D2e})


=

∏
e∈{1,...,bE/2c}

Pr
[
MSSj(G

∗, {D2e−1,D2e}) = MSSj(G, {D2e−1,D2e})
]

≤
∏

e∈{1,...,bE/2c}

(
1− (1− ρ2e−1,2ej )ρ2e−1,2eZ

)

≤
(

1− min
e∈{1,...,bE/2c}

(1− ρ2e−1,2ej )ρ2e−1,2eZ

)bnE/2c
.

Since Z is arbitrary, we construct an upper bound using the worst case, in which a variable frequently
or rarely changes.

1− min
e∈{1,...,bE/2c}

(1− ρ2e−1,2ej )ρ2e−1,2eZ ≤ 1− (1− max
e∈{1,...,bE/2c}

ρ2e−1,2ej ) min
e∈{1,...,bE/2c}

ρ2e−1,2eZ

≤ 1− (1− max
e,e′ 6=e

ρe,e
′

j ) min
e,e′ 6=e

ρe,e
′

Z
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and so to acquire the final bound with simplified notation, for any variable Xi denote the minima and
maxima of ρe,e

′

i across any two environments with ρLB
i and ρUB

i , respectively.

B.4 Proof of Theorem 5.3

Theorem 5.3 (Identifiability of the graph). Let G∗ be the true DAG in the MEC GMEC and ρj the
probability that the causal mechanism of Xj is different across any two environments. Under
assumptions 2.2, 2.3, 2.4, and 2.6, and bounds ρLB

i ≤ ρi ≤ ρUB
i for all i, we have that

Pr[Gmin
MEC = {G∗}] ≥ 1− |GMEC|

(
1− (1−min

i
ρUB
i ) min

i
ρLB
i

)bnE/2c
.

Proof. Since Pr[Gmin
MEC = {G∗}] = 1− Pr[Gmin

MEC 6= {G∗}] and by Lemma 5.2,

Pr[Gmin
MEC 6= {G∗}] = Pr

 ⋃
G∈GMEC\{G∗}

MSS(G∗;P) = MSS(G;P)


≤

∑
G∈GMEC

Pr [MSS(G∗;P) = MSS(G,D)]

≤
∑

G∈GMEC

Pr

∑
j

MSSj(G
∗;P) =

∑
j

MSSj(G,D)


=

∑
G∈GMEC

Pr

∑
j

MSSj(G
∗;P) =

∑
j

MSSj(G,D)


=

∑
G∈GMEC

Pr

⋂
j

MSSj(G
∗;P) = MSSj(G,D)


≤

∑
G∈GMEC

min
j

Pr [MSSj(G
∗;P) = MSSj(G,D)]

≤
∑

G∈GMEC

min
j

(
1− (1− ρUB

j ) min
i
ρLB
i

)bnE/2c
≤

∑
G∈GMEC

(
1− (1−min

j
ρUB
j ) min

i
ρLB
i

)bnE/2c

= |GMEC|
(

1− (1−min
j
ρUB
j ) min

i
ρLB
i

)bnE/2c
.
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C Details of assumptions and methods

C.1 Pseudo causal sufficiency and the Independent Causal Mechanisms (ICM) assumption

Huang et al. [25] introduced the idea of psuedo-causal sufficiency (Asm. 2.6) and provide a useful
discussion on its relation to results on soft interventions by Eberhardt and Scheines [7]. We expand
on their discussion in the context of how it relates to our work.

Guo et al. [15] provide a useful formalization of multi-environment data, specifically through a
plate-notation representation. An environment e specifies parameters of the causal mechanisms in the
CGM over X; we can think of environments as encapsulating specific experimental settings, or broad
contexts such as climate or time [33]. Under the context of e, there is some distribution Pe

X and we
observe a dataset sampled i.i.d. The ICM assumption tells us that the parameters for each causal
mechanism in an environment are chosen or sampled independently, and thus in the augmented CGM
the edges from E appear independently.

Within each environment, i.e., when we condition on E, the environmental parameters are fixed; thus
we are in the typical i.i.d. setting and causal sufficiency is implied by the CGM. However, without
conditioning on E, the environmental parameters are not fixed and across two samples either all
remain the same (if the samples are in the same environment) or some change. This dependence
between samples through the parameters defined by E is the result of E being a confounder; thus
causal sufficiency cannot hold over X without conditioning on E. Because E is not necessarily a true
causal variable but rather an environment encoding a fixed set of unmeasured variables, Huang et al.
[25] call it a pseudo-confounder. It is worth noting that the second stage of the approach of Huang
et al. [25] relies on a novel kernel-based test, which computes a measure of mechanism dependence
across all samples. They correctly compare the test statistics rather than examine p-values, because
the dependence between the raw samples would lead to a rejected p-value even if the mechanisms
were independent.

C.2 The p-values “soft" score

We provide further details on the p-value “soft" score. Recall the modified score definition to be

M̂SSj(G;D) =
∑nE

e=1,e′>e

[
1− p-value

(
Pe(Xj |PAG

j ) 6= Pe′(Xj |PAG
j )
)]
.

Using a test of equality of distribution, we calculate a test statistic; at a pre-specified level α, if the
test is well specified [48], the one-sided p-value is valid and corresponds to the probability under
the null hypothesis H0 : Pe(Xj |PAG

j ) = Pe′(Xj |PAG
j ) of a test statistic as large or larger than the

observed test statistic.

If a mechanism changes, a powerful test should yield a small p-value and thus a term close to 1
in the summation, similar to the “hard" score. If a mechanism doesn’t change, since p-values are
uniformly distributed in [0, 1] under the null hypothesis, the term in the sum would be uniformly
distributed. With enough variables and environments, the variance of the randomness will decrease
and the behavior of the score will be dominated by the p-values under the alternatives. It must be
noted that the p-values are not independent, as some will use data from the same environments.
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Figure 8: Oracle MSS improves upon pooled PC across both random and hub random graph models.

D Supporting experiments

D.1 Additional simulations

MSS improves upon pooled PC across random graph models. Previously in Fig. 4, we demon-
strated that the MSS improves upon pooled PC under an oracle test in simulation settings where
DAGs were sampled according to the Erdős-Rènyi (ER) random DAG model; in the ER model,
each edge is sampled i.i.d. with a fixed probability. Here, we expand upon that simulation by
further comparing rates under the Barabasi-Alberts (Hub) scale-free random DAG model; in the Hub
model, vertices are sequentially added to the DAG and edges are connected to previous vertices with
probability proportional to their existing number of edges.

As seen in Fig. 8, we vary the same parameters as before but compare the two oracle methods across
both DAG models this time. First, note that at 1 environment the Hub model exhibits greater recall,
indicating that the observational MEC of the Hub graph has fewer unoriented edges than that of the
ER graph. Thus, the gap between the methods is lessened in a Hub model as compared to an ER
model. Otherwise, the qualitative trends between the two methods are almost identical across the two
random graph models. The MSS appears at least mildly robust to the graph structure.

Differences between oracle MSS and pooled PC are most pronounced on sparser and smaller
DAGs. Although Fig. 4 highlighted the most important trends of oracle methods in certain fixed
settings, for completeness we examine rates of recall across additional fixed settings. As before, we
sample DAGs from an Erdős-Rènyi distribution and in five environments vary the DAG density, shift
fraction, and number of variables. The set of experimental results shown in Fig. 9 convey broader
trends in oracle recall rates as multiple variables change across row, column, and the x-axis. We do
not vary the number of environments as we can only visualize three variables through our plot and
the trend across environments is best understood from the theory. Differences in oracle recall rates
are less pronounced on graphs with more variables and when the density of edges is large. Note that
we only compare five environments here and that with more environments, differences will again be
more pronounced; with enough environments, pooled PC cannot learn more than the MEC.

KCI-based approaches perform the best on bivariate CGMs. We previously examined the
empirical rates of recall and precision across various simulated settings, highlighting when methods
succeed and fail. Due to the size and complexity of those studied DAGs, not all results are fully
interpretable. We seek to further understand empirical performance through the simple bivariate DAG,
which contains no indirect effects and few possible interventions to analyze. Specifically, on the DAG
X1 → X2, shifts can occur to either P(X1), P(X2|X1), neither mechanism, or both mechanisms; the
first two shifts are sparse and provide oracle identifiability of the true DAG. Following the simulation
setup described by eq. (6.1) on the DAG X1 → X2, we simulate data from one base environment and
from one interventional environment subject to one of the four possible shifts. Each environment has
500 samples. We compare the four different MSS methods using parametric and nonlinear equality
of distribution tests and conditional independence tests. We also compare the pooled PC and MC
approaches. Since only two environments are compared, we conjecture MSS and pooled PC to be
equivalent under an oracle test.

Results are shown in Fig. 10. For reference, an oracle method would have recall 1 in the first two
(sparse shift) columns and 0 in the other two columns. Although Fisher-Z has high precision when
P(X1) shifts, it has chance precision when P(X2|X1) shifts. The KCI methods maintain high pre-
cision while the precision of other methods is comparable or noticeably lower. With respect to recall,
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Figure 9: Differences between oracle MSS and pooled PC on 5 environments are most pronounced on
smaller and sparse DAGs. For readability, the legend is omitted but we refer back to the same legend
in Fig. 4. Specifically, the orange line corresponds to the MSS while the blue line corresponds to
pooled PC. Only five environments are sampled, but differences would be exacerbated with additional
environments.
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Figure 10: KCI-based tests perform well for causal identification in a bivariate CGM. 500 samples are drawn
from a base environment, and a second environment subject to one of four shifts given by the columns; the first
two columns are sparse shift settings where we have identifiability. The precision and recall are plotted for each
of the methods. It appears that the two KCI-based methods (MSS and pooled PC) achieve the best balance of
high power in both sparse shift settings while maintaining high precision in both non-sparse settings. Other
methods either have drastically lower recall or precision close to 0.5, indicating random guessing.

when neither or both mechanisms change and thus the DAG is not identifiable, all methods correctly
have low recall. However, when just the marginal P(X1) changes, the KCI methods dominate in recall
whereas the linear MSS MS, and GAM approaches have lower recall, implying they are less often
able to detect a change in the reverse conditional P(X1 |X2). When the mechanism P(X2 |X1) shifts,
all methods have high recall. Notably, the linear MSS performs much worse than MC. The only dif-
ference between them, however, is that MC explicitly counts how many parameters change while the
linear MSS simply tests if there is a change; this does come at a slight cost in precision for MS though.

D.2 Application to real-world cytometry data

Although simulations with known ground truth provide useful reference points for comparing methods
and evaluating empirical performance, in practice we are interested in studying real data with no
known truth and additional challenges such as violated assumptions. To illustrate how one may apply
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Figure 11: MSS (KCI) edge orientations mostly match the Sachs network [44]. Non-matching edges
are posited to be involved in cycles and of ambiguous orientation in the literature, as we discuss and
elaborate on.

our method in practice, and to analyze empirical performance on real data, we conduct a case-study
application of MSS for causal discovery on a well-studied cytometry dataset [44].

D.2.1 Background

Sachs et al. [44] present a detailed study of the application of Bayesian discovery approaches to
learning a causal DAG among protein concentration levels in human immune system cells. In each
of 9 experimental environments subject to different perturbations, approximately 700-900 sample
measurements were collected; each sample is the concentration levels of 11 proteins from a cell. The
learned Sachs network is a proposed DAG among the variables, which the authors discuss and contrast
with a domain-expert network from the “biologist’s view”. This cytometry data has subsequently been
studied in further detail [5, 42, 33]. As is often pointed out, various assumptions may be violated,
including the acyclicity assumption, since protein networks contain strong feedback loops [33]. As
such, it is not necessarily useful to treat the Sachs network as a ground truth and there are numerous
relationships and orientations which should rightfully be questioned [33]. Results must be considered
in the context of domain-knowledge and various existing studies in the literature.

D.2.2 Experimental setup

In order to focus on learning edge orientations of undirected edges in the MEC, rather than learning the
MEC, we start from the Sachs network despite the potential caveats. The Sachs network from Sachs
et al. [44] is a DAG on the 11 variables with 17 edges. We compute the Sachs MEC which contains
all DAGs which are Markov equivalent to the Sachs network. The Sachs MEC has no directed edges,
and thus is simply the undirected skeleton of the graph in Fig. 11. Starting from the Sachs MEC
makes our results more interpretable in light of previous works and saves costly computation of
the MEC. In practice, we would advise starting from the pooled PC MEC; based on the number of
environments and observed density of changes, we would not expect this to orient any edges beyond
the observational MEC.

Starting from the Sachs MEC, we apply the MSS using the KCI test, which appears to perform the
best among plug-in estimators for MSS in our simulations. Since the feature distributions are heavily
skewed, we preprocess them by taking their natural logarithm [42]. Among all DAGs in the Sachs
MEC, the DAG with the uniquely minimal number of shifts exhibits approximately 8.9 shifts per
pair of environments; this is relatively high but satisfies the assumption of sparse shifts. Violations to
assumptions may lead to more shifts than expected.
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D.2.3 Results and comparison to related works

The DAG which minimizes the MSS is the unique minimizer and is visualized in Fig. 11. An edge in
black is oriented in the same direction as in the Sachs network, while an edge in red is oriented in the
opposite direction. Overall, the majority of edges match the Sachs network. The edges which do not
match, however, reflect ambiguities and flawed assumptions. We list each edge which does not match
the Sachs network and discuss why this might be the case in light of existing work.

• PIP2→ PIP3: As illustrated in Sachs et al. [44], these two proteins are actually cyclically related
through bi-directed edges in the accepted “biologist’s view”. Indeed, PIP2→ PIP3 was similarly
recovered by an analysis of Ramsey and Andrews [42], detailed in their Figure 11.

• Mek→ Raf: that this edge does not match the Sachs network is discussed heavily by Mooij et al.
[33] who point to it as a fundamental flaw of the Sachs network. The Mek→ Raf edge is indeed
found by many other methods [5, 42, 33].

• The PKA, PKC, P38 triangle: although there is not a detailed discussion of these variables in
other studies, there is strong ambiguity in the edge directions among approaches. Notably, Mooij
et al. [33] similarly find strong evidence in their approach for the edge P38→ PKC while Ramsey
and Andrews [42] and Eaton and Murphy [5] find evidence for PKA→ PKC. However, all other
approaches agree that the edge P38→ PKA is incorrect. Although we do not explore further, it is
worth noting that the 3rd minimal MSS DAG (not shown) is the same as the one shown, except it
contains the presumed correct edge PKA→ P38.

As an additional note, we see in Fig. 11 that the edge Mek→ Erk is correctly recovered. Sachs et al.
[44] similarly recover this well-known connection and point to it as strong evidence of success. In
contrast, neither Eaton and Murphy [5], Ramsey and Andrews [42], nor Mooij et al. [33] recover the
edge with their methods. Indeed, Ramsey and Andrews [42] specifically discuss how their approach
incorrectly missed this edge, potentially the result of signal being lost when all the data is pooled.
Pooled PC would face a similar issue, exacerbated by additional environments, while the pairwise
comparisons by the MSS help to avoid this issue.
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