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Abstract

Relations are basic building blocks of human cognition. Classic and recent work
suggests that many relations are early developing, and quickly perceived. Machine
models that aspire to human-level perception and reasoning should reflect the
ability to recognize and reason generatively about relations. We report a systematic
empirical examination of a recent text-guided image generation model (DALL-E
2), using a set of 15 basic physical and social relations studied or proposed in the
literature, and judgements from human participants (N = 169). Overall, we find
that only ∼22% of images matched basic relation prompts. Based on a quantitative
examination of people’s judgments, we suggest that current image generation
models do not yet have a grasp of even basic relations involving simple objects and
agents. We examine reasons for model successes and failures, and suggest possible
improvements based on computations observed in biological intelligence.

1 Introduction

Consider the line ‘the flooben was on the demaglis’. Even if you don’t know what a flooben or
demaglis are, you know something is on something1. This is because on is a basic relation. Our
understanding of basic relations is general, early developing (1), and fundamental to our reasoning
(2). There is also growing evidence that basic relations are perceived as directly as basic object
properties (3). Machines that attempt to capture elements of human reasoning would do well to
accurately perceive such relations in images, and produce accurate images from such relations as
input. Here, we empirically and systematically evaluate a recent state-of-the-art model for image
generation (DALL-E 2) on its understanding of basic relations.

Recent advances in image synthesis have achieved seemingly remarkable success in producing
arbitrary images from arbitrary text (e.g. 4; 5). A prompt such as ‘a robot-cat wearing cool glasses,
gazing at a supernova’ produces images that look somewhat like a robot-cat, wearing cool glasses,
gazing at a supernova. Such successes lead to the impression that these models understand the input
as a human would, as a compositional combination of objects, properties, and relations.

Despite their success, these models are not without their limitations. Marcus, Davis, and Aaronson
used an informal preliminary analysis to illustrate the limitations of DALL-E 2 in compositionality,
common sense, anaphora, relations, negation, and number (6). AI blogger ‘Swimmer963’ (7) reported
informal tests along similar lines, and concluded DALL-E 2 has weaknesses with multiple characters,
text, novel words, and foreground-background. Farid (8) has pointed out the implausibility of cast
shadows and reflections in DALL-E 2. Liu et al. (9) recently proposed a composable diffusion model,

1As Alice remarks after reading the nonsense poem, Jabberwockey: “Somehow it seems to fill my head with
ideas – only I don’t exactly know what they are! However, somebody killed something: that’s clear, at any rate”
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and show that it outperforms other text-to-image models in the generation of structured images, by
using basic conjunction (AND) and negation (NOT).

Some of the limitations of current image-generation models have been recognized by the developers
of the models themselves. For example, Ramesh et al. point out difficulties with binding, relative size,
text, and other issues (Section 7 in 5). Saharia et al. proposed the DrawBench benchmark, which
includes a head-to-head comparison of the Imagen model to DALL-E 2, GLIDE (10), VQ-GAN-
CLIP (11), and Latent Diffusion (12), on images that probe the limitations pointed out in prior work,
including number, unorthodox color, positional arguments, rare words, and text generation.

While informative and important, these tests have not yet focused systematically on basic relations,
and have been restricted to non-relational limitations, a small number of prompts, a head-to-head
comparison of models to models rather than models to people, the intuitions of the authors, long and
complex prompts, or some combination of all of these factors.

The current work focuses on a set of 15 basic relations previously described, examined, or proposed
in the cognitive, developmental, or linguistic literature. The set contains both grounded spatial
relations (e.g. ’X on Y’), and more abstract agentic relations (e.g. ’X helping Y’). The prompts are
intentionally simple, without attribute complexity or elaboration. That is, instead of a prompt like ‘a
donkey and an octopus are playing a game. The donkey is holding a rope on one end, the octopus is
holding onto the other. The donkey holds the rope in its mouth. A cat is jumping over the rope’, we
use ‘a box on a knife’. The simplicity still captures a broad range of relations from across various
subdomains of human psychology, and makes potential model failures more striking and specific.

Rather than rely on our own intuition for whether an image matches a given relation prompt, we
examined the intuitions of 169 participants. The use of multiple relations and many participants
allows a more nuanced examination of model performance than pass/fail judgements. It also allows
a quantitative examination of model performance when considering additional covariates, such as
the ranking of images by CLIP score. The stimulus set, prompts, images, and participant data are all
openly available at https://osf.io/sm68h.

2 Background

The majority of text-guided image generation algorithms are a combination of two machine learning
techniques: reconstructive generative modeling, and latent space manipulation (steering) by way of
natural language supervision. DALL-E 2 in particular uses a combination of latent diffusion modeling
and CLIP-style natural language supervision (5). Latent diffusion modeling is a reconstructive
generative modeling technique that builds hierarchical representations of data by taking inputs, intro-
ducing noise, then teaching the model to reconstruct the original (noiseless) data through progressive
transformation (12). This technique allows the model to learn a structured, low-dimensional prior
over image space that can serve as the basis for the generation of entirely novel, high-dimensional
images by way of (re)sampling.

CLIP is a method for linking image-to-text by way of two encoders that reduce a paired image-text
sample to equidimensional latent vectors, and a loss function that forces the similarity of both
these vectors to 1 – effectively tagging both image and text as having originated from the same
data-generating source (13). Once trained on a sufficiently diverse set of samples, CLIP can be used
to assess the similarity between any image and any text. It is this similarity score that DALL-E 2 (and
other algorithms like it) use as a steering signal over the latent space of a trained diffusion model,
effectively guiding the diffusion model to produce samples conditioned on the similarity between
the generated samples and the target text. While relatively straightforward in its implementation,
the success of DALL-E-like models is contingent on the use of massive image-text training sets.
The earliest iterations of CLIP, for example, relied on a training set of 400-million image-text pairs,
heretofore made unavailable to the wider public. The size of the training set for the most recent
iteration of DALL-E 2 used in this experiment has of this writing remained unspecified.
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3 Experiment

We designed our experiment to assess the fit between basic relations and the images formed by
DALL-E 2, by presenting images and sentences to human respondents and asking them whether an
image and sentence matched.

Based on the existing cognitive, linguistic, and developmental literature (14; 15; 16; 17; 18; 19; 20;
21; 22; 23; 24; 25; 26; 27; 28), we created a set of 15 relations (8 physical, 7 agentic). The physical
relations were: in, on, under, covering, near, occluded by, hanging over, and tied to. The agentic
relations were: pushing, pulling, touching, hitting, kicking, helping, and hindering. These relations
were either studied previously in psychophysics, proposed as early developing in humans, proposed
as quickly and automatically computed in perception, were the target of computational modeling, are
of linguistic interest, or some combination of these desiderata.

We created a set of 12 entities: 6 objects, and 6 agents. The objects were: box, cylinder, blanket, bowl,
teacup, and knife. The agents were: man, woman, child, robot, monkey, and iguana. The objects were
simple bodies or common items used in previous data-sets that study relations (e.g. 29; 30), or in
psychophysics tasks (28), or both. The agents were human, or human-like, or of interest to the AI
community. The iguana was a novel visually distinct subordinate category, as a treat.

For each relation, we created 5 different prompts, by randomly sampling two entities five times. This
resulted in 75 prompts total (15 relations x 5 samples). For some relations, we restricted the set of
allowable entities as follows: (i) Physical relations involved two physical objects, (ii) Covering had
blanket as the first entity, (iii) In had box or bowl as the second entity, (iv) Agentic relations had an
agent as the first entity, and either an object or an agent as the second entity, (v) The relations helping
and hindering exclusively involved two agents.

We submitted each prompt to the DALL-E 2 rendering engine, and obtained the first 18 images that
resulted. In a small number of cases, the prompt was rejected as a policy violation (e.g. ‘a man
kicking a man’). In such cases, the second entity was replaced at random until no policy violation
was encountered. Our final stimuli set consisted of 1350 images (75 prompts x 18 images). Prompts,
images, and participant data are available at https://osf.io/sm68h.

3.1 Participants

We recruited 180 participants online (31) via the Prolific platform (https://www.prolific.co).
Participants were restricted to those located in the USA, having completed at least 100 prior studies
on Prolific, with an acceptance rate of at least 90%. The mean age of the participants was 33.8; 59%

Figure 1: Screenshot from a trial in our Experiment. Participants were presented with grids of
images, and a sentence prompt. Participants selected images that matched the target sentence.
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of participants identified as female, 40% identified as male, and one did not identify as either. Of this
sample, 11 participants failed to pass two attention checks, and were removed from analysis, leaving
169 participants in the final sample. The experiment was approved under an existing IRB (IRB19-1861
Commonsense Reasoning in Physics and Psychology). All participants provided informed consent.

3.2 Method

Participants were informed that they would be assessing a ‘picture-drawing AI’, by examining grids
of images that an AI drew in response to a given sentence. After an attention check, participants saw
10 trials, one at a time. In each trial, participants were shown 18 images, organized into a 3x6 grid.
Each grid also had the relevant prompt displayed at the top. Participants were instructed to select all
images in the grid that match the prompt. Participants were reminded that it may be the case that all
images match the prompt, none of them match, or only some of them match (See Figure 1).

The 10 prompts any given participant rated were randomly drawn from the full set of 75 prompts.
This resulted in variability in the number of participants that evaluated any given image. The number
of participants that rated a given image ranged from 15 to 43, with an average of 23. After participants
finished evaluating 10 prompts, they were given another attention check, thanked for their time, and
given an opportunity to provide feedback.

3.3 Results

Unless otherwise noted, results are reported with the following convention: arithmetic mean [lower
95% confidence interval, upper 95% confidence interval].

Participants on average reported a low amount of agreement between DALL-E 2’s images and the
prompts used to generate them, with a mean of 22.2% [18.3, 26.6] across the 75 distinct prompts.
Agentic prompts, with a mean of 28.4% [22.8, 34.2] across 35 prompts, generated higher agreement
than physical prompts, with a mean of 16.9% [11.9, 23.0] across 40 prompts (tWelch(71.82) =
−2.81, p < 8.41e−3, ĝHedges = −0.62 [−1.08,−0.16]). See also Figure 2.

Figure 2: Experiment results, participant agreement that images matched a prompt. Each
point is an individual prompt. Points in black show all prompts. Points in color break down
the prompts by whether the subject of the prompt was an object (physical) or agent (agentic).

Decomposing the broad categories of physical and agentic into constituent relations, we observe a
range of human agreement scores, as shown in Figure 3. While it is difficult to say what criterion
establishes whether DALL-E 2 ’understands’ a given relation, here we report comparisons to 3
thresholds: 0%, 25%, and 50% perceived agreement, averaged across participants. Holm-corrected,
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one-sample significance tests for each relation suggest all 15 relations have participant agreement
significantly above 0% at α = 0.95 (pHolm < 0.05)). However, only 3 relations entail agreement
significantly above 25% (touching, helping, and kicking), and no relations entail agreement above
50%. This remains true even without correction for multiple comparisons.

Figure 3: The proportion of participants reporting agreement between image and prompt, by
the specific relation being tested. Points are the means of individual images, averaged across
participants. There is a large range of reported agreement between image and text, though no
relation entails average agreement significantly greater than 40%.

Considering the results qualitatively, we note that even a (relatively) high average agreement may
not indicate relational understanding, but rather an influence of the training set. For example, the
‘touching’ relation generated maximal average agreement (at a mean of 42% [34.3, 49.6] across 90
images), but with varied, bimodal success at the level of individual prompts. For example, the prompt
‘child touching a bowl’ generated 87% [80.1, 93] agreement on average, while ‘a monkey touching
an iguana’ generated 11% [5.3, 19.7] agreement on average (see Figure 4). It may be then that the
combination of ‘child’ and ‘bowl’ is likely to generate images of a child touching a bowl simply
given the training data. We consider this point further in the discussion.

While there are many factors that influence the quality of DALL-E 2’s generated outputs, one
particular parameter of interest is the CLIP score of the generated images: That is, the similarity (as
determined by CLIP) between the generated image, and the text prompt used to generate that image
(13). Intuitively, this is one of the parameters most responsible for the match between the target
linguistic concept (in this case, a relation) and its depiction, but it’s not necessarily a given that CLIP
accounts for relations specifically. To examine the relationship between CLIP similarity and human
perception, we used OpenAI’s open-source ViT-L/14 model to calculate the similarity score between
each image in our image set and their associated prompts. We then averaged the CLIP scores across
the 18 images generated from each prompt, and correlated this average with the average perceived
agreement provided by the human respondents. We found a moderate relationship between the two:
ρ̂Spearman = 0.39 [0.17, 0.57], p = 5.5e− 4 (and see Figure 5), suggesting CLIP is at least partially
sensitive to the kinds of relations we’ve tested.
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“A child touching a bowl”

“A monkey touching an iguana”

Figure 4: Grids for two example prompts that probed the touching relation. While the average
agreement was 42%, the underyling distribution of prompt responses was effectively bimodal,
with e.g. the prompt ‘a child touching a bowl’ generating high agreement (87%), and ‘a
monkey touching an iguana’ generating low agreement (11%).

Figure 5: Relationship between CLIP (ViT-L/14) similarity scores and human agreement
scores, averaged over images and participants. Each point is 1 / 75 prompts.
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To assess more finely the combined influence of broad relation type (’agentic’ or ’physical’) and
CLIP scores on the human-perceived match between text and image, we used two Bayesian multilevel
(mixed-effects) models: a zero-inflated binomial model calculated directly over the participant-level
choice data (with additive effects for relation type and CLIP score, plus random intercepts for subject
and the order of image presentation [0-18]), and a zero-one-inflated beta model calculated over the
average scores per image (again with additive effects for relation type and CLIP score, but with a
random intercept for the order of image presentation alone). We use zero-inflated models in both
cases, given the outsize quantity of images that participants labeled as not matching the target prompt.
Controlling in both cases for variance injected by factors outside the study design (i.e. random
effects), these models suggest small-to-midsize significant effects of both relation type and CLIP
score on the probability of human respondents designating a target image as matching its prompt.
Results from these regressions are summarized in Table 1.

Table 1: Results of two mixed effects regressions of relation type and CLIP score on human
agreement, either at the individual subject level (zero-inflated binomial) or the image level
(zero-one-inflated-beta).

4 Discussion

DALL-E 2 and its two constituent components (latent diffusion models and CLIP) represent a
significant advance in machine learning, and such models may well spur new directions in the creative
visual arts. However, our current experiment and analysis suggests that DALL-E 2 suffers from a
significant lack of common sense reasoning in the form of relational understanding.

Relational understanding is a fundamental component of human intelligence, which manifests early
in development (18), and is computed quickly and automatically in perception (3). DALL-E 2’s
difficulty with even basic spatial relations (such as in, on, under) suggests that whatever it has learned,
it has not yet learned the kinds of representations that allow humans to so flexibly and robustly
structure the world. A direct interpretation of this difficulty is that systems like DALL-E 2 do not yet
have relational compositionality.

The notion that systems like DALL-E 2 do not have compositionality may come as a surprise to
anyone that has seen DALL-E 2’s strikingly reasonable responses to prompts like ‘a cartoon of a
baby daikon radish in a tutu walking a poodle’. Prompts such as these often generate a sensible
approximation of a compositional concept, with all parts of the prompts present, and present in the
right places. Compositionality, however, is not only the ability to glue things together – even things
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you may never have observed together before. Compositionality requires an understanding of the
rules that bind things together. Relations are such rules.

To the extent that DALL-E 2 is only able to generate relations some of the time is the extent to which
DALL-E 2 is actively not compositional. These failure cases are important, because they tell us
something about the way DALL-E 2 is getting things right. The fact that DALL-E 2 seems able to
easily generate ‘a spoon in a cup’, but not ‘a cup on a spoon’ (see Figure 6), means that even when
it is getting ‘a spoon in a cup’ right this is likely due to a great deal of prior exposure to images of
spoons in cups, rather than an understanding of ‘in’ or ‘on’ – precisely the kinds of syntactic rules
that define compositionality. Real compositionality should be invariant at the level of the relation,
which is to say that ambiguity in meaning should come from the semantic elements involved in the
relation, and not from the relation itself (32; 33).

“A spoon in a cup” “A cup on a spoon”

Figure 6: Illustrative example, images generated given ‘a spoon in a cup’ and ‘a cup on a spoon’.
Examining just the left images may lead to the conclusion that Dall-E 2 captures the in relation, but
the right images suggest this is simply an effect of training images that involve spoon and cup.

In addition to effects of training data on apparent successes, it is possible that DALL-E 2’s slightly
better performance with more abstract relations like ’helping’ is due to visual ambiguities, and the
interpretive steps that people take on top of a given image. That is, when seeing an image of a robot
touching another robot and the prompt ‘a robot helping a robot’, people may be thinking ‘Well, I
guess this could be helping, if...’. This is a tentative suggestion, but it could be tested empirically by
showing people images generated through prompts like ‘helping’ but without labeling, and having
them either freely describe the image, or giving people a forced choice among several relations.

Even with the occasional ambiguity, the current quantitative gap between what DALL-E 2 produces
and what people accept as a reasonable depiction of very simple relations is enough to suggest a
qualitative gap between what DALL-E 2 has learned, and what even infants seem already to know.
This gap is especially striking given DALL-E 2’s staggering diet of image content.

There are many potential reasons for Dall-E 2’s current lack of relational understanding, and they range
from the minutia of technical implementation, to larger disjuncts between the computational principles
underlying human intelligence and those underlying many current artificial intelligence systems. One
such disjunct is the way in which ‘place’ is explicitly coded for in both the generative image and text
models that constitute text-guided image generation algorithms like DALL-E 2. Perhaps the only
explicit encoding of relational order in such models is to be found in the positional embeddings of
the text transformer in CLIP – effectively an auxiliary input that might easily be outweighed by the
dozen or so nonlinear attention heads between them and the model’s final outputs. This design choice
is a marked difference from earlier iterations of natural language processing algorithms that provide
syntactic parse trees in conjunction with the tokens corresponding to individual morphemes and
words (34). At the level of images, there is an incompatibility between many modern machine vision
algorithms – often designed explicitly to mimic the primate ventral visual stream – and the explicit
representation of relations (spatial and otherwise) in the primate dorsal stream (35). Text-guided
image generation algorithms might well benefit from mimicking algorithms in robotics (e.g. CLIPort
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36), which combine CLIP’s semantic flexibility with spatial transformers to model object identities
and affordances simultaneously.

Another plausible upgrade that may boost model performance on relations are architectural adjust-
ments that allow for multiplicative effects in a single layer of computation (37). These kinds of
adjustments are inspired by biological perceptual systems, including the dorsal stream, that contain
mixed selectivity neurons and lateral sub-circuits that facilitate the representation of interactions at
multiple levels of the information-processing hierarchy (38; 39).

DALL-E 2 and other current image generation models are things of wonder, but they also leave
us wondering what exactly they have learned, and how they fit into the larger search for artificial
intelligence. DALL-E 2 has seemingly done what many models before it have failed to do, and
bound the abstractions of natural language to clear points of perceptual reference. But that binding
so far remains far more tenuous than the binding that defines the clear referents of standard human
communication. The case of relational understanding provides a clear target for making an already
meaningful advancement in artificial intelligence even closer to human meaning.
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Figure A.1: The proportion of respondents reporting agreement between image and prompt,
broken down by each entity’s part of speech.
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