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ABSTRACT

Self-supervised learning methods have shown impressive results in downstream classification tasks.
However, there is limited work in understanding and interpreting their learned representations. In this
paper, we study the representation space of several state-of-the-art self-supervised models including
SimCLR, SwaV, MoCo V2 and BYOL. Without the use of class label information, we first discover
discriminative features that are highly active for various subsets of samples and correspond to
unique physical attributes in images. We show that, using such discriminative features, one can
compress the representation space of self-supervised models up to 50% without affecting downstream
linear classification significantly. Next, we propose a sample-wise Self-Supervised Representation
Quality Score (or, Q-Score) that can be computed without access to any label information. Q-Score,
utilizes discriminative features to reliably predict if a given sample is likely to be mis-classified in the
downstream classification task achieving AUPRC of 0.91 on SimCLR and BYOL trained on ImageNet-
100. Q-Score can also be used as a regularization term to remedy low-quality representations leading
up to 8% relative improvement in accuracy on all 4 self-supervised baselines on ImageNet-100,
CIFAR-10, CIFAR-100 and STL-10. Moreover, through heatmap analysis, we show that Q-Score
regularization enhances discriminative features and reduces feature noise, thus improving model
interpretability.

1 Introduction

Self-supervised models learn to extract useful representations from data without relying on human supervision. These
models [1, 4, 5, 6, 7, 8, 9] have shown comparable results to supervised models in downstream classification tasks. By
means of data augmentation, these models are trained to encode semantically relevant information from images while
ignoring nuisance aspects. Therefore, the representations ultimately learned should only contain the information required
to define a given sample. However, in practice, learned representations are often quite noisy and not interpretable,
causing difficulties in understanding and debugging their failure modes [10, 11, 12].

In this paper, our goal is to study the representation space of self-supervised models such as SimCLR [1], SwaV [4],
MoCo [5] and BYOL [6] and discover their informative features in an unsupervised manner. This can help us debug
models better, improve their representation spaces and make them more interpretable. To achieve these objectives, we
visualize features of various samples as shown in Figure 1. We observe that the representation space is very sparse:
each representation contains a small number of dominant, strongly activated features while the remaining features are
close to zero in magnitude. A similar observation has been made in recent works [10].

Dominant features (i.e., features with large values in the representation space), can be categorized into three groups.
(i) Features that are dominant across a very small fraction of the population, which may encode image-specific
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Figure 1. Visualizing representation space of self-supervised models: In this figure, we display the representation space of a
pre-trained SimCLR [1] model on ImageNet-100 [2]. Each row corresponds to a randomly selected sample in the validation set.
Each column, out of 512 columns, corresponds to a feature of the SimCLR ResNet-18 [3] encoder. Representations are nearly sparse,
i.e., most feature magnitudes are close to zero. Each representation contains a small number of dominant features that may overlap
with those of other samples in the population. The highlighted features are studied in Figure 2.

characteristics (i.e. lower tails in Figure 3). (ii) Features that are dominant across a large fraction of the population
which may encode broad attributes (like texture, color etc.) which are common to most images (i.e. upper tails in Figure
3). And finally, (iii) features that are dominant across a moderate number of samples in the population (i.e. the middle
part in Figure 3), which are likely to encode unique physical attributes associated with classes. We refer to this subset
of dominant features as discriminative features. Note that we identify such discriminative features in an unsupervised
fashion, without any label information.

We observe some intriguing properties of discriminative features: (i) Discriminative features highlight useful/informative
attributes whereas other features often correspond to spurious and noisy attributes (Figure 6); (ii) Although discriminative
features are discovered without any label information, we observe that they are strongly activated in correctly classified
representations (in the downstream classification) and have low activations on mis-classified representations (Figure
5); (iii) With the use of discriminative features, we can compress representations of self-supervised models up to 50%
without sacrificing the performance of downstream linear classification by a large extent (Figure 4).

Building on these observations, we propose a Self-Supervised Quality Score (Q-Score), an unsupervised score for
measuring the representation quality of each sample in self-supervised models (without requiring the label information);
i.e., to what extent a given sample satisfies the favorable representation properties. A high Q-Score for a sample
implies that its representation is sparse and contains some highly activated discriminative features. We empirically
observe that the higher the Q-Score, the more likely that the sample will be correctly classified. We confirm this on
SimCLR [1], SwaV [4], MoCoV2 [5] and BYOL [6] by computing their Precision-Recall and ROC curves (Figure 7).
Q-Score achieves an AUPRC of up to 0.91 and AUROC of up to 0.74 in distinguishing between correct and incorrect
classifications.

We next use Q-Score as a regularizer and further train self-supervised (pre-trained) models to increase the Q-score
of low-quality representations, pushing their representations to be less noisy and more informative. With Q-Score
regularization, we achieve up to 8% relative improvement on average in test accuracy on SimCLR, SwaV, MoCo
and BYOL trained on CIFAR-10, CIFAR-100, STL-10 and ImageNet-100. Moreover, the representations, after
regularization, show an improved structure, are less noisy and more interpretable. We summarize our contributions as
follows:

• We study the representation space of self-supervised models and discover discriminative features, in an
unsupervised fashion.

• We show that discriminative features often have unique physical meaning and although are discovered without
any label information (given that SSL models are trained without labels), show strong correlation to class
labels. Moreover, with discriminative features, representations can be compressed by up to 50% reliably.

• We introduce Self-Supervised Quality Score (Q-Score) to measure the quality of each learned representation.
We empirically observe that the higher the Q-Score, the more likely that the sample will be correctly classified,
achieving an AUPRC of up to 0.91 on SimCLR and BYOL trained on ImageNet-100.
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Figure 2. Feature activations across classes: We plot the percentage of samples within each class where the given feature is
included in the set of dominant features. In the top panel, for features 11, 27, 333 and 301, we observe up to 80% correlation to a
single class. The gradient heatmaps indicate that these features encode unique visual attributes, relevant to the class label. We refer
to such features as discriminative features. Feature 175 is not a discriminative feature as it is strongly activated for a wide range of
classes and does not correspond to a meaningful physical attribute.

• We apply Q-Score as a regularizer to the self-supervised loss and show that, by improving the quality of
low-score samples, we can improve downstream classification accuracy by 8%. Moreover, we show that using
the Q-Score regularization improves the interpretability of self-supervised representations by removing noise
and highlighting useful information in each representation.

2 Related Work

Unsupervised methods for classification has been a long-standing area of research, generally involving the use of
clustering techniques [13, 14, 15, 16, 17, 18, 19]. Self-supervised learning, is a recent approach to learn without
human supervision by training models to prepare their own labels for each example [13, 14, 20, 21] usually with
the help of a contrastive loss. Contrastive learning [22, 23, 24] usually uses a temperature-controlled cross-entropy
loss between positive pairs of similar samples and negative pairs of dissimilar samples. Positive pairs are usually
considered as multiple transformations (views) [25] of a given sample using stochastic data augmentation. Through this
approach, several state-of-the-art self-supervised techniques [1, 4, 7, 6, 5, 9] have produced representations that give
linear classification accuracy comparable to a supervised approach.

Understanding these learned representations is relatively less explored. [10], observes that self-supervised representa-
tions collapse to a lower dimensional space instead of the entire embedding space. Other methods [26, 27], propose to
separate the representation space into variant and invariant information so that augmentations are not task-specific. [28],
observe representations across layers of the encoder and compare it to supervised setups. In this work, we focus more
on thoroughly studying the representation space of SSL methods and their properties. We investigate the connections
between the unsupervised properties in the representation space and mis-classifications when the representations are
used in downstream classification tasks.
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3 Self-Supervised Representations

Let us consider a SimCLR model with a ResNet [3] base encoder f(.) and an MLP projection head g(.). We define
xi ∈ Rn and x̃i ∈ Rn as two transformed views of the ith sample in a given input dataset containing N samples. Our
setup is identical to SimCLR. We apply data transformations, random crop, random horizontal flip, random color
distortion and random Gaussian blur. We pass the input samples through the base encoder to get self-supervised
representations denoted by f(xi) = hi ∈ Rr and f(x̃i) = h̃i ∈ Rr where r is the size of the representation space. For
contrastive training, we use the output of the projection head g(hi) = zi ∈ Rp and g(h̃i) = z̃i ∈ Rp where p is the
size of the projection space. The SimCLR optimization for the set of model parameters θ, is as follows,

max
θ

1

2N

2N∑
i=1

log
exp(sim(zi, z̃i))∑2N

j=1 1j 6=i exp(sim(zi, zj))
(1)

where sim(zi, zj) =
1
τ

zT
i zj

‖zi‖‖zj‖ .

In Figure 1, we visualize the representations of SimCLR pre-trained on ImageNet-100 [2]. Each row denotes the latent
vector (hi) of a random sample at index i of the ImageNet-100 test set. There are 512 columns corresponding to the
representation size of a ResNet-18 [3] encoder. The sample representations are illustrated in the form of heatmaps such
that, features with higher magnitude show darker colors. First, we study properties of sample representations (hi). We
observe that each representation is nearly sparse, i.e., most feature values are close to zero [10]. However, there exists
a select few features that are strongly deviated from the remaining features in any given representation. For ease of
visualization, we have highlighted 4 different representations (in black), which show at least one dominant feature.
For the ith sample whose latent representation is hi ∈ Rr, let µi denote the mean of hi and σi denote the standard
deviation of hi. We formally define the set of dominant features for the ith sample as,

Li := {j : hij > µi + εσi} (2)

where ε is a hyperparameter that is empirically selected. In practice, we find that ε = 4 works best for our experiments.
We observe that dominant features of a sample may be unique to that particular representation or may be shared with
other samples in the population. For example, in Figure 1, features 11 and 301 (highlighted in red) are strongly activated
for a single sample, whereas, features 27 and 333 are strongly activated for more than one sample. In Figure 2, we
plot all the samples where the given feature is strongly activated (i.e., dominant) and group them by their class labels
(note that the selection of dominant features are done without using the label information). If we take feature 11, we
observe that it is dominant for over 80% of the "dung beetle" class which is significantly higher compared to that of
remaining classes. The gradient heatmaps of the samples in the “dung beetle" class show that feature 11 corresponds
to a meaningful physical attribute that is useful in identifying a dung beetle. Similarly, we plot the class distribution
of features 27, 301 and 333 to show that these features also have a strong correlation to a small group of classes and
correspond to some informative visual attributes. We will refer to these features as discriminative features defined
formally in the next section. On the other hand, some dominant features may be strongly activated for a large number of
samples in the population. For example, in Figure 2, we illustrate the range of classes that feature 175 is dominant
for, varying from birds, animals, vegetables, household items etc. If we examine the gradient heatmaps of this feature
across various classes, we observe that this feature does not have a clear physical interpretation. In the next section, we
will formally define these two types of features and explain an approach to discover them in an unsupervised fashion
without using the label information.

4 Selecting Discriminative Features

In Figure 3, we plot the number of samples where a given feature at index j is part of the set of dominant features (i.e.,
j ∈ Li). Intuitively, this is the number of times a given feature is strongly activated for the samples in the population.
The features are visualized in the ascending order of the number of strong activations in the population (containing
5000 samples), for 4 state-of-the-art self-supervised models, SimCLR [1], SwaV [4], MoCo [5] and BYOL [6].

We define three broad categories of dominant features: (i) Features that are strongly activated across a very small
fraction of the population, corresponding to the lower tail features in Figure 3. These features are image-specific and
are unlikely to have class-relevance. (ii) Features dominant across a large number of samples in the population i.e, the
upper tail features in Figure 3. Like feature 175 in Figure 2), such features are likely to encode very broad and general
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Figure 3. Selecting discriminative features: We plot each feature in ascending order of the number of times they are dominant in
the population (y axis). We show this for SimCLR [1], SwaV [4], MoCo [5] and BYOL [6]. Discriminative features are selected
such that they are dominant for a range of samples, indicating that they may have strong class-correlation, therefore, are useful for
downstream classification. Features that are activated for a very large number of samples may not be discriminative as they often
encode information common to several classes (e.g. Feature 175 in Figure 2).
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Figure 4. Linear classification accuracy on discriminative features: We train linear classifiers after selecting subsets of discrimi-
native features of various sizes (middle portion of Figure 3) and plot their top-1 accuracy for SimCLR, SwaV, MoCo and BYOL. We
compare these results to the baseline and the accuracy on randomly selected features where models trained using discriminative
features consistently outperform those of randomly selected features. We can achieve up to 50% reduction in representations size
using discriminative features without significantly affecting the top-1 accuracy.

characteristics (like texture, color etc.) common to most samples and therefore, are not class-discriminative. The third
category includes, (iii) features that are active across a moderate number of samples in the population (i.e. the middle
parts in Figure 3). These features are most likely to encode unique physical attributes associated with particular classes,
similar to those illustrated in the top panel in Figure 2. We refer to this subset of dominant features as discriminative
features (denoted by the dotted lines in Figure 3). We emphasize that these discriminative features are selected without
the use of any label information.

We justify the described method of selection in Figure 4, where we plot the top-1 accuracy of a linear classifier trained
on ImageNet-100 using subsets of discriminative features of varying sizes as chosen from Figure 3 (blue line). We also
plot the top-1 accuracy when random subsets of features are selected. We observe that discriminative features perform
significantly better compared to randomly selected features. We also observe that we can reduce the representation size
up to 50% using the discriminative features, with minimal reduction in performance.

5 Interpreting Representations

In this section, we study some properties of the latent space that drive representations to be correctly classified by a
downstream linear classifier. In Figure 5, we visualize the discriminative features selected in an unsupervised manner
using the approach outlined in Section 4 for several ImageNet-100 classes. Each row corresponds to the class averaged
representation. On the left, we show the average representations of correctly classified samples in each class while on
the right, we show the same for mis-classified representations in each class.

As we can see, in Figure 5, in the first panel, there is a clear difference between representations of correctly and
incorrectly classified examples. Both correct and mis-classified representations are nearly sparse, however, the
discriminative features are strongly deviated only in correct classifications. This is especially interesting because the
label information has not been used in the selection of discriminative features. In Figure 2, we observe that discriminative
features show strong correlation to ground truth, which suggests that their presence may be useful in correctly classifying
representations. In Figure 5, our claim is confirmed as we observe that mis-classified representations do not show
high activation on discriminative features. For every representation, apart from the discriminative features, there are
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Figure 5. Comparing correct and mis-classified representations: In these heatmaps, we visualize discriminative features of
average representations of several ImageNet-100 classes. In the top panel, we display the correct (left) and incorrect (right)
classifications of SimCLR (baseline) and in the bottom panel, we visualize the same after using Q-Score regularization. In the
baseline, we observe that, discriminative features are strongly present in correctly classified samples compared to mis-classified ones.
After the Q-Score regularization, discriminative features are enhanced even in mis-classified representations and the overall feature
noise is greatly reduced.

Figure 6. Heatmaps of discriminative and noisy features: We visualize heatmaps of discriminative and noisy features of 4 classes
in SimCLR. We observe that discriminative features are informative and consistent between correct and incorrect classifications.
Noisy features, on the other hand, highlight uninformative parts of the image and do not contribute positively to downstream
classification.

a large number of features that have very low activation (close to zero). We name such features as noisy features for
each representation (i.e. features whose values are near zero). Correctly classified representations contain few noisy
features and are more sparse while mis-classified representations are often more noisy. Our visual observations hint
that we can potentially classify representations in an unsupervised manner by leveraging these structural properties of
representations. We will discuss this further in Section 6.

To better study the effect of individual features, we visualize gradient heatmaps of both discriminative and noisy
features in Figure 6. We observe that the heatmaps of discriminative features of any given class, capture relevant and
defining characteristics of the images, therefore are highly correlated with the ground-truth. The physical attribute
associated with a discriminative feature is consistent between the correctly classified and incorrectly classified samples.
Noisy features lead to noisy heatmaps which focus on aspects of the inputs that are uninformative (For more heatmap
visualizations of other classes, see Appendix Section A.6.) Self-supervised representations can be riddled with noisy
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Table 1. Top-1 Accuracy of state-of-the-art self-supervised models with Q-Score regularization: We compute the linear ac-
curacy of SimCLR, SwaV, MoCo and BYOL on CIFAR-10, CIFAR-100, STL-10 and ImageNet-100, before and after Q-Score
regularization. We observe that Q-Score regularization improves the baselines showing up to an 8% improvement in accuracy.

Dataset
SimCLR SwaV MoCo BYOL

Baseline Q-Score Baseline Q-Score Baseline Q-Score Baseline Q-Score
Regularized Regularized Regularized Regularized

CIFAR-10 90.83 92.31 89.17 90.03 86.91 92.77 86.72 92.25
CIFAR-100 65.91 71.90 62.89 66.52 63.47 68.16 60.97 67.71

STL-10 76.42 79.83 73.94 75.03 73.21 74.29 70.59 74.47
ImageNet-100 77.62 80.79 74.09 78.90 78.32 85.16 80.10 86.72

features that often do not contribute to correct classifications. For any given sample, having a large number of noisy
features and low activations on discriminative features are strong signals indicating its potential mis-classification in the
downstream task. We would like to emphasize that our results only indicate an association between these structural
properties and classification accuracy and we do not claim any causal relationship between the two. In the Section 6, we
show that enhancing these properties, through regularization, improves the overall quality of representations, followed
by improved classification accuracy and interpretability.
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Figure 7. Precision-Recall and ROC curves of Q-Score: We compute the precision-recall and ROC curve of Q-Score for correct
and mis-classified representations on ImageNet-100 on SimCLR, SwaV, MoCo and BYOL. We achieve an AUPRC of up to 0.91 and
AUROC of 0.71 in distinguishing between correct and mis-classified representations using Q-Score.

6 Self-Supervised Q-Score

Our study of learned representation patterns help us discover discriminative features in an unsupervised manner. We
observe that discriminative features help us visually distinguish between correct and incorrect classifications. We
also observe that noisy features (features with non-zero but small values) are often uninformative. We combine these
observations to design a sample-wise quality score for self-supervised representations.

Let us define D, such that |D| < r, as the set of discriminative features for a given self-supervised model trained on a
given dataset. For the ith sample, we have hi ∈ Rr (representation), µi (mean of hi), σi (standard deviation of hi) and
the set of dominant features Li = {j : hij > µi + εσi}, |Li| < r. We define our Self-Supervised Quality Score for
sample i as,

Qi :=

∑
j∈Li∩D hij

|Li ∩D|‖hi‖1
(3)

where, Li ∩D is the set of discriminative features specific to the ith sample. We also use the L1 norm ‖hi‖1 to promote
sparsity in representations consequently ensuring that noisy features are penalized. Intuitively, higher Qi implies that
the representation is sparse with strongly activated discriminative features. It combines two favorable properties of
representations i.e., sparsity (or feature noise, computed by the L1 norm) and strongly activated discriminative features.
Our objective with this metric is to compute a sample-specific score in an unsupervised manner indicating the quality of
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Figure 8. Heatmaps of discriminative and noisy features after Q-Score Regularization: We visualize heatmaps of discriminative
and noisy features of 4 classes in Q-score regularized SimCLR. We observe that discriminative features capture meaningful attributes
of each image. The noisy features (unlike Figure 6), do not get activated in most cases indicating that the regularization reduces
noise in the representation space, thereby improving model interpretability. These observations are consistent between correct and
incorrect classifications.

its representations. Ideally, we would like to argue that samples with higher Q-score have improved representations and
thus are more likely to be classified correctly in the downstream task.

We measure how effective our score is in differentiating between correctly and incorrectly classified representations in
an unsupervised manner. In Figure 7, we plot the Precision-Recall (PR) curve and the Receiver Operating Characteristic
(ROC) curve of Q-Score for SimCLR, SwaV, MoCo and BYOL, for the validation set of ImageNet-100 containing
5000 samples. We also compute the AUROC (area under receiver operating characteristic curve) and AUPRC (area
under precision-recall curve) in differentiating between correct and incorrect classifications. We observe up to 0.91
AUPRC and 0.74 AUROC among our baselines. Based on these results we can conclude that, Q-Score is a reliable
metric in assessing the quality and representations with lower Q-Score (quality), are more likely to be mis-classified.

So far, we have understood that higher Q-Score for a give sample indicates that it is more likely to be correctly classified.
Next, we check if promoting Q-Score during training in helpful. To do so, we use Q-Score as an intervention by further
training state-of-the-art self-supervised models with Q-Score regularization. For example, we can apply this regularizer
to the SimCLR optimization as follows,

max
θ

1

2N

2N∑
i=1

[
log

exp(sim(zi, z̃i))∑2N
j=1 1j 6=i exp(sim(zi, zj))

+ λ1Qi<α(Qi)
]

(4)

where, α is a threshold with which we select the samples whose Q-Scores should be maximized and λ is the regulariza-
tion coefficient. In other words the goal of this regularization is to improve low-quality representations, similar to the
ones shown in Figure 5, by maximizing their Q-Score to improve their quality for downstream classification.

6.1 Experimental Setup

Our setup consists of pre-trained self-supervised encoders (f(.)) SimCLR [1], SwaV [4], MoCo [5] and BYOL [6] on
ImageNet-100 [2], CIFAR-10 [29], CIFAR-100 [30] and STL-10 [31]. We maintain the same encoder optimization,
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training parameters and optimizers as the respective papers. We train the pre-trained encoders on their self-supervised
objectives with our Q-Score regularizer on the latent representations. We train with λ = 0.1 for 100 epochs until
convergence on a single NVIDIA RTX A4000 GPU.

6.2 Q-Score Regularization

We extract discriminative features for each dataset-model pair and perform Q-Score regularization on pre-trained
models. We tabulate our results before and after Q-Score regularization in Table 1. Q-Score regularization improves the
top-1 accuracy on each dataset on all of the self-supervised state-of-the-art models. On ImageNet-100 we observe up to
an 8% relative improvement in accuracy, most significant on MoCo.

In addition to top-1 accuracy, Q-Score also shows significant improvement in representation quality and interpretability.
In Figure 5, we compare the representation space before and after Q-Score regularization. We observe that discriminative
features become more enhanced after Q-Score regularization on both correct and mis-classified representations. Our
regularization also greatly reduces noisy features and produces cleaner representations with clear discriminative features
that are easier to classify. Therefore, we attribute the improvement in performance to improved representation quality.
As mentioned in Section 5, our motivation is to produce better quality representations that are more distinguishable
across classes and therefore, easier to classify. Although Q-Score improves accuracy, it does not entirely prevent
mis-classifications as mis-classifications may occur due to a variety of reasons such as, hardness of samples, encoder
capacity, dataset imbalance etc.

In Figure 8, we visualize heatmaps of several samples of 4 classes in the Q-Score regularized model. The discriminative
features under each class, activate relevant attributes for each example within that class. The noisy features, in
contrast to Figure 6, are now not activated for the majority of the examples. Strongly activated discriminative features,
sparse representations (Figure 5) and reduced noise in heatmaps (Figure 8), are indicators that Q-Score regularized
representations are more interpretable for downstream classification.

7 Conclusion

In this paper, we studied the representation space of self-supervised models in downstream classification tasks and
discovered discriminative features. Discriminative features are a subset of features that show strong activations in
smaller but sizable sets of samples, wherever relevant, and correspond to unique physical attributes. With discriminative
features, we can reduce the representation size by 50% without affecting linear accuracy. We also observe significant
differences in representations between correctly and incorrectly classified samples. Building on these observations, we
define Self-Supervised Quality Score (Q-Score) that is effective in determining how likely samples are to be correctly
or incorrectly classified. Our proposed score can be computed per sample in an unsupervised manner (without label
information). With the help of Q-Score regularization, we remedied these low-quality samples by improving their
Q-Scores, thereby, improving the overall accuracy of state-of-the-art self-supervised models by up to 8%. We also
observed that regularization improves model interpretability by enhancing discriminative features and reducing feature
noise. Our paper poses important questions for future studies such as: 1) why do self-supervised models trained
without any labels, produce axis-aligned, sparse representations, 2) what are the causes of mis-classifications, apart
from representation quality, 3) how can we utilize the better representations space for other tasks besides classification.
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A Appendix

A.1 Linear Head

In Figure A.1, we plot the magnitude of linear head weights of the top classes for each feature. We observe that the
linear head weight at the given feature index is strongly correlated with a particular class. The class mappings are
identical to those observed in Figure 2. This indicates that the linear head implicitly learns to assign higher weights for
discriminative features at their respective classes.
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Figure A.1. Linear head weights at various features: We plot the weight magnitude of the linear head for various features and
show that the weights are significantly high for select classes in ImageNet-100. These classes exactly match with Figure 2.
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Figure A.2. Top-1 Accuracy of subsets of features: Building on Figure 4, we plot the linear accuracy of features selected from the
lower tail in Figure 3 (red) and features selected from the upper tail in Figure 3. We observe that discriminative features outperform
all the baselines.

A.2 Selecting Discriminative Features

In Figure 3, we select features based on the number of times they are dominant in the population. Discriminative
features are selected in the middle portion, illustrated by dotted black lines. In this section, we discuss the performance
when the selection range is either to the left or the right of the curve. In Figure A.2, we add two additional baselines
on top of Figure 4. The red curve shows the top-1 accuracy of features selected from the lower tail (left) of Figure 3.
The purple curve shows the top-1 accuracy of features selected from the upper tail (right) of Figure 3. We observe
that discriminative features outperform all baselines, indicating that selecting discriminative features from the middle
portion in Figure 3 is optimal for best linear evaluation performance.

A.3 Deconstructing Self-Supervised Q-Score

The self-supervised Q-Score contains two components - 1) The mean of the discriminative features within a repre-
sentation and 2) The L1-norm of the representation. In Figure A.4, we visualize the AUC curves for each component
separately to study their effectiveness in discriminating between correct and mis-classified representations. We observe
that the AUPRC and AUROC values, for each individual component is significantly lower compared to Q-Score in
Figure 7, for each self-supervised model baseline. Combining both the components allows us to promote the magnitude
of discriminative features, and at the same time ensure that representations remain sparse. The improved AUC numbers
in Figure 7, confirm that combining both properties in Q-Score is more effective in distinguishing between correct and
incorrect classifications.
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Figure A.3. Histograms of Q-Score of correct and incorrect classifications: We plot the distributions of Q-Score between correct
and mis-classified samples in SimCLR, SwaV, MoCo and BYOL. We observe that the distributions are clearly shifted, indicating that
Q-Score is effective predicting whether any given sample would be correctly or incorrectly classified.
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Figure A.4. AUC plots of Q-Score components: We plot the ROC and PR curves of the two components of Q-Score. We observe
that, on all self-supervised models, the AUROC and AUPRC scores are better with Q-Score (Figure 7) which combines both
properties.

In Figure A.3, we also visualize histograms of Q-Score between correct and mis-classified samples for 4 self-supervised
models. We observe that mis-classified representations are clearly shifted in their Q-Score distribution on each model.
This confirms that Q-Score, without the use of any label information, can predict the likelihood of being correctly
classified for any given representation.

A.4 Class-wise Accuracy and Sparsity

In Figure A.5, we plot the class-wise accuracy of ImageNet-100 classes before and after Q-Score regularization. We
observe that Q-Score regularization, maintains or improves that performance of 83 classes and does not significantly
degrade the performance of any class. In Figure A.6, we plot the sparsity of the representations in ImageNet-100 before
and after regularization. Due to the use of L1-norm, we observe a significant increase in sparsity.

A.5 Transfer Performance of Q-Score Regularization

In Table A.1, we tabulate the transfer learning performance (linear evaluation) of various unseen datasets [29, 30, 31,
32, 35, 33, 34, 36] on 4 self-supervised models trained on ImageNet-100 with Q-Score regularization. We observe
that the average accuracy of unseen datasets improves on all setups, especially on SwaV and BYOL. We would like to
mention that these self-supervised models use ResNet-18 and are pre-trained on ImageNet-100 due to limited resource
constraints, therefore, the accuracy numbers may be lower than those reported in the baselines.

In Figure A.7, we visualize the gradient heatmaps of the discriminative features discovered on SimCLR on ImageNet-
100 on both ImageNet-100 and unseen datasets, Aircraft [32], Food [33] and Cars [34]. We observe that the physical
meaning associated with each discriminative feature is consistent between both the training and unseen data. The
heatmaps also correspond to informative features, strongly correlated with the ground truth. These gradients indicate
that discriminative features are transferable across unseen datasets, which support the improvement we observe in Table
A.1.
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Figure A.5. Class-wise accuracy of SimCLR with and without Q-Score regularization): We observe that Q-Score regularization
improves the accuracy of 83 classes in ImageNet-100. Q-Score regularization, does not degrade the performance significantly for any
class.
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Figure A.6. Sparsity of representations: In this scatter plot, we show that Q-Score regularization significantly increases the sparsity
of representations compared to the SimCLR baseline.

We also visualize the representations of correct and incorrect classifications of the Flowers [35] dataset in Figure A.8.
We use SimCLR pre-trained on ImageNet-100 (top panel) and with Q-Score regularization (bottom panel). We observe
that the same properties as Figure 5 on ImageNet-100 (train dataset) transfer at test time to Flowers, an unseen dataset.
Before regularization, representations, especially the mis-classified ones are more noisy. We observe dominant features
on each sample which get more enhanced after Q-Score regularization. The representations also become more sparse
with reduced noise leading to improved top-1 accuracy as shown in Table A.1.

A.6 More Gradient Heatmaps of SimCLR

In Figures A.9, A.10, A.11 and A.12, we plot more heatmaps of discriminative and noisy features of SimCLR. We
observe that discriminative features are highly correlated with the ground truth, whereas, noisy features, map to spurious
portions that do not contribute to useful information.
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Table A.1. Transfer learning performance of various state-of-the-art self-supervised models trained on ImageNet-100 with
Q-Score regularization: We observe that Q-Score regularization improves the average transfer accuracy on all self-supervised
models.

Transfer
SimCLR SwaV MoCo BYOL

Dataset Baseline Q-Score Baseline Q-Score Baseline Q-Score Baseline Q-Score
Regularized Regularized Regularized Regularized

CIFAR-10 70.13 70.55 71.27 72.42 73.26 72.39 71.36 72.99
CIFAR-100 40.23 40.70 42.52 42.69 45.70 44.11 45.92 45.36

STL-10 65.74 65.77 65.81 65.89 66.87 67.03 85.45 86.07
Aircraft 11.94 11.79 11.97 17.31 12.06 13.08 11.91 11.73
Flowers 49.52 51.63 49.53 55.03 50.20 50.82 50.23 51.26

Food 48.47 48.01 48.38 51.73 48.36 49.74 48.35 50.22
Cars 10.67 10.59 10.63 16.17 10.68 12.47 10.72 13.09
DTD 55.69 56.06 55.63 57.18 55.90 57.12 55.63 56.06

Average 44.05 44.39 44.47 47.30 45.38 45.85 47.45 48.35

Figure A.7. Discriminative features on unseen datasets: We visualize the discriminative features discovered on ImageNet-100 on
unseen datasets like Aircraft [32], Food [33] and Cars [34]. We observe that discriminative features correspond to the same physical
attribute as the training data and are core and informative.
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Figure A.8. Comparing correct and mis-classified representations in Flowers dataset: In these heatmaps, we visualize the top
features several Flowers [35] dataset samples. In the top panel, we display the correct (left) and incorrect (right) classifications of
SimCLR (trained on ImageNet-100) and in the bottom panel, we visualize the same after using Q-Score regularization. Similar
to the observations in Figure 5, we observe that the regularization makes representations more sparse with discriminative features
enhanced, thereby leading to an improvement in performance.
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Figure A.9. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Ski Mask): We plot the gradient heat maps of
the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that discriminative
features are more correlated with ground truth labels in correct classifications but are not correlated in misclassifications. Noisy
features map to spurious portions of the images.
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Figure A.10. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Park Bench): We plot the gradient heat
maps of the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that
discriminative features are more correlated with ground truth labels in correct classifications but are not correlated in misclassifications.
Noisy features map to spurious portions of the images.
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Figure A.11. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Head Cabbage): We plot the gradient heat
maps of the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that
discriminative features are more correlated with ground truth labels in correct classifications but are not correlated in misclassifications.
Noisy features map to spurious portions of the images.
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Figure A.12. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Dutch Oven): We plot the gradient heat
maps of the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that
discriminative features are more correlated with ground truth labels of correct classifications but are not correlated in misclassifications.
Noisy features map to spurious portions of the images.
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