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Figure 1: To assess a pre-trained computer vision model for fairness, we take the part of the model that maps given images to
its feature space. On the identified assessment datasets, we obtain features for images using the given feature extractor. Based
on the extracted features, we evaluate fairness through three types of indicators that enable two types of analysis (see Sec. 3).

ABSTRACT
Does everyone equally benefit from computer vision systems? An-
swers to this question become more and more important as com-
puter vision systems are deployed at large scale, and can spark
major concerns when they exhibit vast performance discrepancies
between people from various demographic and social backgrounds.

Systematic diagnosis of fairness, harms, and biases of computer
vision systems is an important step towards building socially respon-
sible systems. To initiate an effort towards standardized fairness
audits, we propose three fairness indicators, which aim at quantify-
ing harms and biases of visual systems. Our indicators use existing
publicly available datasets collected for fairness evaluations, and fo-
cus on three main types of harms and bias identified in the literature,
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namely harmful label associations, disparity in learned representa-
tions of social and demographic traits, and biased performance on
geographically diverse images from across the world. We define pre-
cise experimental protocols applicable to a wide range of computer
vision models. These indicators are part of an ever-evolving suite
of fairness probes and are not intended to be a substitute for a thor-
ough analysis of the broader impact of the new computer vision
technologies. Yet, we believe it is a necessary first step towards (1)
facilitating the widespread adoption and mandate of the fairness
assessments in computer vision research, and (2) tracking progress
towards building socially responsible models.

To study the practical effectiveness and broad applicability of
our proposed indicators to any visual system, we apply them to
“off-the-shelf” models built using widely adopted model training
paradigms which vary in their ability to whether they can pre-
dict labels on a given image or only produce the embeddings. We
also systematically study the effect of data domain and model size.
The results of our fairness indicators on these systems suggest
that blatant disparities still exist, which highlight the importance
on the relationship between the context of the task and contents
of a datasets. The code will be released to encourage the use of
indicators.
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1 INTRODUCTION
During the last decade, computer vision systems have been rapidly
deployed at large scale in many social contexts, which raised the
question of their social impact. One of themain questions is whether
these new systems could help resolve social injustice or on the
contrary, automate and exacerbate systemic inequality and discrim-
ination [5, 13, 40, 65]. The study of the bias, or the (un-)fairness,
of computer vision systems, has crystallized mostly in the form of
black-box audits. These audits typically focus on sensitive groups
defined by demographic attributes of people represented in the
images or videos, and aim at uncovering discrepancies of error
patterns between these groups. As a concrete example, facial recog-
nition applications have been under intense scrutiny because of
their questionable usage in surveillance-related applications [9, 80],
their impact on already marginalized groups [5] such as immigrants
[29], among other concerns. More generally, there has been rising
concerns regarding image classifiers, even on seemingly mundane
tasks such as image tagging [13], where studies found significant
discrepancies in the error rates in gender classification systems as
well as inherent issues in such tasks itself [5, 27, 40], or poor perfor-
mance when object recognition models are tested on geographically
diverse images [11].

Increasingly, the developments in computer vision rely on pre-
trained feature extractors, which are neural networks carefully
trained to generate high-level feature representation of images from
large images datasets. These feature extractors are then used as
the “backbone” of classifiers fine-tuned to solve a particular down-
stream task. On tasks such as image classification on ImageNet [66],
COCO [54] or few-shot learning, the accuracy of these features
extractors has consistently pushed the state-of-the-art over the past
years [46, 55, 60]. In conjunction, recent efforts in democratizing
computer vision technology were made by open-sourcing feature
extractors pre-trained on large datasets. However, recent work
showed that the established accuracy measures are far from being
reliable indicators for fairness [64]. While open-sourcing increases
accessibility to models that are hard to train for many [55, 60], the
exact context of use of these feature extractors is difficult to antici-
pate, whichmakes it evenmore crucial to understand their potential
fairness risks. In particular, we need techniques to thoroughly eval-
uate the biases and out-of-domain behaviour of these models.

Summary of our contributions. In this paper, we address the prob-
lem of assessing the (un-)fairness of feature extractors. To this end,

we propose three fairness indicators, which aim at quantifying spe-
cific harms and biases for certain image based computer vision fea-
ture extractors. Our proposed fairness indicators use publicly avail-
able datasets previously collected to measure fairness in computer
vision [23, 30, 68, 79], and focus on systematically evaluating three
main sources of harms that have been identified in the literature:

(1) harmful label associations, where images of people are mis-
takenly assigned a label that is offensive, derogatory or leads
to stereotypes,

(2) disparity in performance on images from across the world,
following previous studies which showed poor performance
on images from outside North-America and Europe, or from
low-income households [11, 70],

(3) disparity in learned representations of social and demographic
traits in the pre-trained features, following the analysis of
gender-bias in facial recognition systems of Buolamwini and
Gebru [5].

We propose experimental protocols that apply to any feature ex-
tractor (Figure 1) for which we also provide code and guidance.
To illustrate how our indicators can be used, we probe fairness
of conventional supervised systems trained on ImageNet and two
feature extractors trained on millions of internet images using
weakly-supervised [55] and self-supervised learning [26]. Our re-
sults suggest that compared to supervised training on ImageNet,
self-supervised learning on real unfiltered internet data produces
significantly fewer errors and smaller discrepancies between sen-
sitive groups. We believe our results will help measure progress
towards building fairer models and help facilitate the mandate of
fairness audits in further computer vision development.

Limitations and scope of this work. On one hand, standardized
fairness assessments are appealing to help quantify progress and
allow for comparison between models in a reproducible way. Po-
tentially, they could facilitate the widespread adoption of fairness
assessments by researchers as the AI research community moves
towards inclusive studies with broader impact considerations. On
the other hand, a risk of any benchmark is that it may be confused
with an operational definition of fairness, where the sole target is
to optimize the few metrics of the benchmark. We emphasize that
our fairness indicators are not meant to serve as a rigid and compre-
hensive evaluation of all aspects of fairness. First, our limited list of
fairness probes cannot capture the multifaceted and ever-evolving
aspects of social impacts that computer vision systems can have.
Second, our indicators are intrinsically limited by the datasets that
are currently available. These datasets have limited size, which
will make our indicators unreliable if they become the target of
optimization. Third, the datasets come with limited annotations and
follow sampling procedures and definitions of sensitive categories
that can themselves be challenged.

We view the concept of standardized fairness probes as an effort
towards evaluating harms and tracking progress towards socially re-
sponsible models. These fairness probes should consistently evolve
as new fairness datasets become available, new concerns regard-
ing the social impact of models are surfaced, new types of model
training paradigms are developed or indicators become unreliable
or useless. The goal of the benchmark is to facilitate auditing of
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biases in computer vision models, but it should not be considered
as a substitute to the study of broader impact.

Overview of the paper. We discuss the related work in the next
section. We then describe the details of our fairness indicators in
Sec. 3. The experimental protocol and results are presented in Sec. 4
and Sec. 5 respectively.

2 RELATEDWORK
Training paradigms in Computer Vision. Deep learning along
with convolutional architectures and datasets such as ImageNet
have shaped modern computer vision [31, 47, 77]. Supervised learn-
ing has been used as a de-facto approach for trainingmodels [15, 71].
Several works have demonstrated the benefits of pre-training on
large scale curated datasets with weak-supervised learning [36, 37,
55, 60], semi-supervised training [76], or supervised training on
hundreds of millions of images filtered images [46, 74]. Recently,
self-supervised learning has been used to train billion-parameter
models on billions of internet images [6, 26]. A major advantage of
large scale models is that the learned visual features can be tuned
to work well on a variety of downstream tasks [26, 36, 55, 60].

Fairness concerns in Computer Vision. Although computer vision
systems have recently yielded astonishing results, several societal
issues have come to the surface as their use materializes in ar-
eas like face recognition, self-driving cars and other commercial
applications [9, 19, 28, 56, 80].

i. Harmful label associations. Recent efforts such as ImageNet
Roulette [10] have revealed mislabeling of peoples images by com-
puter vision systems when these systems are trained using prob-
lematic training data. The incorrect classification and mislabeling
of peoples images causes harm and this harm is even greater when
the incorrect label corresponds to a stereotypical or derogatory asso-
ciation.

ii. Disparity in performances on images from across the
world. Besides mis-classification, image recognition algorithm
have also been proven to not work equally well across all regions
of the world [11, 70]. This disparity across region of the world
has been attributed in part to the datasets and training pipelines
based or evaluated on ImageNet, which features mostly images
from Western countries [70].

iii. Disparity in learned representations of social and de-
mographic traits of people. There are growing concerns related
to mis-classification of people’s membership in social groups (e.g.,
gender) [1, 40] and the ways that computer vision systems rein-
force harmful stereotypes [4, 69]. Raji and Buolamwini et al. [63]
studied impact of Gender Shades [5] in commercial facial analysis
and concluded that auditing such systems with the right metrics
could potentially reduce the error for marginalized groups, e.g.
darker-skinned women. Buolamwini and Gebru [5], Raji et al. [65]
have shown in their auditing of facial recognition systems that AI
systems can discriminate when it comes to gender and race and in
particular, found that darker-skinned women are more frequently
misgendered and/or not recognized by visual systems.

Motivated by these concerns, we develop two types of indicators
as outlined in Figure 1: (Type I) classifier-based indicators built
on top of the features and (Type II) similarity-based indicators

examining the feature space itself. These two types of indicators
cover three types of harmful concerns (discussed in detail in Sec. 3).

The impact of broader impact statements. Broader impact state-
ment requirement and more recently, ethics review processes have
brought a much needed perspective to machine learning research
community and its effects are spreading to wider groups of re-
searchers [2, 59]. A particular example is the recent OpenAI CLIP [60]
model which is a large scale model pre-trained on wide variety of
images with language supervision. In its broader impact section, the
authors present fairness evaluations of their model on harmful label
associations and disparity in gender recognition using FairFace [39]
dataset. However, these evaluations did not provide systematic pro-
tocols that can be followed for any pretrained model for assessing
fairness such as geodiversity. The evaluations are also based on
prompt engineering where the input is "text" as prompt instead of
the visual features which is a unique property of the model and
does not generally apply to computer vision systems. Further, the
assessment on gender recognition disparity involved training / pre-
dicting gender which has ethical concerns [65]. Compared to this
work, we are interested in protocols that allow researchers and
practitioners to audit and compare fairness of any CV system on
several types of harms/biases and without requiring training an
attribute (age, gender, skintone etc.) classifier.

Datasets for measuring fairness in computer vision. Several fair-
ness evaluation datasets have been proposed to facilitate fairness
assessment by enabling testing of classification performance on
images from diverse geographic locations [70] or correlation be-
tween detection performance and an income variable of the ob-
ject [11]. Recent work emphasized the importance of how people
images are classified or otherwise analyzed by computer vision
systems from early datasets of faces with geographically diverse
collection [44, 53] or Buolamwini and Gebru [5]’s intersectional
benchmark to the recent datasets FairFace [39], Casual Conversa-
tions [30] and More Inclusive Images for People (MIAP) [68]. These
works offer curated datasets with labels obtained through clear
annotation rules and with specific efforts deployed for checking
annotation bias.

We describe the datasets we use in Table 1: Casual Conversa-
tions [30], OpenImages MIAP [68], and UTK Faces [79] contain
images of people and are used in the indicators of harmful label
association and/or the same-group similarity search. DollarStreet
[11, 23], is used in the geographical fairness indicator. A breakdown
of number of samples per attribute can be found in Table 4 and
Table 5 and detailed descriptions of the datasets can be found in
the Appendix A.

We further discuss other fairness studies pertaining to criticism
of ImageNet, fairness metrics and centering fairness around the
context of the task in Appendix D.

3 FAIRNESS INDICATORS
Following the three main sources of harms and discrepancies be-
tween groups outlined in Sec. 2, we propose three fairness indicators
that apply to pre-trained feature extractors.

• The first two indicators (Indicator 1 and 2 in Fig. 1) perform
an indirect evaluation of feature extractors using classifiers
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Dataset Description

Casual Conversations
~3K images containing face crops of people’s faces. self-identified gender (‘male’, ‘female’,
‘other’ and ‘n/a’), age (from 18 - 85) and annotated Fitzpatrick skin tone labels.
Only used for model inference and not for training

OpenImages MIAP
~44K bounding boxes of peoples images from the test set. perceived gender (predominantly masculine,
predominantly feminine, unknown), perceived age range (young, middle, older, unknown)
Only for inference on the bounding boxes with height and width >= 100 in the test set

UTK Faces
~24K face images with apparent age, race and gender.
Only apparent gender labels are used since data is not balanced wrt skin-tone

Dollar Street
~16K images, 108 concepts, 54 countries, 4 regions (The Americas, Africas, Asia, Europe),
289 households with different income levels, on average 53 unique images per household.)
108 concepts are mapped to 94 classes in ImageNet

Table 1: List of Fairness datasets used in the proposed indicators in Sec.3.

Indicator Dataset(s) Task Type Goal Sensitive group(s) Metric

Label Association
Casual Conversations
OpenImages MIAP

image
classification

Measure association between harmful
predictions and sensitive groups of people

gender, skin tone and age (CC)
gender and age (MIAP)

% harmful predictions
at various confidence thresholds.

Geo Diversity Dollar Street
image

classification
Measure disparities in object recognition

depending on household income
income households

and region of the world hit rate (object recognition)

Same attribute
Database:UTK-Faces

Queries:Casual Conversations
similarity
search

Measure disparities between sensitive groups
in learned representations of images of people gender, skin tone, age Precision@K

Table 2: A summary of the fairness indicators proposed in Sec. 3.

built by fine-tuning the feature extractors. We propose two
measurements that assess out-of-domain generalization of
the classifiers:

(1) harmful mislabeling of images of people (Sec. 3.1),
(2) geographical disparity in object recognition (Sec. 3.2).
• The third indicator (Indicator 3 in Fig. 1) performs a direct
evaluation of the extracted features using a similarity search
task. It aims at measuring disparities in learned visual repre-
sentations of social memberships of people (Sec. 3.3).

A summary of the high-level design of the indicators is given in
Table 2. The details of our indicators are discussed below, together
with the main differences from the variants that have been proposed
in the literature. We also note the limitations of the indicator and
intended use in Appendix C.

3.1 Indicator1: Harmful label association
The goal of the harmful label association indicator is to study how
much classification algorithms make potentially harmful and biased
label associations on images of people for various subgroups (age,
gender, skintone). We describe all the components of the indicator:
the datasets, the definition of harmful associations, the sensitive
groups and the metrics.

• Requirement. This indicator requires a visual system that
has label prediction capability. We discuss in Appendix B.3
how one can adapt certain systems (such as those trained
with self-supervision) to predict labels if the system doesn’t
have this capability.

• Datasets. We design two independent tests using two dif-
ferent datasets:
– Casual Conversations: which contains faces of people,
– OpenImages MIAP: which contain more diverse images
that represent close-to real-world scenarios.

We emphasize that these datasets are used for inference only
and the classifiers should not be trained (or pre-trained)
on these datasets, as the indicator is designed to stress-test
classifiers on out-of-domain images.

• Label Associations. After performing inference with the
classifier on any of the datasets (OpenImages MIAP or CC),
we measure harmful label associations in a specific label
taxonomy by first categorizing the labels into three main
types of interest: Human, Non-Human and Crime in order to
study derogatory stereotypes. The predictions that fall into
the Non-Human and Crime categories are considered harmful
associations. The exact mapping between labels and the
association types depend on the underlying taxonomy. The
meaning of different association types is:
– Human are labels in “people” subtree. In our test, predicting
a Human label should be considered correct.

– Non-Human labels are labels in the “animal” subtree that
would lead to harm if predicted for certain sensitive groups.

– Crime labels are not in “people” nor “animal” subtrees but,
if predicted, would lead to harm/bias.

Labels that do not fall into the three types above are neither
counted as correct or incorrect. Yet, in order to better account
for possible mistakes or correct predictions, we also record
the following labels:
– Possibly-Human labels are not in “people” subtree but
describe “people” attributes (e.g., “makeup” or “beard”)

– Possibly-Non-Human labels are non-human labels that
may be legitimately predicted. For instance, it is common
in OpenImages MIAP that a person is holding a pet. In
that case, cat might be considered a correct prediction.
This type does not apply to the CC dataset which only
contains faces of people.
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Association type Labels in the ImageNet taxonomy

Human face, people

Possibly Human makeup, khimar, beard

Non-Human
swine, slug, snake, monkey, lemur, chimpanzee,
baboon, animal, bonobo, mandrill, rat, dog (CC only),
capuchin, gorilla, mountain gorilla, ape, great ape, orangutan.

Possibly Non-Human dog, cat

Crime prison
Table 3: Label mapping from ImageNet taxonomy for computing harmful label associations (Sec. 3.1). “Dog” is considered as
a Non-Human label on Casual Conversations v1 only, and the Possibly Non-Human type is evaluated solely on OpenImages
MIAP. We manually mapped a subset of labels in full ImageNet taxonomy [75] to these association types.

Assessing the correctness of either Possibly-Human or Pos-
sibly-Non-Human predictions requires manual visual in-
spection. The exact mapping between labels and the label
types depend on the underlying taxonomy. We provide the
label types for the ImageNet taxonomy used in our experi-
ments in Table 3.

• Sensitive groups. The harmful predictions are measured
on images of people belonging to various sensitive groups
(which depends on the information available in the dataset).
We use two datasets: Casual Conversations (CC) and Open-
Images MIAP. For each dataset, sensitive groups and data
distribution is detailed in Table 4.

• Metrics - confidence rated predictions. For all subgroups,
we consider the top-5 predicted labels by the classifier and
report the percentage of images of that subgroup for which
at least one predicted label falls into each label type at a
certain confidence threshold of label prediction.
While top-5 prediction is a common metric in research on
image classification [31], classifiers also have prediction prob-
abilities for each label, which can be used as a confidence
score.
Assessment of classifierswith varying confidence score thresh-
olds follows the literature on selective classification [18, 24],
also called classification with a reject option [32] or clas-
sification with abstention [67, 78]. We argue for using the
confidence-based assessment:
– the evaluations without considering confidence scores, do
not distinguish between mistakes that the classifier is very
confident in, compared to mistakes where the model has
very low confidence (which can be treated automatically
for instance by sending to a human annotator, or simply
not considering the image for further evaluation)

– it does affect the harms/biases conclusions regarding the
fairness of models (if a model predicts a harmful label but
with a very low confidence score (say 0.02), accepting low
confidence predictions increases harm).

– we believe this is particularly relevant to out-of-domain
tests (and, similarly, in deployed systems that may receive
out-of-domain data) since confidence scores are also used
to detect out-of-domain samples [52].

Choosing thresholds. using confidence scores introduces
an additional burden of choosing the threshold - a problem
that is often referred to as the risk-coverage trade-off : higher
threshold leads to less mis-classification, but also less cover-
age because the classifiers abstains from making predictions
on more images. Since a classifier that constantly abstains is
useless, we need to choose a non-trivial threshold in practice.
The choice of the threshold is inherently problem/task de-
pendent (depends on the potential risks of mis-classification,
including but not exclusively fairness/harms risks). Provid-
ing general guidance on how to solve this trade-off in context
is out of the scope of this paper, and hence we report results
for different thresholds.

• Summary. Overall, using the indicator involves the follow-
ing steps:
– Step1: For a given taxonomy, generate the label associa-
tions. For ImageNet, we provide the list in Table 3.

– Step2: Run the model inference only on each image in
the datasets and capture the top-5 model prediction along
with the confidence scores.

– Step3: For different subgroups, measure the percentage
of images labeled with different association types for dif-
ferent confidence thresholds.

• Differencewith the literature. Label association tests were
already present in the analysis of CLIP [60]. The main differ-
ences with our proposal are discussed in Sec. 2 under "The
impact of broader impact statements". In short, our approach
(i) applies to any visual extractor, (ii) aims at comparing dif-
ferent models, (iii) uses self-identified gender in CC dataset
and wider variety of practical images present in OpenImages
MIAP. On a related note, we also mention that Yang et al.
[77] proposed a revisited ImageNet by filtering out unsafe la-
bels. This is different from harmful / biased associations,
which we study in our work. For instance, labels such as
gorilla are marked safe in Russakovsky et al. [66] because
they are legitimate labels on images of the corresponding an-
imal. However, they are clearly harmful when predicted on
images of people of certain groups, as is evident in historical
incidents [62].
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Gender Age Skin Tone

Dataset feminine labels masculine labels 18-30 30-45 45-70 70+ lighter darker

CC 1, 627 1, 294 931 1046 870 62 1646 1329
UTK Faces 11, 525 12, 583 7728 5727 4712 1414 n/a n/a

young middle older unknown

OpenImages MIAP 10, 807 14, 345 3, 754 23, 966 986 14, 817 n/a n/a
Table 4: Number of samples of each characteristic in the datasets. Gender labels are self-identified-{female, male} for CC,
{predominantly feminine, predominantly masculine} for OpenImages, and apparent-{female, male} for UTK. On CC, we fol-
low Buolamwini and Gebru [5] and group the six-point Fitzpatrick scale into two types: Lighter (Type I to Type III) and Darker
(Type IV to Type VI) and group age into four groups 18-30, 30-45, 45-70, 70+. On the OpenImages MIAP, there are three
perceived gender subgroups (predominantly masculine, predominantly feminine, unknown gender) and four perceived age
subgroups (young, middle, older, unknown).

income region
bucket range ($) Africa Asia Europe Americas Global

low 27 − 90 37 20 0 5 62
medium 93 − 1, 700 23 111 17 26 177
high 1, 700 − 10, 000 3 17 17 13 50

total – 63 148 34 44 289

Table 5: Number of samples of each characteristic in the
datasets. Number of households per region (as defined by
De Vries et al. [11]) and per income buckets on the Dollar
Street dataset.

3.2 Indicator 2: Geographical diversity and
fairness

This second indicator aims at assessing the object recognition ac-
curacy of visual systems on images from around the world. Similar
to the label association indicator in Sec 3.1, this indicator assesses
classifiers. We share details of all components of this indicator.

• Requirement. This indicator requires a visual system that
has label prediction capability. See Appendix B.3 for how
one can adapt certain systems (such as those trained with
self-supervision) to predict labels if the system doesn’t have
this capability and in particular, predict labels in Dollar
Street taxonomy.

• Dataset. We use Dollar Street dataset and mapped the
initial annotations to the ImageNet taxonomy as described
in Appendix A1. The images in this dataset are annotated
with the label, country, region and the household income
(for the household that image represents).
We emphasize that the classifiers should not be trained or pre-
trained on the Dollar Street dataset, since this indicator
aims at stress-testing classifiers on an unseen, diverse set of
images.

• Sensitive groups. We propose 2 different sensitive sub-
groups:
– Regions of World: The Americas, Europe, Asia and
Africas.

1It is possible to use other taxonomies by mapping them to the original Dollar Street
annotations.

– Household income buckets: Given the household income
(in USD), we group the income into buckets as:

round(log(household income)/3).
Despite the simplicity of this formula, this bucketing yields
three income buckets across the full dataset, which allows
us to simplify the analysis into: low, medium and high
income groups. The distribution of the number of house-
holds by region/income buckets is given in Table 5. The
choice of income as a sensitive feature follows De Vries
et al. [11] which showed that usual classification models
perform significantly better on images from high-income
thresholds.

• Metrics. In the Dollar Street dataset, relatively few house-
holds (in total 289) are represented, but with a rather high
number of images per household. The work by De Vries
et al. [11] computed the mean income of represented house-
holds in each country of the dataset, and counted the average
hit rate over images from that country where an image is
counted as a hit if one of the top-5 predictions is the ground
truth annotation.
In our work, for reliable fairness audit, we take an alternative
approach to computing average hit rates. Our approach aims
at being less sensitive to spurious correlations that are due to
same-household. To that end, our metrics use the following
two pre-processing steps.

(1) First, we observed that for some households, the same
image appears several times with different labels. Since our
classifiers are not meant for predicting multiple labels for
the same image (ImageNet classifiers are typically trained
for single-label prediction), we first de-duplicate images,
counting the image as correctly classified if any of its
ground truth labels has been predicted. This leaves 15, 222
images for 289 households.

(2) Second, since images from the same household tend to
be visually much more similar than images from different
households, we first compute the hit rate on each house-
hold (as the average hit rate over the images of this house-
holds), and then take the average of these per-households
hit rates over the various sensitive groups (region, income
bucket or income bucket× region).
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• Summary.We summarize the end-to-end process:
– Step 1: Adaptation of Visual systems to predict la-
bels in Dollar Street taxonomy. Follow the details in
Appendix B.3.

– Step 2: Inference on Dollar Street images. Use the vi-
sual system to predict labels and the confidence score of
label prediction for each image in the Dollar Street dataset.

– Step 3: Compute the metrics. This is computed as de-
scribed above.

• Differencewith the literature.The differencewithDeVries
et al. [11] lies in the metrics (computed over households) and
our definitions of sensitive groups (regions and income buck-
ets). We demonstrate our definitions allow for more reliable
performance estimates (discounting the correlation between
images introduced by the household) and confidence inter-
vals (individual countries, as used by De Vries et al. [11]
do not contain enough households to produce meaningful
confidence intervals).

3.3 Indicator 3: Same-attribute assessment via
similarity search

The goal of this indicator is to probe the visual systems for disparity
in learned representations of images of people based on an attribute
(age, gender, skintone, race etc.). We follow an instance retrieval
approach which involves a Database and Queries. The Database
is where we search and the Queries are the inputs for which we
want to retrieve similar things (for example embedding vectors)
from the Database. This indicator evaluates a pre-trained feature
extractor by performing similarity search given the queries in the
Database, where the similarity is defined as the cosine similarity
of images in embedding space. We describe the components of this
indicator in detail:

• Requirement. Any visual system that needs to be audited.
Unlike previous indicator, the system does not need to have
a classifier.

• Datasets. We use UTK Faces as the Database and Casual
Conversations (CCv1) as the Queries. Both datasets have
almost balanced representation of different genders and age
groups, so there is no significant representation bias present
in these datasets.

• Sensitive groups. For CC, similar to the Indicator 1, we use
the sensitive groups described in Table 4.

• Metrics. Since our task is similarity search, we measure
Precision@K which measures proportion of K most similar
images that have the same gender as the query image. We
focus here on gender since it is the only common attribute
between UTK Faces and CC.

• Summary. Given a visual feature extractor, the end to end
process is as follows:
– Step 1: Extract model embeddings. Run the inference
on the images of the UTK Faces and CC datasets and save
the model output / embeddings.

– Step 2: Perform similarity search and measure. First,
normalize the embeddings to unit L2-norm. Then, for each
image embedding in the CC dataset, perform similarity
search using the UTK Faces embeddings and then compute
the Precision@K metric for each sensitive subgroup.

• Difference with the literature. In the analysis of CLIP,
Radford et al. [60] propose a gender classification task on
FairFace. Our proposal differs from their in the use of a
similarity search task rather than building a classifier of
sensitive demographic attributes. Our choice is motivated
by two important aspects:
– first, training attribute specific classifiers (such as gender,
age, skintone etc) is increasingly contrary to intended uses
of datasets collected for fairness, [30, 68],

– second, and relatedly, there is rising concerns regarding
training classifiers for sensitive labels such as age, gender,
skin tone. We believe that a fairness assessment should
avoid relying on building intermediate questionable arti-
facts (such as a gender recognition system) when possible.
The similarity search example corresponds to uses cases
such as image retrieval [3], where we would want to ac-
count for same-group similarity when the query image
contains people.

4 EXPERIMENTAL SETUP
We illustrate the use of the indicators presented in the previous sec-
tion by comparing three types of feature extractors trained within
different paradigms and at different data/model scale and different
data domain:

• Supervised training on ImageNet: Our baseline feature
extractors follow the standard practice of training a neural
network classifier on ImageNet [12] and considering the
layer before the prediction heads as a feature extractor [see
e.g., 33]. For the reference, ImageNet contains 1.28 million
images classified with a single label that belongs to a taxon-
omy of 1, 000 labels, derived from WordNet [20].

• Weakly-supervised training onfiltered Instagramdata:
We study an open source feature extractor, WSL [55], that
was trained on 3.6 Billion public Instagram images. The
training data is constructed by utilizing the hashtags associ-
ated with images and filtering the images with hashtags that
have synsets in WordNet [20] resulting in 27, 000 hashtags.
The convolutional neural network was trained using super-
vised learning using the hashtags associated to each image
as target labels. Similar to supervised ImageNet models, the
feature extractor is the last layer of the network before the
prediction head. We take this model as representative of fea-
ture extractors trained at large scale with weak supervision.

• Self-Supervised training on ImageNet or uncurated In-
stagram data: We study two representative approaches
for self-supervised training, SwAV [6] and SEER [26]. They
share the same underlying self-supervised training princi-
ples, based on constrained clustering of image crops. The
main difference between the two is that SwAV has hyperpa-
rameters optimized for self-training on ImageNet, whereas
SEER was tuned for training models on random internet
image at a much larger data scale. Similar to WSL, SEER is
trained on public Instagram images. However, in contrast
to WSL, the dataset used for SEER is a completely random
subset of 1 billion images that underwent no data filtering
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Figure 2: Grid of model and data sizes (in log-log scale) of different training paradigms compared in Sec. 4.

or curation whereas in WSL, images were filtered based on
hashtags that match English nouns in WordNet.

We take as main representative of these approaches a large convo-
lutional neural network of the RegNet family [61], RegNetY-128
which has 700 Million parameters. We chose this model because
this model is available off-the-shelf for various training paradigms
(supervised, weakly-supervised and self-supervised) making it pos-
sible to compare fairness of different training paradigms. We also
study smaller RegNet and ResNet-50 in Appendix E.2.

An important part of our experimental is an in-depth ablation
study. We believe that it is reasonable to compare weakly/self-
supervised training at the billion-image scale to supervised training
because weak- and self-supervision are precisely meant to enable
such scale in contrast to supervised learning where collecting large
amount of curated labeled data is simply infeasible. Further, as data
domain and data size change within training paradigms, we propose
an in-depth study where we control additional parameters. In this
ablation study, we focus on Supervised training and SwAV/SEER as
we have pretrained vision systems available off-the-shelf allowing
us to save compute resources and also SEER seemed to achieve
overall better results on fairness indicators than WSL. We study
systematically two axes:

• Data size and domain.We evaluate SEER models on three
subsamples of the Instagram data, containing 1 million, 32
million and 1 billion images to study the effect of scaling
the dataset size. Notice that since ImageNet contains about
1 million examples, comparing SEER trained on Instagram
with 1 million examples and SwAV essentially compares the
effect of the data domain.

• Model size and architectures.We study model size ranges
from 25 Million to 700 Million parameters. We primarily
focus on Convolutional Neural Networks (ConvNets) [51] in
our experiments.2. We chose ResNet-50 [31] as an example
of lightweight model, and two sizes of RegNet, RegNetY-16
(100 million parameters) and RegNetY-128 [61].

We systematically evaluate all combinations of SEER models for all
data size and models, and all models for Supervised training and
SwAV. A pictorial summary of all models studied is given in Fig. 2.

2Our indicators can readily be used with other models such as Vision Transformers [16]

5 RESULTS AND OBSERVATIONS
In this section, we present our findings and provide a comprehen-
sive analysis of our experiments.

5.1 Label association results
This section analyses the impact of training paradigm, data size
and domain on the potentially harmful label associations. Figure 3
depicts results on Casual Conversations and OpenImages MIAP. Re-
sults are reported for the RegNetY-128model and are stratified into
groups – based on gender and skintone on Casual Conversations
and on perceived gender in OpenImages MIAP. Additional results
stratified into age groups can be found in the Appendix E.1. We
consider harmful and non-harmful predictions with a minimum
confidence threshold τ = 0.1. Note that harmful labels include
crime and non-human, whereas non-harmful labels only include
human.

Effect of training paradigm. Figures 3a–3b (top row) compare the
effect of different training paradigms on Casual Conversations and
OpenImages MIAP, respectively. We consider models pretrained on
ImageNet and on the larger scale Instagram 1B. On Casual Conversa-
tions, trends appear to favor the SSL paradigm, which results in the
lowest harmful and the highest non-harmful hit rates. Leveraging
supervised signals (Supervised, WSL) results in more harmful asso-
ciations and larger harmful association hit rate differences across
different groups. We also note that SSL-ImageNet leads to overall
slightly lower harmful predictions than SSL-Instagram (possibly
because ImageNet data domain is more object centric), but the trend
is reverted for non-harmful predictions where the SSL-Instagram
obtains notably higher hit rates (possibly because Instagram data do-
main is more human-centric). In OpenImages MIAP, SSL-ImageNet
continues to yield to lowest harmful hit rates. However, in this
case, Supervised-ImageNet appears to follow. Interestingly, models
pretrained on Instagram tend to be among the top harmful label
predictors, no matter the training paradigm, suggesting that in the
case of OpenImages MIAP the data may play a more important
role than the training paradigm. For non-harmful predictions, SSL
models tend to yield higher hit rates, which are also comparable to
those of WSL. It is worth noting that the effect of training paradigm
may strongly depend on the model capacity. In particular, we note
that when using a smaller ResNet-50, Supervised consistently be-
comes more competitive on both datasets considered, lowering its
harmful hit rates, and reaching among the highest non-harmful
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(a) Casual Conversations. (b) OpenImages MIAP

Figure 3: Label association results: (Top) Effect of training paradigm; (Mid) Effect of data size and domain; (Bottom) Confidence
of models. For harmful association, lower hit-rate is better. For non-harmful association, higher hit-rate is better.

.
hit rates across all groups. See Appendix E.2 for a detailed analysis
on the effect of model capacity.

Effect of data size and domain. Since SSL learning allows training
models on unbounded data size, we study this effect for SSL models
specifically. Figures 3a–3b (mid row) show how data domain and
data size affect the training of SSL models on Casual Conversations
and OpenImages MIAP, respectively. Both datasets exhibit similar
trends. When comparing SSL models trained on different Instagram
data sizes, it appears that models benefit from additional data: using
1B data points increases the non-harmful predictions and lowers
the harmful ones, especially when compared to the model trained
on 1M data points. These gains appear more evident on Casual
Conversations than on OpenImages MIAP, where improvements
are somewhat modest. However, in both datasets, the SSL-ImageNet
results in comparable or lower harmful prediction hit rates than the
best Instagram-based model, suggesting that within self-supervised
training paradigm, the data content might be more critical than the
scale of the data to mitigate potentially harmful associations.

Effect of prediction confidence of models. We assess how differ-
ent training paradigms impact the confidence of models in Fig-
ures 3a–3b (bottom row), for CC and OpenImages MIAP respec-
tively. bu studying how of harmful and non-harmful label predic-
tions change as a function of increasing the confidence threshold τ
that a prediction is considered “correct”. On CC, we observe that SSL
models consistently require a small confidence threshold to push
harmful predictions rates close to 0. Moreover, both Supervised
and WSL models start off with notably higher harmful prediction
hit rates and take longer to lower their prediction rate close to 0,
with the Supervised model being slightly more confident than the
WSL model overall. For non-harmful predictions, SSL-Instagram
model consistently results in more confident predictions than any
other model for τ > 0.1. In this case, SSL-ImageNet appears to be
less confident than WSL-Instagram, and reaches non-harmful hit
rates which are close to 0 faster. Supervised consistently yields the
lowest non-harmful hit rates. On OpenImages MIAP, only the SSL-
ImageNet consistently presents the lowest harmful hit rates, and
requires a rather small threshold value to bring the hit rate very
close to 0. Supervised-ImageNet starts with lower harmful hit rates
that SSL-Instagram, which are however quickly matched by both
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Figure 4: Geodiversity, hit rates for Supervised,WSL and SSL.

(SSL and WSL) Instagram based models, suggesting that Supervised
is overall more confident than Instagram based models. Models pre-
trained on Instagram all exhibit a similar behavior for harmful hit
rate on OpenImages MIAP, with WSL being slightly more confident
in harmful predictions than WSL. For non-harmful predictions,
similar to CC, SSL-Instagram is the most confident model, result-
ing in high hit rates as we increase the threshold, which are only
matched by WSL pretrained on Instagram. Finally, the confidence
of models also depends on their capacity. See Appendix E.2 for a
detailed analysis on the effect of model capacity.

5.2 Geographical Fairness Results
In this section we analyze the results on the geodiversity indicator.
The main results are summarized in Fig. 4 and Fig. 5. All results in
this section use RegNetY-128. We refer the reader to App. F for a
study of the effect of model capacity.

Effect of training paradigm. Fig. 4 plots the hit rate for Super-
vised on ImageNet, WSL, and SSL on ImageNet and Instagram.
We observe that there are drastic discrepancies in performances
across sensitive groups, with a difference of 0.25 between lower
and higher income budgets, and about 0.20 between Africa and
Europe. Nonetheless, all versions of WSL and SSL significantly
improve over Supervised training, over all sensitive groups (in-
come buckets and region). Moreover, SSL trained on Instagram is
significantly better than the other models on all groups.

Effect of data domain and scale. Fig. 5 plots the relative improve-
ment in hit rate with respect to Supervised training on ImageNet,
for four SSL models: one trained on ImageNet, and three models
trained on Instagram with 1M, 32M and 1B examples respectively.
We observe that increasing the data size on Instagram has a positive
effect on performances, with a large gap between 32M and 1B ex-
amples. SSL on ImageNet seems better than SSL on Instagram with
1M examples, which suggests ImageNet is not a worse data domain
than Instagram for this task. Yet, the first conclusion is that these
result support the idea that training on large, diverse datasets im-
proves generalization on geographically diverse images. The second
important conclusion is that both SSL models have higher relative
improvement on lower income buckets, and generally higher rela-
tive improvement on groups with worse performances overall. Even
though there are still large discrepancies between senstive groups

– across the world and by income buckets, SSL seems a promising
avenue to reduce discrepancies in performances between groups.

5.3 Results of Same Attribute Retrieval using
Similarity Search

We now present the results for the last indicator, where the embed-
dings are directly used in a similarity search algorithm.

The main results are summarized in Fig. 6, which shows the
precision-at-10 and precision-at-50 broken down by gender, skin
tone and gender× skintone image groups. As previously, we com-
pare four RegNetY-128models, Supervised on ImageNet, WSL, SSL
on ImageNet and SSL on Instagram. For all models, the precision-at-
10 and the precision-at-50 exhibit very similar trends, so we discuss
both at the same time under the generic name “precision”. Detailed
results depending on model capacity can be found in Appendix G.

Effect of training paradigm. For all models, there are discrepan-
cies in the retrieval of same-gender images between query images
of females and males, as well as between query images of people
with darker and lighter skin tone. Looking at the breakdown by
gender× skin tone, we see that models work roughly the same
on male darker and male lighter, and the precision drops for
female darker. The models have different discrepancy profiles. Both
Supervised and SSL trained on ImageNet exhibit large discrepan-
cies in precision between male and female queries (0.25 and 0.20
respectively). WSL reduces this discrepancy to 0.11, and overall sig-
nificantly reduces discrepancies in precision across all gender×skin
tone groups. SSL trained on Instagram drastically reduces discrepan-
cies while improving the precision, reaching with female lighter,
male darker and male lighter reaching 95% precision. The pre-
cision for female darker queries still lags 10 points behind, which
shows that there are still blatant differences to address.

Effect of data domain and scale. In Fig. 7, we show the precision-
at-10 for RegNetY-128 trained with SSL on ImageNet and three
different data sizes for Instagram data (1M, 32M and 1B images). The
precision at other rank thresholds yields similar trends. Training
on ImageNet and Instagram with 1M examples leads to similar
precision values, which suggests that the difference in data domain
between ImageNet and Instagram has little impact on this indicator.
We observe a large increase in precisionwhen the data size increases
to 32M, with little differences between 32M and 1B. These results
suggest that large datasets are critical in improving the fairness
indicator. This conclusion is in-line with the geodiversity indicator,
even though there is no improvement when increasing the data
size from 32M to 1B.

5.4 Summary of All Indicator results
(1) Self-Supervised training on larger and diverse datasets such

as Instagram data leads to most improvement in general-
ization on geographically diverse images. The performance
improves the most for lower-income and non-Western re-
gions of the world.

(2) SSL paradigm leads to highest non-harmful and lowest
harmful label associations. Instagram data leads to highest
non-harmful label associations. Further, data scale increases
the non-harmful associations.
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Figure 5: Geodiversity, improvement relative to Supervised
on ImageNet: effect of data domain and size on SSL.

(3) Self-Supervised training on Instagram data leads to drastic
reduction in discrepancies in the same gender retrieval while
achieving high precision for different gender and skintone
which improved further with data scale.

6 CONCLUSION AND FUTUREWORK
Measuring fairness of computer vision systems in a systematic
way is necessary to build technologies that are fairer, more inclu-
sive for all people from different demographics. In order to spur
the progress in systematic assessment of bias in computer vision
systems, we propose three fairness indicators that are designed to
probe main sources of biases in computer vision models. We apply
our indicators on most commonly used deep architectures that are
trained using different training paradigms on various data sources,
and assess the generalization of these models on four publicly avail-
able fairness datasets. Our comprehensive analyses show that large
models using vast amounts of data (without requiring any annota-
tions or labels) perform best across all subgroups defined in fairness
datasets. We hope to spur further research in the field and hence
advance model diversity and generalization to people across sensi-
tive groups. Our assessment is intended to be used in conjunction
with qualitative analysis of models’ broader impact.

Future work. In this work, we only focus on models trained on
either uni-labeled ImageNet (one label per image) or unlabeled In-
stagram data, and evaluate the fairness on the datasets that provide
either fairness labels, e.g. age, gender, skin tone, or concepts, e.g.
income with geo-location. One open question for future research is
to carry further analyses on the pre-trained models that are trained
on multi-labeled datasets (multiple label per image).
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A DETAILED DESCRIPTIONS OF DATASETS
Casual Conversations (CC). [30] consists of 45, 186 videos of

paid participants across five different cities in the US. Dataset pro-
vides self-provided age and gender labels in addition to annotated
Fitzpatrick skin tone [21] and ambient lighting conditions. Age

category varies from 18 to 85, gender is limited to ‘male’, ‘female’,
‘other’ and ‘n/a’ (not available, prefer not to say) and there is only
a few videos for ‘other’ and ‘n/a’ gender categories. Nevertheless,
CC is one of the few public datasets that has self-identified age and
gender labels and hence we decided to assess our indicators also on
this dataset. For the purpose of our indicators, we employ the CC
dataset for model inference only and do not perform model training
on this dataset. See Appendix B.1 for more details how to retrieve
face crops.

OpenImages MIAP. [68] is a dataset designed to enable ML Fair-
ness and constructed by providing additional annotations for a
subset of OpenImages v6 [49] dataset. These annotations include
bounding boxes of people and attribute labels for fairness such as
perceived gender (predominantly masculine, predominantly femi-
nine, unknown) presentation and perceived age range (young, mid-
dle, older, unknown).

For the purpose of our indicators, we use OpenImages MIAP
test set for inference only. The test split contains 22, 590 images
where each image has multiple bounded boxes. In order to focus on
images of single people, we perform inference only on the bounding
boxes with height and width >= 100 as otherwise the people are
barely visible. We also filter out bounding boxes with gender or age
of the unknown category as we observed they often are sketches,
images of objects, or images where only the lower body is visible.
The use of these images not critical in our fairness study, and we
preferred keeping them out since it is unclear what label to expect
from the classifier. Overall, we perform inference on 43, 523 effec-
tively cropped images. We share more details on how we carefully
apply the bounding box crop for inference in Appendix B.2.

UTKFaces. [79] is a large-scale face dataset that consists of
24, 108 face images each of which is annotated for apparent age,
race and gender. The term apparent denotes that the labels are not
self-identified. The dataset has almost balanced data between for
male / female apparent genders with the downside of no data for
non-binary gender. Images cover a variety of variations in pose,
facial expression, illumination, occlusion and resolution. For the
purpose of our proposed fairness indicator, we only use the appar-
ent gender labels for which the dataset is also balanced.

Dollar Street. [23] is a collection of 16, 073 images of households
captured all around the world by a group of photographers. The
images capture 108 concepts from 289 households in 54 different
countries across the world. The countries represent 4 different
regions (The Americas, Europe, Asia, Africa). We manually mapped
the 108 concepts to 94 classes in ImageNet [66] dataset 3. The
households have income levels (measured in USD) varying between
67$ and 10k . There are on average 53 unique images per household,
with a maximum of 135 labeled objects per household.

3We release the full data information including the label mapping file to enable use of
this indicator.
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B EXPERIMENTAL DETAILS
B.1 Casual Conversations v1
For our experiments, we use the mini version of the dataset which
consists of 2, 982 videos (two videos per participant with one dark
and one bright lighting video when possible). Note that face crops
are not available for 29 videos where DLIB [43] has failed to detect
any faces. For each video, following [30], bounding boxes are de-
tected on each frame of the video using DLIB [43] that are resized
by a factor of 0.5 for faster computation and then upscaled by 2. In
order to increase the area of face and background (hair and clothes)
we enlarge the bounding boxes by a factor of 1.5 from the center
on the aligned frames and resize the face crops to 256x256. We take
the middle frame of the video where there exists a face crop (when
possible) and perform inference resulting on 2, 982 face images.

B.2 OpenImages
For OpenImages, we filter out bounding boxes with height or width
smaller than 100 pixels, because we observed they correspond to
barely visible people. We also filter out bounding boxes with gender
or age of the unknown category as we observed they often are
sketches, images of objects, or images where only the lower body
is visible. The use of these images not critical in our fairness study,
and we preferred keeping them out since it is unclear what label to
expect from the classifier.

We then followed a two-step process to have bounding boxes fit
the 224 × 224-input of our models:

(1) if the box’s shape is too far from a square (we use the rule
max(height, width)
min(height, width) ≥ 1.2), we crop the bounding box further
to a square from the top-left of the bounding box.
That way, we obtain a square input with focus on the top of
the bounding box, which usually is the head for images of
people.

(2) we then resize the resulting image to 224x224

B.3 Adapting a visual system to predict labels
For the indicators proposed in Sec 3.1 and Sec. 3.2, visual systems
need to be able to predict the labels and in particular labels in Dollar
Street taxonomy for Geographical fairness indicator. There are 2
possible scenarios:

• Visual system has label prediction capability (for Dol-
lar Street taxonomy): If the dataset taxonomy of the dataset
that the visual system is trained on, already predicts (Dollar
Street) labels, such system can be used directly for inference
on (Dollar Street) test images in zero-shot manner.

• Visual systems don’t have label prediction capability
(and/or don’t predict Dollar Street taxonomy): For some
visual systems (such as self-supervised models) which are
not inherently trained to predict any labels, the models can
be adapted (for example by finetuning) to predict the labels
by training on a subset of datasets like ImageNet [66] 4.

We also acknowledge that the caveat of using ImageNet as the
transfer dataset can introduce the potential bias in the system but
4We release the information of exact subset of 20K subset images from ImageNet
which capture the Dollar Street taxonomy and also subset labels that correspond to
label associations in 3.1 indicator.

we note that this strategy can still enable comparisons of several
visual systems conditioned that all the visual systems are adapted
to Dollar Street taxonomy using the same training process (irre-
spective of if the models already have label prediction capability).
We further note that our 3rd indicator allows to measure fairness
purely from the raw model embeddings.

C LIMITATIONS IN MORE DETAIL
We note several limitations of our proposed indicators below, and
some of them are the inevitable result of using currently available
datasets. We note that these limitations would be easily overcome
with more diverse and fairer datasets, which consist of all possible
inclusive labels for all attributes.

• The proposed indicators provide a proof-of-concept for what
could be the systematic assessment and evaluation of visual
systems by utilizing the existing fairness datasets. These
evaluations can enable comparison of models and measure
how well they are calibrated (in particular, how do they
impact marginalized populations). However, given a visual
system, the choice of what indicator to measure depends
on the context and this choice must be thoroughly assessed
with proper stakeholder involvement so as to answer why
those indicators are chosen, what kind of assumptions are
embedded in this choice, and what specific questions do the
system designers aim to answer [38, 48].

• We further note that these fairness indicators are comple-
mentary to the model and dataset documentation. These
indicators do not replace proper documentation of dataset
building and model reporting practices, but it can come to-
gether as a standard way of outlining a baseline comparison
when one is developing or deploying new models. Further-
more, the proposed indicators can evolve/expand through
time to include new types of visual systems, new fairness
probes and new datasets as deemed appropriate.

• In our analysis of several visual systems, we only consid-
ered one model in each setup and didn’t evaluate fairness
if different seeds are used to initialize the models as this
is beyond the scope of this work but we encourage using
multiple seeds when probing the model fairness with the
indicators.

• we focus on single-label prediction, mostly for convenience
because classification is the most studied CV task in the
literature. Even focusing only on classification, single-label
prediction makes label ambiguity a problem – without all
labels that could be considered correct for an image, error
rates are unreliable.

• some limitations from the use of dataset:
– the definitions of attributes differ across datasets which
limits the possibility of cross-dataset tests (for instance,
UTK faces doesn’t have Fitzpatrick skintone scale in con-
trast to Casual Conversations. This limits the study to
gender and age attributes in our Similarity search based
indicator.

– most dataset like UTK-Faces don’t yet have data for non-
binary genders which strictly limits the fairness probe for
all social memberships.
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– most datasets only provide perceived or apparent labels for
people’s social membership which itself could be biased.

– lack of labels social membership labels (age, gender, skin-
tone etc) puts constraints on the type of task we can ad-
dress. For instance, publicly available Hate Speech datasets [41,
42] do not have labels for sensitive groups, and hence we
can’t analyze hate speech harms/biases of current visual
systems towards specific groups this data.

D FURTHER CONTEXT AND RELATED
WORK

Criticism of ImageNet. ImageNet [12, 66] has spurred immense
developments and advances in Computer Vision over decades. How-
ever, recently Yang et al. [77] pointed out several reasons that Im-
ageNet [12] might cause potential bias and therefore harm in the
downstream models. Dulhanty and Wong [17] studied the demo-
graphics of people in ImageNet dataset by using computer vision
models to predict the gender and age of people, and demonstrated
that, e.g., males aged 15 to 29 make up the largest subgroup. Stock
and Cisse [73] did not explicitly analyze the dataset but demon-
strate that models trained on ImageNet exhibit misclassifications
consistent with racial stereotypes. Steed et al. [72] further showed
that unsupervised models trained on ImageNet can automatically
learn racial, gender and intersectional biases from the way people
portrayed in images that were curated from the web. Recently, effort
has been made by Yang et al. [77] to reduce the bias in ImageNet
dataset that resulted in removal of 2,702 synsets (out of 2,800 total)
from person subtree in ImageNet dataset.

Fairness metrics for machine learning models. Most of the recent
works utilize average performance indicators broken down by sen-
sitive groups. The metrics themselves measure disparities between
groups in terms of predicted positive value (PPV), True/False pos-
itive rates (TPR, FPR) [5], error rates [11] or risk difference [57].
There is no consensus nor general guidance for choosing the met-
ric depending on context. Despite incompatibilities between met-
rics [7, 45] or otherwise counterarguments regarding the use of
these aggregate performance measures [8, 25], there has been little
debate on which metric to use for fairness audits in computer vision.
This contrasts with the analysis of the COMPASS risk scores, which
spurred an intense debate over metrics [14, 22, 50] (even though
this debate is for the most part unresolved).

Centering fairness around the context of the task. Proper docu-
mentation of models and datasets are key priorities in developing
new AI systems and should be carried out concurrently to bench-
marks. Comprehensive approaches range from Model cards [58]
aiming to standardize transparent model reporting, and data doc-
umentation [35] encouraging accountability at every stage of the
data collection process. Raji et al. [65] pointed out five ethical con-
cerns that should be taken into consideration while developing
products for algorithmic auditing in order to prevent harms on pro-
tected groups. A common aspect of these developments is rooted
in making the context of the task and the underlying cultural /
social context as an important factor in developing transparent and
accountable machine learning systems. Without such considera-
tions, relying only on abstract notions of fairness measures fails

to address the core problem of the developed system [34]. These
challenges impact the researcher and the practitioner alike and the
standardized protocols enabling systematic fairness assessment is
a long overdue step forward for computer vision developments.

E ADDITIONAL LABEL ASSOCIATION
RESULTS

In this section we provide additional label association results on
Casual Conversations and OpenImages MIAP.

E.1 Results for different age groups.
Following Section 3.1, all results are reported for the RegNetY-128
model, considering predictions with a minimum confidence thresh-
old τ = 0.1.

Figure 8 depicts the impact of training paradigm, data size and
domain on the potentially harmful label associations on both Ca-
sual Conversations and OpenImages MIAP when stratifying re-
sults based on (perceived) age. Results include harmful (crime,
non-human) and non-harmful (human) predictions.

Effect of training paradigm. Figures 8a–8b (top) compare the ef-
fect of different training paradigms on Casual Conversations and
OpenImages MIAP, respectively when stratifying results based on
different age groups. As in the gender-skin tone stratification, we
observe that trends appear to favor the SSL paradigm on Casual
Conversations. However, we note that in this case, SSL-ImageNet
reaches similar harmful hit rates as SSL-Instagram, except for the
70+ age group, where the harmful predictions are lower. The trend
observed in the non-harmful predictions is the same as for the
gender-skin tone stratification, with SSL-Instagram obtaining no-
tably higher hit rates than SSL-ImageNet (possibly because Insta-
gram data domain is more human-centric). In OpenImages MIAP,
the analysis of the results also yields to similar observations as in
the gender-skin tone classification. In particular, SSL-ImageNet con-
tinues to yield the lowest harmful hit rates, and models pretrained
on Instagram continue among the top harmful label predictors.
Notably, SSL-Instagram leads to the highest harmful hit rates. For
non-harmful predictions, we observe a general trend that results
in larger hit rate differences across different groups, no matter the
training paradigm and data used.

Effect of data size and domain. Figures 3a–3b (bottom) show how
data domain and data size affect the training of SSL models on Ca-
sual Conversations and OpenImages MIAP, respectively. The effect
of data size when stratifying results based on age outlines the same
trends as for the gender-skin tone stratification. Overall, it appears
that increasing the data size from 1M to 1B Instagram images, dras-
tically increases the non-harmful predictions and also lowers the
harmful ones, especially on Casual Conversations. However, the
SSL-ImageNet results in comparable or lower harmful prediction
hit rates than the best Instagram-based model, further emphasizing
that the data content might be more critical than the scale of the
data to mitigate potentially harmful associations.

For completeness, Figure 9 presents label association results on
Casual Conversations for all labels separately: human, non-human,
possibly-human, and crime. Results are shown both for gender
and skin tone, as well as age, and consider the effect of training
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(a) Casual Conversations. (b) OpenImages MIAP

Figure 8: Label association results stratified into groups based on age: (Top) Effect of training paradigm; (Bottom) Effect of
data size and domain. For harmful labels, the lower the hit rate the better; conversely, for non-harmful labels the higher the
hit rate the better.

(a) Results based on gender and skin tone. (b) Results based on age.

Figure 9: Casual Conversations extended label association results: (Top) Effect of training paradigm; (Mid) Effect of data size
and domain. For human and possibly-human, the higher the better. For crime and non-human, the lower the better.

paradigm (top) and data size/domain (bottom). We note SSL leads to
both lower crime and non-human hit rates. However, SSL-ImageNet
resulting in overall lower harmful hit rates can be explained by its
lower non-human prediction rates. SSL-Instagram results in lower
crime prediction rates, and both its crime and non-human predic-
tion rates can be decreased by appropriately increasing the dataset
size (see IG1M vs IG1B results). Interestingly, SSL-ImageNet con-
sistently exhibits among the highest possibly-human hit rates.
Analogously, Figure 10 presents extended results on OpenImages
MIAP. In this case, results are reported for human, non-human,
possibly-human, possibly-non-human, and crime, and consider

both perceived gender and age. When decoupling the harmful la-
bels, we observe that the high harmful prediction rates of Instagram-
pretrained models are driven by their frequent non-human predic-
tions. However, when it comes to crime, Supervised-ImageNet leads
to the highest prediction rates. In OpenImagesMIAP, possibly-non-human
predictions aremore present in SSLmodels, whereas possibly-human
predictions are more present in models pre-trained on ImageNet
(no matter the paradigm).
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(a) Results based on perceived gender. (b) Results based on perceived age.

Figure 10: OpenImages MIAP extended label association results: (Top) Effect of training paradigm; (Mid) Effect of data size
and domain; (Bottom) Confidence of models.For human and possibly-human, the higher the better. For crime, non-human and
possibly-non-human, the lower the better.

(a) Casual Conversations: (top) results based on gender and skin
tone, (bottom): results based on age.

(b) OpenImages MIAP: (top) results based on perceived gender,
(bottom): results based on perceived age.

Figure 11: Effect of model capacity on label association results.

E.2 Effect of model capacity.
Finally, Figure 11 presents the impact of model capacity on label
association results on both Casual Conversations and OpenIm-
ages MIAP. When considering Supervised-ImageNet models, we
observe that increasing model capacity tends to increase the pre-
diction of harmful labels across all groups considered in both Ca-
sual Conversations and OpenImages MIAP datasets. At the same
time, the highest capacity model, RegNetY-128, exhibits the lowest
non-harmful hit rates. This suggests that better fitting the Ima-
geNet data with a supervised objective may lead to undesirable
outcomes. When considering SSL-ImageNet models, increasing ca-
pacity maintains or decreases harmful hit rates across all groups
and for both datasets considered. It is worth noting that these SSL

models not only tend to exhibit among the lowest harmful hit rates
but also tend to be more stable in their predictions across different
subgroups. However, higher capacity SSL-ImageNet models often
result in the lowest non-harmful hit rates. By contrast, when con-
sidering SSL-Instagram models, increasing model capacity often
increases harmful predictions and leads to slightly higher discrep-
ancies across different groups. In this case, similar to SSL-ImageNet,
we observe that increasing model capacity often decreases or main-
tains the non-harmful predictions. However, as discussed in Sec-
tion 3.1, these models can significantly benefit from additional
Instagram data to mitigate potentially harmful label associations.
It is worth noting that in the OpenImages MIAP, non-harmful
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prediction rates are overall significantly lower than in Casual Con-
versations.

F EFFECT OF MODEL CAPACITY:
GEOGRAPHICAL DIVERSITY

We provide in Fig. 12 the results on the geographical fairness in-
dicator depending on the model size, depending on the training
paradigm (Supervised or SSL) and depending on data domain and
size (ImageNet, or Instagram with 1m, 1b).

We observe that model capacity is critical when pre-training in a
supervised fashion on ImageNet (leftmost column): from ResNet-50
to RegNetY-16 there is an improvement of over 15% (absolute) hit
rate. RegNetY-16 and RegNetY-128 achieve the same performance
on Supervised training. Interestingly, model capacity does not seem
to have a large impact for SSL on 1m images, either on ImageNet
or Instagram (middle left and middle right columns), and the per-
formances dominate that of Supervised pre-training. The effect of
model capacity becomes more visible when training on 1b images
(rightmost column), where differences between RegNetY-128 and
ResNet-50 are significant across all sensitive groups.

The conclusion is that the results coincide with those of other
indicators when training at very large scale: larger models tend to
fare better. Apart from that, the effect of model size on supervised
training is interesting, yet seems specific to that indicator.

G EFFECT OF MODEL CAPACITY:
SIMILARITY SEARCH

We present in this section the results obtained on the similarity
search indicator by varying the model capacity. Fig. 13 presents the
results in terms of precision@10 and precision@50 for ResNet-50,
RegNetY-16 and RegNetY-128 for Supervised training on Ima-
geNet (left most column), SSL on ImageNet (middle-left column),
SSL on Instagram with 1m examples (middle-right) and SSL on
Instagram with 1b examples.

As for all other indicators, increasing model capacity improves
precision on SSL training on 1b examples, with RegNetY-128 achiev-
ing the best precision values (and about 15% absolute improvement
on female darker, the sensitive group where the precision is the
lowest).

For other training paradigms/data sizes however, increasing
model capacity does not help much. On Supervised pre-training,
we see no effect of increasing the model capacity, while when using
SSL on 1m examples (ImageNet or Instagram) ResNet-50 tends to
perform the best (on par with RegNetY-128 on ImageNet, by far
the best on Instagram with 1m examples). In conclusion, it seems
that on this indicator, large-scale datasets are necessary for SSL
with large models to shine. Yet, as noticed in Sec. 5.3, compared to
supervised pre-training, the improvement of SSL on Instagram with
1b examples is substantial (comparing the leftmost and rightmost
columns), with nearly 30% absolute improvement in precision@50
on female darker between supervised pre-training on ImageNet
and RegNetY-128 trained with SSL.
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Figure 12: Geodiversity: effect of model capacity depending on the training paradigm and data size (columns), broken down
by income bucket (top row) and region (bottom row).

Figure 13: Similarity search indicator: precision@10 (top row) and precision@50 (bottom row) depending on model capacity,
for different training paradigms, data domain and sizes (columns).
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