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Abstract

The fundamental challenge in causal induction is to infer the underlying graph struc-
ture given observational and/or interventional data. Most existing causal induction
algorithms operate by generating candidate graphs and then evaluating them using
either score-based methods (including continuous optimization) or independence
tests. In this work, instead of proposing scoring function or independence tests, we
treat the inference process as a black box and design a neural network architecture
that learns the mapping from both observational and interventional data to graph
structures via supervised training on synthetic graphs. We show that the proposed
model generalizes not only to new synthetic graphs but also to naturalistic graphs.

1 Introduction

The problem of discovering the causal relationships that govern a system through observing its
behavior, either passively (observational data) or by manipulating some of its variables (interventional
data), lies at the core of many scientific disciplines, including medicine, biology, and economics.
By using the graphical formalism of causal Bayesian networks (CBNs) Koller & Friedman (2009);
Pearl (2009), this problem can be framed as inducing the graph structure that best represents the
relationships. Most approaches to causal structure induction are based on an unsupervised learning
paradigm in which the structure is directly inferred from the system observations, either by ranking
different structures according to some metrics (score-based approaches) or by determining the
presence of an edge between pairs of variables using conditional independence tests (constraint-based
approaches) Drton & Maathuis (2017); Heinze-Deml et al. (2018a,b); Glymour et al. (2019); Ke et al.
(2020a) (see Fig. 1(a)). The unsupervised paradigm poses however some challenges: score-based
approaches are burdened with the high computational cost of having to explicitly consider all possible
structures and with the difficulty of devising metrics that can balance fit to the data with constraints for
differentiating causal from a purely statistical relationships (e.g. sparsity of the structure or simplicity
of the generation mechanism); constraint-based methods are sensitive to failure of independence tests
and require faithfulness, a property that does not hold in many real-world scenarios Koski & Noble
(2012); Mabrouk et al. (2014).

In this work, we propose a supervised learning paradigm in which a model is first trained on synthetic
data generated using different CBNs to learn a mapping from data to graph structures and then
used to induce the structures underlying datasets of interests (see Fig. 1(b)). The model is a novel
variant of a transformer neural network that receives as input a dataset consisting of observational
and interventional samples corresponding to the same CBN and outputs a prediction of the CBN
graph structure. The mapping from the dataset to the underlying structure is achieved through an
attention mechanism which alternates between attending to different variables in the graph and to
different samples from a variable. The output is produced by a decoder mechanism that operates as
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Figure 1: (A). Standard unsupervised approach to causal structure induction: Algorithms use a
predefined scoring metric or statistical independence tests to select the best candidate structures. (B).
Our supervised approach to causal structure induction (CSIvA): A model is presented with data and
structures as training pairs and learns a mapping between them.

an autoregressive generative model on the inferred structure. The proposed approach can be viewed
as a form of meta-learning, as the model learns about the relationship between datasets and structures
underlying them. Supervised learning methods based on observational data have been shown to be
feasible by Lopez-Paz et al. (2015a,b) and Li et al. (2020). By allowing the use of both observational
and interventional data, the proposed method enables greater flexibility.

A requirement of a supervised approach would seem to be that the distributions of the training and
test data match or highly overlap. Obtaining real-world training data with a known causal structure
that matches test data from multiple domains is extremely challenging. We show that meta-learning
enables the model to generalize well to data from naturalistic CBNs even if trained on synthetic
data with relatively few assumptions. We show that the proposed model can learn a mapping from
datasets to structures and outperform unsupervised approaches on classic benchmarks such as the
Sachs (Sachs et al., 2005) and Asia (Lauritzen & Spiegelhalter, 1988) datasets, despite never directly
being trained on such data. Our contributions can be summarized as follows:

• We tackle causal structure induction with a supervised approach (CSIvA) that maps datasets
composed of both observational and interventional samples to structures.

• We introduce a variant of a transformer architecture whose attention mechanism is structured
to discover relationships among variables across samples.

• We show that CSIVA generalizes to novel structures, whether or not training and test
distributions match. Most importantly, training on synthetic data transfers effectively to
naturalistic CBNs.

2 Background

In this section we give some background on causal Bayesian networks (CBNs) and on transformer
neural networks, which form the main ingredients of CSIVA (more details are given in Appendix
A). Causal Bayesian networks. A Bayesian network (Pearl, 1988; Cowell et al., 2007; Koller &
Friedman, 2009; Pearl, 2009) is a pair M = 〈G, p〉, where G is a directed acyclic graph (DAG)
whose nodes X1, . . . , XN represent random variables and edges express statistical dependencies
among them, and where p is a joint distribution over all nodes that factorizes into the product of the
conditional probability distributions (CPDs) of each node Xn given its parents pa(Xn) (namely all
nodes with an edge onto Xn), i.e. p(X1, . . . , XN ) =

∏N
n=1 p(Xn | pa(Xn)). The structure of G can

be represented by an adjacency matrix A, defined by setting the (k, l) entry, Ak,l, to 1 if there is an
edge from Xl to Xk and to 0 otherwise. Therefore, the n-th row of A, denoted as An,:, indicates the
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parents of Xn while the n-th column, denoted as A:,n, indicates the children of Xn. A BNM can be
given causal semantic by interpreting an edge between two nodes as expressing causal rather than
statistical dependence. For the experiments, we consider datasets whose elements are observational
data samples, namely samples from p(X1, . . . , XN ), and interventional data samples, namely
samples from pdo(Xn′=x)(X1, . . . , XN ) =

∏N
n=1,n6=n′ p(Xn | pa(Xn))δXn′=x, where δXn′=x is a

delta function, corresponding to an atomic intervention on variable Xn′ that forces the variable to
take on value x. Two adjacency matrices Ai and Aj can be compared using the Hamming distance
(H), defined as the norm of the difference between them,H = |Ai −Aj |1.

Transformer neural network. A transformer Vaswani et al. (2017); Devlin et al. (2018) is a neural
network equipped with layers of self-attention mechanisms that make them well suited to modelling
structured data. In traditional applications of transformers, attention is used to account for the
sequential nature of the data, such as e.g. for a sentence being a stream of words. In CSIVA, each
input of the transformer is a dataset of observational or interventional samples corresponding to the
same CBN, the attention is used to account for the structure induced by the CBN graph structure and
by having different samples from the same node. Transformers are permutation invariant with respect
to the positions of the input elements, which ensures that the prediction of a graph structure does not
depend on the node and sample position.

3 Causal Structure Induction via Attention (CSIvA)

The proposed approach is to treat causal structure induction as a supervised learning problem, by
training a neural network to learn to map observational and interventional data to the graph structure
of the underlying CBN. Obtaining diverse, real-world, data with known causal relationships in
amounts sufficient for supervised training is not feasible. The key contribution of this work is to
introduce a method that uses synthetic data generated from CBNs with different graph structures and
CPDs that is robust to shifts between the training and test data distributions.

3.1 Supervised approach

The proposed approach is to learn a distribution of graphs conditioned on observational and interven-
tional data as explained below.

We generate training data from a joint distribution t(G,D) between a graph G and a dataset D
comprising of S observational and interventional samples from a CBN associated to G as follows.
We first sample a set of graphs {Gi}Ii=1 with nodes Xi

1, . . . , X
i
N from a common distribution t(G) as

described in Section 4.1 (to simplify notation, in the remainder of the paper we omit the graph index
i when referring to nodes), and then associate random CPDs to the graphs as described in Section 4.2.
This results in a set of CBNs {Mi}Ii=1. For each CBNMi, we then create a dataset Di = {xs}Ss=1,
where each element xs := (xs1, . . . , x

s
N )T is either an observational data sample or an interventional

data sample obtained by performing an atomic intervention on a randomly selected node in Gi.

Model definition and training objective. The proposed model defines a distribution t̂(G |D; Θ)
over graphs conditioned on observation and interventional data and parametrized by Θ. Specif-
ically, t̂(A | D; Θ) has the following auto-regressive form: t̂(A | D; Θ) =

∏N2

l=1 σ(Al; Âl =
fΘ(A1,...,(l−1),D)), where σ(·; ρ) is the Bernoulli distribution with parameter ρ, which is a function
fΘ built from an encoder-decoder architecture explained in Section 3.2 taking as input previous
elements of the adjacency matrix A (represented here as an array of N2 elements) and D.

Model training. The proposed model is trained via maximum likelihood estimation (MLE), i.e as
Θ∗ = argminΘL(Θ), where L(Θ) = −E(G,D)∼t[ln t̂(G |D; Θ)], which corresponds to the usual
cross-entropy (CE) loss for the Bernoulli distribution. Training is achieved using a stochastic gradient
descent (SGD) approach in which each gradient update is performed using a pair (Di, Ai). The
data-sampling distribution t(G,D) and the MLE objective uniquely determine the target distribution
learned by the model. In the infinite capacity case, t̂(· | D; Θ∗) = t(· | D). To see this, it suffices
to note that the MLE objective L(Θ) can be written as L(Θ) = ED∼t[KL(t̂(· | D; Θ); t(· | D))] + c,
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Figure 2: The proposed model architecture and the structure of the input and output at training time.
The input is a dataset D = {xs := (xs1, . . . , x

s
N )T}Ss=1 of S samples from a CBN and its adjacency

matrix A. The output is a prediction Â of A. Even though the model receives a set of observations
D at each gradient update, this is a single-example SGD approach because each update has only a
single target A. The attention in a transformer normally only operates over different columns. We
instead also take attention over the different rows, in alternating layers.

where KL is the Kullback-Leibler divergence and c is a constant. In the finite-capacity case, the
distribution defined by the model t̂(· | D; Θ∗) is only an approximation of t(· | D).

3.2 Model architecture

The function fΘ defining the model’s probabilities is built using two transformer networks. It is
formed by an encoder transformer and by a decoder transformer (which we refer to as “encoder”
and “decoder” for short). At training time, the encoder receives as input dataset Di and outputs a
representation that summarizes the relationship between nodes in Gi. The decoder then recursively
outputs predictions of the elements of the adjacency matrix Ai using as input the elements previously
predicted and the encoder output. This is shown in Fig. 2 (where with omitted index i, as in the
remainder of the section). At test time we obtain deterministic predictions of the adjacency matrix
elements by taking the argmax of the Bernoulli distribution and use those as inputs to the decoder.

3.2.1 Encoder

The encoder in the proposed model is structured as an (N+1)×(S+1) lattice. TheN×S part of the
lattice formed by the first N rows and first S columns receives a dataset D = {(xs1, . . . , xsN )T}Ss=1.
This is unlike standard transformers which typically receive as input a single data sample (e.g., a
sequence of words in neural machine translation applications) rather than a set of data samples. Row
N + 1 of the lattice is used to specify whether each data sample is observational, through value −1,
or interventional, through integer value in {1, . . . , N} to indicate the intervened node.

The goal of the encoder is to infer causal relationships between nodes by examining the set of samples.
The transformer performs this inference in multiple stages, each represented by one transformer layer,
such that each layer yields a (N +1)× (S+1) lattice of representations. The transformer is designed
to deposit its summary representation of the causal structure in column S + 1.

Embedding of the input. Each data-sample element xsn is embedded into a vector of dimensionality
H . Half of this vector is allocated to embed the value xsn itself, while the other half is allocated to
embed the unique identity for the node Xn. The value embedding is obtained by passing xsn, whether
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discrete or continuous, through an MLP 1 encoder specific to node Xn. We use a node-specific
embedding because the values of each node may have very different interpretations and meanings.
The node identity embedding is obtained using a standard 1D transformer positional embedding over
node indices. For column S + 1 of the input, the value embedding is a vector of zeros.

Alternating attention. Traditional transformers discover relationships among the elements of a data
sample arranged in a one-dimensional sequence. With our two-dimensional lattice, the transformer
could operate over the entire lattice at once to discover relationships among both nodes and samples.
Given an encoding that indicates the position n, s in the lattice, the model can in principle discover
stable relationships among nodes over samples. However, the inductive bias to encourage the model
to leverage the lattice structure is weak. Additionally, the model is invariant to sample ordering,
which is desirable because the samples are iid. Therefore, we arrange the transformer in CSIVA in
alternating layers. In the first layer of the pair, attention operates across all nodes of a single sample
(xs1, . . . , x

s
N )T to encode the relationships among two or more nodes. In the second layer of the pair,

attention operates across all samples for a given node (x1
n, . . . , x

S
n) to encode information about the

distribution of node values.

Encoder summary. The encoder produces a summary vector esum
n with H elements for each node

Xn, which captures essential information about the node’s behavior and its interactions with other
nodes. The decoder uses this summary information to produce a final graph structure. The summary
representation is formed independently for each node and involves combining information across the
S samples (the columns of the lattice). This is achieved with a method often used with transformers
that involves a weighted average based on how informative each sample is. The weighting is obtained
using the embeddings in column S + 1 to form queries, and embeddings in columns 1, . . . , S to
provide keys and values, and then using standard key-value attention.

3.2.2 Decoding the adjacency matrix

The decoder generates a prediction of the adjacency matrix A of the underlying G. It operates
sequentially, at each step producing a binary output indicating the prediction Âk,l of Ak,l, proceeding
row by row. The decoder is an autoregressive transformer, meaning that each prediction Âkl is
obtained based on all elements of A previously predicted, as well as the summary produced by the
encoder. CSIVA does not enforce acyclicity. Although this could in principle yield cycles in the
graph, in practice we observed strong performance regardless. Nevertheless, one could likely improve
the results using post-processing (Lippe et al., 2021) or by extending the method with an accept-reject
algorithm (Castelletti & Mascaro, 2022; Li et al., 2022).

Auxiliary loss. We found that autoregressive decoding of the flattened N ×N adjacency matrix is
too difficult for the decoder to learn alone. To provide additional inductive bias to facilitate learning
of causal graphs, we added the auxiliary task of predicting the parents An,: and children A:,n of node
Xn from the encoder summary, esum

n . This is achieved using an MLP to learn a mapping fn, such
that fn(esum

n ) = (Ân,:, Â
T
:,n). While this prediction is redundant with the operation of the decoder,

it short circuits the autoregressive decoder and provides a strong training signal to support proper
training of the decoder.

4 Synthetic data

In this section, we describe how we generated the data from different distributions over BNs structures
and CPDs used for training and for testing in Sections 6.1 and 6.2, and for training in Section 6.3.

1Using an MLP for a discrete variable is a slightly inefficient implementation of a node value embedding, but
it ensures that the architecture is general.
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4.1 Graph distribution

We specified a distribution over G in terms of the number of nodes N (graph size) and number of
edges (graph density) present in G. As shown in Zheng et al. (2018); Yu et al. (2019); Ke et al.
(2020a), larger and denser graphs are more challenging to learn.

We variedN from 5 to 10. The current implementation of the transformer scales quadratically withN ,
and therefore does not allow much larger graphs. However, we could readily incorporate transformer
architectures that scale linearly with N (Goyal et al., 2021b; Jaegle et al., 2021).

We used the Erdős–Rényi (ER) metric to vary density and evaluated CSIVA on ER-1 and ER-2
graphs, as in Yu et al. (2019); Scherrer et al. (2021). We generated an adjacency matrix A by first
sampling a lower-triangular matrix to ensure that it represents a DAG, and by then permuting the
order of the nodes to ensure random ordering.

4.2 Conditional probability distributions

We perform ancestral sampling on the underlying BN. If there is an intervention, it is on a single
randomly sampled node (see Section 2). We allow both continuous and discrete nodes.

For continuous nodes with interventions, values are sampled from the uniform distribution U [−1, 1].
For ones without interventions, we generated continuous data following a similar setup to Zheng
et al. (2018) and Yu et al. (2019). Specifically, let X be a N × S matrix representing S samples of a
CBN with N nodes and weighted adjacency matrix A, and let Z be a random matrix of elements in
N (0, 0.1). We generated data as Xn,: = An,:X + Zn,:.

For discrete nodes with interventions, values are randomly and independently sampled from
U{1, . . . ,K} where K indicates the number of categories of the discrete variable. For ones without
interventions, we generate discrete data using two different methods: MLP and Dirichlet conditional-
probability table generators, which we refer to as MLP data and Dirichlet data, respectively. The MLP
had two fully connected layers of hidden dimensionality 32. Following past work (Ke et al., 2020a;
Scherrer et al., 2021), we used a randomly initialized network. The biases were initialized using
U [−0.5, 0.5], and the individual weights were initialized using a truncated normal distribution with
standard deviation of 1.5. The Dirichlet generator filled in the rows of a conditional probability table
by sampling a categorical distribution from a Dirichlet prior with symmetric parameters α. Values
of α smaller than 1 encourage lower entropy distributions; values of α greater than 1 provide less
information about the causal relationships among variables. We note that this generative procedure is
performed prior to node ordering being randomized for presentation to the learning model.

5 Related work

Methods for inferring causal graphs from observational and interventional data can broadly be
categorized into score-based (continuous optimization methods included), constraint-based, and
asymmetry-based methods. Score-based methods search through the space of possible candidate
graphs, usually all DAGs, and ranks them based on some scoring function (Heckerman et al., 1995;
Cooper & Yoo, 1999; Chickering, 2002; Tsamardinos et al., 2006; Hauser & Bühlmann, 2012; Goudet
et al., 2017; Zhu & Chen, 2019). Recently, Zheng et al. (2018); Yu et al. (2019); Lachapelle et al.
(2019) framed the structure search as a continuous optimization problem, which can be seen as a
way to optimize for the scoring function. There also exist score-based methods that use a mix of
continuous and discrete optimization (Bengio et al., 2019; Ke et al., 2020a; Lippe et al., 2021; Scherrer
et al., 2021). Constraint-based methods (Spirtes et al., 2000; Sun et al., 2007; Zhang et al., 2012;
Monti et al., 2019; Zhu & Chen, 2019) infer the DAG by analyzing conditional independencies in the
data. Eaton & Murphy (2007) use dynamic programming techniques to accelerate Markov Chain
Monte Carlo sampling in a Bayesian approach to structure learning for DAGs. Asymmetry-based
methods such as Shimizu et al. (2006); Hoyer et al. (2009); Peters et al. (2011); Daniusis et al.
(2012); Budhathoki & Vreeken (2017); Mitrovic et al. (2018) assume asymmetry between cause
and effect in the data and use this information to estimate the causal structure. Peters et al. (2016);
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(a) Results on continuous data. (b) Results on MLP data.

Figure 3: Hamming distance H between predicted and ground-truth adjacency matrices on the
continuous and MLP data, compared to DAG-GNN (Yu et al., 2019) and non-linear ICP (Heinze-
Deml et al., 2018a), averaged over 128 sampled graphs. Both non-linear ICP and CSIvA performs
well on the easier (linear) continuous data. However, CSIvA significantly outperforms all other
baselines on the more challenging MLP data.

Ghassami et al. (2017); Rojas-Carulla et al. (2018); Heinze-Deml et al. (2018a) exploit invariance
across environments to infer causal structure. Mooij et al. (2016) propose a modelling framework that
leverages existing methods while being more powerful and applicable to a wider range of settings.

Several learning-based methods have been proposed (Guyon, 2013, 2014; Lopez-Paz et al., 2015b;
Kalainathan et al., 2018; Goudet et al., 2018; Bengio et al., 2019; Ke et al., 2020a,b). Neural network
methods equipped with learned masks exist in the literature (Douglas et al., 2017; Ivanov et al., 2018;
Yoon et al., 2018; Li et al., 2019; Goyal et al., 2021a), but only a few have been adapted to causal
inference. These works are mainly concerned with learning only one part of the causal induction
pipeline, such as learning the scoring function. Therefore, these methods are significantly different
from the proposed method, which uses an end-to-end supervised learning approach to learn to map
from datasets to graphs. Two supervised learning approaches have been proposed, one framing the
task as a kernel mean embedding classification problem (Lopez-Paz et al., 2015a,b) and one operating
directly on covariance matrices (Li et al., 2020). Both of these models accept observational data only,
and because causal identifiability requires both observational and interventional data, CSIVA is in
principle more powerful.

6 Experiments

We report on a series of experiments of increasing challenge to our supervised approach to causal
structure induction. First, we examined whether CSIvA generalizes well on synthetic data in the case
in which the training and test distributions are identical (Section 6.1). This experiment tests whether
the model can learn to map from a dataset to a structure. Second, we examined generalization to an
out-of-distribution (OOD) test distribution, and we determined hyperparameters of the synthetic data
generating process that are most robust to OOD testing (Section 6.2). Third, we trained CSIVA using
the hyperparameters from the second experiment, and evaluated it on a different type of OOD test
distribution from two naturalistic CBNs (Section 6.3). This last experiment is the most important
test of our hypothesis that causal structure of synthetic datasets can be a useful proxy for discovering
causal structure in realistic settings.

Hyperparameters. For all of our experiments (unless otherwise stated) CSIVA was trained on
I = 15, 000 pairs {(Di, Ai)}Ii=1, where each dataset Di contained S = 1500 observational and
interventional samples. For experiments on discrete data, a data-sample element xs could take values
in {1, 2, 3}. Details of the data generating process can be found in Section 4.2. For evaluation in
Sections 6.1 and 6.2, CSIVA was tested on I ′ = 128 (different for the training) pairs {(Di′ , Ai′)}I′

i′=1,
where each dataset Di′ contained S = 1500 observational and interventional samples. For the
Sachs and Asia benchmarks, CSIVA was still tested on I ′ = 128 (different for the training) pairs
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Figure 4: Results on Dirichlet data. Hamming distance H between predicted and ground-truth
adjacency matrices on the Dirichlet data, averaged over 128 sampled graphs.

{(Di′ , Ai′)}I′

i′=1, however, Ai′ = Aj′ since there is only a single adjacency matrix in each one of the
benchmarks.

Each setting of the experiment was run with 3 random seeds. We present test results averaging
performance over the 128 datasets and the 3 runs. The model was trained for 500, 000 iterations
using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1e−4.

We parameterized CSIVA such that inputs to the encoder were embedded into 128-dimensional
vectors. The encoder transformer had 12 layers and 8 attention-heads per layer. The final attention
step for summarization had 8 attention heads. The decoder was a smaller transformer with only 4
layers and 8 attention heads per layer. Discrete inputs were encoded using an embedding layer before
passing into CSIVA.

Comparisons to baselines. For Section 6.1, we compared CSIvA to two strong baselines in the
literature, namely non-linear ICP (Heinze-Deml et al., 2018a) and DAG-GNN (Yu et al., 2019).
Non-linear ICP can handle both observational and interventional data, while DAG-GNN can only
use observational data. These two baselines are unsupervised methods, i.e., they are not tuned to a
particular training dataset but instead rely on a general-purpose algorithm. We also compared to an
all-absent model corresponding to a zero adjacency matrix, which acts as a sanity check baseline.
We also considered other methods (Chickering, 2002; Hauser & Bühlmann, 2012; Zhang et al.,
2012; Gamella & Heinze-Deml, 2020), but only presented a comparison with non-linear ICP and
DAG-GNN as these have shown to be strong performing models in other works (Ke et al., 2020a;
Lippe et al., 2021; Scherrer et al., 2021). For Section 6.3, we also compared to additional baselines
from Chickering (2002); Hauser & Bühlmann (2012); Zheng et al. (2018); Gamella & Heinze-Deml
(2020). Note that, methods from Chickering (2002); Zheng et al. (2018); Yu et al. (2019) take
observational data only.

DAG-GNN outputs several candidate graphs based on different scores, such as evidence lower bound
or negative log likelihood, we chose the best result to compare to CSIVAṄote that non-linear ICP
does not work on discrete data, i.e. on the MLP and Dirichlet data, therefore a small amount of
Gaussian noise N (0, 0.1) was added to this data in order for the method to run.

6.1 In-distribution experiments

In this set of experiments, we investigated whether CSIvA can learn to map from data to structures in
the case in which the training and test distributions are identical. In this setting, CSIVA (proposed
supervised approach) has an advantage over unsupervised ones, as it can learn about the training
distribution and leverage this knowledge during testing. We examined the performance on data with
increasing order of difficulty, starting with linear (continuous data), before moving to non-linear cases
(MLP and Dirichlet data).

Continuous data. Results on continuous data are presented in Figure 3(a). CSIvA achieves Hamming
distance H < 2 on all evaluated graphs. Similar to previous findings (Yu et al., 2019; Ke et al.,
2020a), larger and denser graphs are more challenging to learn. Non-linear ICP achieves fairly good
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Figure 5: Results on varying amount of samples. Hamming distance H between predicted and
ground-truth adjacency matrices for synthetic data. Results for CSIvA trained on Dirichlet data with
N = 10 and α = 0.5 with different numbers of samples per CBNs. 1000 samples are sufficient for
ER-1 graphs, whereas 1500 samples give a small improvement on ER-2 graphs.

performance, at times approaching that of CSIvA, but required a modification 2 to the dataset wherein
multiple samples were collected from the same modified graph after a point intervention (20 samples
per intervention), while other methods only sampled once per intervention.

MLP data. Results on MLP data are shown in Figure 3(b). CSIVA significantly outperforms
non-linear ICP and DAG-GNN. Differences become more apparent with larger graph sizes (N = 10)
and denser graphs (ER-2 vs ER-1), as these graphs are more challenging to learn.

Dirichlet data. The Dirichlet data requires setting the values of the parameter α. Hence, we run two
sets of experiments on this data.

In the first set of experiments, we investigated how different values of α impact learning in CSIvA.
As shown in Table 8 in the appendix, CSIvA performs well on all data with α ≤ 0.5, achieving
H < 2.5 in all cases. CSIvA still performs well when α = 1.0, achievingH < 5 on size 10 graphs.
Learning with α > 1 is more challenging. This is not surprising, as α > 1 tends to generate more
uniform distributions, which are not informative of the causal relationship between nodes.

In the second set of experiments, we compared CSIvA to non-linear ICP and DAG-GNN. To limit
the number of experiments to run, we set α = 1.0, as this gives the least amount of prior information
to CSIvA. As shown in Figure 4, CSIVA significantly outperforms non-linear ICP and DAG-GNN.
CSIVA achievesH < 5 on size 10 graphs, almost half of the error rate compared to non-linear ICP
and DAG-GNN, both achieving a significantly higher Hamming distance (H = 9.3 and H = 9.5
respectively) on larger and denser graphs.

Amount of samples. We evaluated CSIvA on different amount of samples
(100, 200, 500, 1000, 1500) per CBNs. Results for Dirichlet data sampled from N = 10
graphs are shown in Figure 5. We can see that 1000 samples are sufficient for ER-1 graphs, whereas
having 1500 samples gives slightly better results compared to 1000 samples for ER-2 graphs.

6.2 Out-of-distribution experiments

In this set of experiments, we evaluated CSIvA’s ability to generalize to aspects of the data generating
distribution that are often unknown, namely graph density and parameters of the CPDs, such as the α
values of the Dirichlet distribution. Hence, these experiments investigate how well CSIvA generalizes
when graph sparsity and alpha values for the Dirichlet distribution of the training data differ from the
test data.

Varying graph density. We evaluate how well CSIVA performs when trained and tested on CBNs
with varying graph density on MLP and α = 1 Dirichlet data. We fixed the number of nodes to
N = 7, with variables able to take on discrete values in {1, 2, 3}. The graphs in training and test
datasets can take ER degree ∈ {1, 2, 3}. Results are shown in Table 1 for the MLP data and Table
2 for the Dirichlet data. For the MLP data, models trained on ER-2 graph generalizes the best. For

2Without this modification, the method achieved near chance performance.
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Train ER-1 ER-2 ER-3

ER-1 1.2 0.9 1.3
Test ER-2 3.3 1.8 2.1

ER-3 5.0 2.8 2.8
Table 1: Results on varying graph density for MLP data: Hamming distanceH between predicted
and ground-truth adjacency matrices.

Train ER-1 ER-2 ER-3

ER-1 0.19 0.21 0.28
Test ER-2 0.86 0.29 0.25

ER-3 1.61 0.60 0.23
Table 2: Results on generalization on graph sparsity for Dirichlet data (α = 1): Hamming
distanceH between predicted and ground-truth adjacency matrices.

Dirichlet data, there isn’t one value of graph density that consistently generalizes best across graphs
with different densities. Nevertheless, ER-2 graphs give a balanced trade-off and generalizes well
across graphs with different sparsity.

Varying α. We evaluate CSIVA on training and test data coming from Dirichlet distributions with
α ∈ {0.1, 0.25, 0.5}. Results for ER-1 graphs with N = 7 are found in Table 3. There isn’t a value
of α that performs consistently well across different values of α for the test data. Nevertheless,
α = 0.25 is a balanced trade-off and generalizes well across test data with 0.1 ≤ α ≤ 0.5.

Train α = 0.1 α = 0.25 α = 0.5

α = 0.1 0.31 0.33 0.52
Test α = 0.25 0.72 0.40 0.41

α = 0.5 1.8 0.71 0.35
Table 3: Results on varying graph density for Dirichlet data: Hamming distance H between
predicted and ground-truth adjacency matrices.

6.3 Sim-to-real experiments

In this final set of experiments, we evaluated CSIvA’s ability to generalize from being trained on
MLP and Dirichlet data to being evaluated on the widely used Sachs (Sachs et al., 2005) and Asia
(Lauritzen & Spiegelhalter, 1988) CBNs from the BnLearn repository, which have N = 11 and
N = 8 nodes respectively. We followed the established protocol from Ke et al. (2020a); Lippe et al.
(2021); Scherrer et al. (2021) where we sampled observational and interventional data from the CBNs
provided by the repository. These experiments are the most important test of our hypothesis that
causal structure of synthetic datasets can be a useful proxy for discovering causal structure in realistic
settings.

We emphasize that all hyperparameters for the MLP and Dirichlet data generation and for the
learning procedure were chosen without using the Sachs and Asia data; only after the architecture
and parameters were finalized was the model tested on these benchmarks. Furthermore, to keep the
setup simple, we trained on data sampled from a single set of hyperparameters instead of a broader
mixture. Findings in Section 6.2 suggest that ER-2 graphs with α = 0.25 generalize well overall and
hence were chosen.

We report the results in Table 4. We compare to a range of baselines from Heinze-Deml et al. (2018a);
Yu et al. (2019); Gamella & Heinze-Deml (2020) and others. Note that we do not compare to the

10



Sachs Asia

All-absent Baseline 17 8

GES Chickering (2002) 19 4
DAG-notears Zheng et al. (2018) 22 14
DAG-GNN Yu et al. (2019) 13 8

GES Hauser & Bühlmann (2012) 16 11
ICP Peters et al. (2016) 17 8

Non-linear ICP Heinze-Deml et al. (2018b) 17 7

CSIvA (MLP data) 6 3
CSIvA (Dirichlet data) 5 3

Table 4: Results on Sachs and Asia data: Hamming distanceH between predicted and ground-truth
adjacency matrices.

method in Ke et al. (2020a), as this method needs at least 500, 000 data samples (which is more than
300 times the amount required by CSIVA).

CSIvA trained on both the MLP data and on the Dirichlet data significantly outperforms all other
methods on both the Asia and the Sachs dataset. This serves as strong evidence that CSIVA can learn
to induce causal structures in the more realistic real-world CBNs, while only trained on synthetic
data.

7 Discussion
In this paper, we have presented a novel approach towards causal graph structure inference. CSIVA
is based on learning from synthetic data in order to obtain a strong learning signal (in the form of
explicit supervision), using a novel transformer-based architecture which directly analyzes the data
and computes a distribution of candidate graphs. We demonstrated that even though only trained on
synthetic data, CSIVA generalizes on out-of-distribution.

We see several possible extensions to CSIVA. The distribution of the synthetic data used for training
determines the inductive bias of the trained network. Identifying which priors lead to the best
performance in real-world scenarios and how to convert informal prior knowledge into better priors
would potentially improve robustness of our solution. Another venue of improvement would be to
combine supervised learning on synthetic data with score optimization. Note that since CSIVA offers
a probabilistic distribution of possible graphs, it is in principle possible to train it by reinforcement
learning (RL) methods such as REINFORCE (Williams, 1992) on any score function that can be
computed on a graph.

An even more intriguing alternative is to leverage the output distribution of a trained network as a
guide for a search-based method which optimizes a well designed score function. This would in
particular enable CSIVA to become less black-box, as the trained network would only be used to
generate proposals for plausible causal graphs, which can then be evaluated by and chosen on the
basis of more interpretable metrics.

On the computational side of things, CSIVA is based on transformers, which uses self-attention.
Standard transformer implementation that uses self-attention scales quadratically with the length of
the inputs. This makes it challenging for CSIVA to scale to larger graphs. However, methods such as
Jaegle et al. (2021); Goyal et al. (2021b) enable transformers to scale linearly with the number of
inputs (and outputs), which can be readily incorporated into our framework. Further work is required
to scale our method to very large datasets.

Finally, another possible direction of future work would be to use the proposed framework for learning
causal structure from raw visual data. This could be useful, e.g., in an RL setting in which an RL
agent interacts with the environment via observing low level pixel data. Such an agent would need to
infer the causal variables underlying the observations, as well as their relationships (Ahmed et al.,
2020; Ke et al., 2021; Wang et al., 2021).
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A Transformer Neural Networks

The transformer architecture, introduced in Vaswani et al. (2017), is a multi-layer neural network
architecture using stacked self-attention and point-wise, fully connected, layers. The classic trans-
former architecture has an encoder and a decoder, but the encoder and decoder do not necessarily
have to be used together.

Scaled dot-product attention. The attention mechanism lies at the core of the transformer archi-
tecture. The transformer architecture uses a special form of attention, called the scaled dot-product
attention. The attention mechanism allows the model to flexibility learn to weigh the inputs depending
on the context. The input to the QKV attention consists of a set of queries, keys and value vectors. The
queries and keys have the same dimensionality of dk, and values often have a different dimensionality
of dv. Transformers compute the dot products of the query with all keys, divide each by

√
dk, and

apply a softmax function to obtain the weights on the values. In practice, transformers compute the
attention function on a set of queries simultaneously, packed together into a matrix Q. The keys
and values are also packed together into matrices K and V . The matrix of outputs is computed as:
Attention(Q,K, V ) = softmax(QKT

√
dk

)V .

Encoder. The encoder is responsible for processing and summarizing the information in the inputs.
The encoder is composed of a stack of N identical layers, where each layer has two sub-layers.
The first sub-layer consists of a multi-head self-attention mechanism, and the second is a simple,
position-wise fully connected feed-forward network. Transformers employ a residual connection (He
et al., 2016) around each of the two sub-layers, followed by layer normalization Ba et al. (2016). That
is, the output of each sub-layer is LayerNorm(x+ Sublayer(x)), where Sublayer(x) is the function
implemented by the sub-layer itself.

Decoder. The decoder is responsible for transforming the information summarized by the encoder
into the outputs. The decoder also composes of a stack of N identical layers, with a small difference
in the decoder transformer layer. In addition to the two sub-layers in each encoder layer, a decoder
layer consists of a third sub-layer. The third sub-layer performs a multi-head attention over the
output of the encoder stack. Similar to the encoder, transformers employ residual connections around
each of the sub-layers, followed by layer normalization. Transformers also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

B Detailed results.

Detailed results for experiments in Section 6.1 and 6.2 are described in the tables below.

B.1 Results on continuous data

Results for comparions between the proposed model CSIvA and baselines non-linear ICP (Yu et al.,
2019) and DAG-GNN (Heinze-Deml et al., 2018a) are shown in Table 5. Both non-linear ICP and the
proposed model CSIvAperforms well on the data. DAG-GNN (Yu et al., 2019), both are significantly
better compared to DAG-GNN, which only takes observational data.

B.2 Results on MLP data

Results for comparisons between CSIVA and baselines non-linear ICP (Yu et al., 2019) and DAG-
GNN (Heinze-Deml et al., 2018a) on MLP data are shown in Table 6. MLP data is non-linear and
hence more challenging compared to the continuous linear data. CSIVA significantly outperforms
non-linear ICP and DAG-GNN. The difference becomes more apparent as the graph size grows larger
and more dense.
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ER = 1 ER = 2
Var = 5 Var = 7 Var = 10 Var = 5 Var = 7 Var = 10

All-absent Model 2.50 3.50 5.00 5.00 7.00 10.00
Yu et al. (2019) 2.71 3.62 4.76 5.20 8.81 13.00
Heinze-Deml et al. (2018b) 0.47 0.61 1.10 0.90 1.40 2.41
CSIVA 0.12 0.20 0.35 0.81 1.22 1.73

Table 5: Results on Continuous data. Hamming distance H for learned and ground-truth edges
on synthetic graphs, compared to other methods, averaged over 128 sampled graphs. The number
of variables varies from 5 to 10, expected degree = 1 or 2, and the value of variables are drawn
from N (0, 0.1). Note that for (Heinze-Deml et al., 2018a), the method required nodes to be causally
ordered, and 20 repeated samples taken per intervention, as interventions were continuously valued.
"All-absent model" is a model that outputs an empty adjacency matrix.

ER = 1 ER = 2
Var = 5 Var = 7 Var = 10 Var = 5 Var = 7 Var = 10

All-absent Model 2.50 3.50 5.00 5.00 7.00 10.00
Yu et al. (2019) 2.52 4.61 7.30 4.33 6.51 12.78
Heinze-Deml et al. (2018b) 2.43 3.27 4.62 4.76 6.61 9.12
CSIVA 0.98 ± 0.16 1.83 ± 0.84 2.25 ± 0.17 1.51± 0.47 3.41 ± 0.48 5.12 ± 0.26

Table 6: Results on MLP data. Hamming distanceH for learned and ground-truth edges on synthetic
graphs, compared to other methods, averaged over 128 sampled graphs (± standard deviation). The
number of variables varies from 5 to 10, expected degree = 1 or 2, and the dimensionality of the
variables are fixed to 3. We compared to the strongest baseline model that uses observational data (Yu
et al., 2019) and also the strongest that uses interventional data (Heinze-Deml et al., 2018a). Note
that for (Heinze-Deml et al., 2018a), the method required nodes to be causally ordered, and Gaussian
noise N (0, 0.1) to be added. "All-absent model" is an baseline model that outputs all zero edges for
the adjacency matrix.

B.3 Results on Dirichlet data.

Results for comparisons between our model CSIvA and baselines non-linear ICP (Yu et al., 2019) and
DAG-GNN (Heinze-Deml et al., 2018a) on Dirichlet data are shown in Table 7. MLP data is non-linear
and hence more challenging compared to the continuous linear data. Our model CSIvAsignificantly
outperforms non-linear ICP and DAG-GNN. The difference becomes more apparent as the graph size
grows larger and more dense. We also compare how different alpha values of Dirichlet data impacts

ER = 1 ER = 2
Var = 5 Var = 7 Var = 10 Var = 5 Var = 7 Var = 10

All-absent Model 2.5 3.5 5.0 5.0 7.0 10.0
(Yu et al., 2019) 1.75 4.5 4.0 4.5 7.25 9.50
(Heinze-Deml et al., 2018a) 2.2 3.2 5.3 4.7 6.1 9.3
CSIVA 0.26 ± 0.05 0.83 ± 0.06 2.37 ± 0.07 0.65 ± 0.05 0.97 ± 0.06 4.59 ± 0.08

Table 7: Results on Dirichlet data. Hamming distance H for learned and ground-truth edges
on synthetic graphs, compared to other methods, averaged over 128 sampled graphs (± standard
deviation). The number of variables varies from 5 to 10, expected degree = 1 or 2, the dimensionality
of the variables are fixed to 3, and the α is fixed to 1.0. We compare to the strongest causal-induction
methods that uses observational data (Yu et al., 2019) and the strongest that uses interventional data
(Heinze-Deml et al., 2018a).

learning for our model. CSIVA performs well on all graphs where α ≤ 0.5, and the performance
starts to degard as alpha = 1.0. When α = 5.0, CSIVAis almost performing similarly to the
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All-absent model (outputting all zero edges). This is to be expected, as larger alpha values is less
informative of the causal relationships between variables.

ER = 1 ER = 2
Var = 5 Var = 7 Var = 10 Var = 5 Var = 7 Var = 10

α = 0.1 0.18 0.37 0.72 0.39 0.84 1.27
α = 0.25 0.14 0.41 0.77 0.29 0.64 1.27
α = 0.5 0.14 0.43 0.94 0.41 0.79 2.11
α = 1.0 0.27 0.63 2.31 0.68 1.22 4.32
α = 5.0 1.27 2.56 4.91 3.21 7.0 9.99
All-absent Model 2.5 3.5 5.0 5.0 7.0 10.0

Table 8: Results on Dirichlet data. Hamming distanceH (lower is better) for learned and ground-
truth edges on synthetic graphs, averaged over 128 sampled graphs. The proposed model accom-
plished a hamming distance of less than 2.5 for Dirichlet data with α <= 0.5.
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