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Improving anatomical plausibility in medical
image segmentation via hybrid graph neural

networks: applications to chest x-ray analysis
Nicolás Gaggion, Lucas Mansilla, Candelaria Mosquera, Diego H. Milone and Enzo Ferrante

Abstract— Anatomical segmentation is a fundamental
task in medical image computing, generally tackled with
fully convolutional neural networks which produce dense
segmentation masks. These models are often trained with
loss functions such as cross-entropy or Dice, which as-
sume pixels to be independent of each other, thus ig-
noring topological errors and anatomical inconsistencies.
We address this limitation by moving from pixel-level to
graph representations, which allow to naturally incorpo-
rate anatomical constraints by construction. To this end,
we introduce HybridGNet, an encoder-decoder neural ar-
chitecture that leverages standard convolutions for image
feature encoding and graph convolutional neural networks
(GCNNs) to decode plausible representations of anatom-
ical structures. We also propose a novel image-to-graph
skip connection layer which allows localized features to
flow from standard convolutional blocks to GCNN blocks,
and show that it improves segmentation accuracy. The
proposed architecture is extensively evaluated in a variety
of domain shift and image occlusion scenarios, and au-
dited considering different types of demographic domain
shift. Our comprehensive experimental setup compares
HybridGNet with other landmark and pixel-based models
for anatomical segmentation in chest x-ray images, and
shows that it produces anatomically plausible results in
challenging scenarios where other models tend to fail.

Index Terms— Graph convolutional neural networks,
anatomically plausible segmentation, landmark based seg-
mentation, graph generative models, localized skip connec-
tions

I. INTRODUCTION

DEEP convolutional neural networks (CNNs) have
achieved outstanding performance in anatomical seg-

mentation of biomedical images. Classical approaches employ
standard encoder-decoder CNN architectures [1] that predict
the desired segmentation at pixel-level by learning hierarchical
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features from annotated datasets. Casting image segmentation
as a pixel labeling problem is desirable in scenarios where
topology and location do not tend to be preserved across
individuals, like lesion segmentation. However, organs and
anatomical structures usually present a characteristic topology
that tends to be regular. Since deep segmentation networks
are typically trained to minimize pixel-level loss functions,
such as cross-entropy or soft Dice [2], their predictions are
not guaranteed to reflect anatomical plausibility, due to the
inherent lack of sensitivity that these metrics have with respect
to global shape and topology [3] (i.e. many different shapes
can lead to the same score). Artifacts such as fragmented
structures, topological inconsistencies and islands of pixels
[4] are common for such models, especially when faced with
challenging real-world clinical scenarios like image occlusions
and inter-center domain shift. Incorporating prior knowledge
and shape constraints [5] to avoid these artifacts becomes fun-
damentally important when considering the downstream tasks
where segmentation masks are used, like disease diagnosis,
therapy planning and patient follow-up.

As an alternative to dense pixel-level masks, anatomical
segmentation can be tackled using other approaches like
statistical shape models [6] or graph-based representations
[7], which provide a natural way to incorporate topological
constraints by construction. Such representations make it eas-
ier to establish landmark correspondences among individuals,
especially important in the context of statistical shape analysis.
In particular, graphs appear as a natural way to represent
landmarks, contours, and surfaces. By defining the landmark
position as a function on the graph nodes, and encoding the
anatomical structure through its adjacency matrix, we can eas-
ily constrain the space of solutions and encourage topological
correctness. With the emergence of geometric deep learning
[8], CNN extensions to non-euclidean domains like spectral
graph convolutions [9], [10] and neural message passing [11]
enabled the construction of deep learning models on graphs.
This allowed for the creation of discriminative models that
can make predictions based on graph data, as well as deep
generative models [12], [13], which can be used to produce
realistic graph structures under a certain distribution.

Contributions: In this work, we explore how landmark-based
segmentation can be modeled by combining standard convolu-
tions to encode image features, with generative models based
on graph neural networks (GCNNs) to decode anatomically
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plausible representations of segmented structures. A prelimi-
nary version of this work was presented at MICCAI 2021 [14].
In this extended version, we include novel methodological
contributions to improve segmentation accuracy via image-to-
graph skip connections, and widen the experimental validation
considering additional scenarios where chest x-ray anatomical
masks are required. Our contributions can be summarized
as follows: 1) we propose HybridGNet, an encoder-decoder
architecture that combines standard convolutions with GCNNs
to extract graph representations directly from images; 2) we
introduce a new image-to-graph skip connection (IGSC) layer
which allows localized features at equivalent image/graph
resolutions to flow from standard convolutional blocks to
GCNN blocks; 3) we benchmark the proposed HybridGNet
against state-of-the-art landmark and pixel-level models in
a variety of scenarios like domain shift (DS) and image
occlusion (IO); 4) we show that HybridGNet can be used
to construct landmark-based annotations from dense masks,
publicly releasing a new set of landmark segmentations for
3 different datasets; 5) and we evaluate its clinical utility
in the detection of enlarged cardiac silhouette by automated
calculation of the cardiothoracic ratio (CTR).

II. RELATED WORK

Landmark-based segmentation: Since the early 1990’s, vari-
ations of point distribution models (PDMs) have been pro-
posed [15] to segment anatomical structures using landmarks.
PDMs are flexible shape templates describing how the relative
location of important points can vary. Techniques based on
PDMs, like active shape models (ASM) [15], [16] and active
appearance models (AAM) [17] became the defacto standard
to deal with anatomical segmentation at the end of the century.
Subsequently, the development of more powerful and ro-
bust image registration algorithms [18] positioned deformable
template matching algorithms as the choice of option for
anatomical segmentation and atlas construction [19]–[21]. In
this scenario, contours (for 2D images) and meshes (for 3D
images) have been used as deformable templates to solve
landmark-based segmentation. However, these methods do
not leverage the power of deep neural networks which have
dominated image segmentation during the last decade.

More recently, with the advent of deep fully convolutional
networks [1], [22], major efforts were made to incorporate
anatomical constraints into such models [23]–[25]. The rich-
ness and robustness of the hierarchical features learned by
CNNs allowed them to achieve highly accurate results. Un-
fortunately, most of these methods work directly on the pixel
space, producing acceptable dense segmentation masks, but
without landmark annotations and connectivity structure. On
the contrary, structured models like graphs can easily represent
landmarks, contours and surfaces. In line with this idea, recent
studies [26]–[28] have integrated standard CNNs with different
representations of landmark structures. These methods employ
low-dimensional shape representations like Principal Com-
ponent Analysis (PCA) decomposition of the original shape
space [26], [27] or performed on more sophisticated particle
distribution models [28]. In this work, inspired by previous

studies on graph generative models [13], we propose to replace
such embeddings by more powerful non-linear representations
based on hierarchical graph convolutional [8] decoders.

Graph generative models: We want to exploit the generative
power of graph variational autoencoders [29] to decode plau-
sible anatomical segmentations from low dimensional embed-
dings. Of particular interest for our work is the convolutional
mesh autoencoder proposed in [13]. The authors constructed
an encoder-decoder network using spectral graph convolutions,
and trained it in a variational setting using face meshes. By
sampling the latent space, they are able to generate new
expressive faces, never seen during training. We build on
top of this idea by keeping the graph convolutional decoder,
but replacing the graph encoder with a standard CNN-based
encoder that takes images as inputs. This hybrid architecture
learns a variational distribution conditioned on image data,
from which we can sample graphs representing anatomically
plausible segmentations.

Image-to-graph localized skip connections: Last but not
least, we are interested in producing accurate landmark-based
segmentation for high-resolution 2D images. In that sense,
propagating features learned at different hierarchical levels
from encoder to decoder through skip connections has shown
to be an effective mechanism not only to improve segmentation
accuracy, but also to increase convergence speed and enable
training of very deep networks [30]. Previous approaches
incorporated different types of skip-connections in the context
of mesh extraction from images. Pixel2Mesh [31] introduces
a perceptual feature pooling layer designed to work with 3D
meshes and 2D images, thus projecting 3D vertices to the
image plane using camera intrinsics, which does not apply
for our case where input image and output graph live in
the same 2D space. Closer to our approach is Voxel2Mesh
[32], a model designed to operate on images and graphs
living in the same dimension. Voxel2Mesh employs a learned
neighborhood sampling layer which pools image features in
locations indicated by the node coordinates. However, both
Voxel2Mesh and Pixel2Mesh build on the idea of deforming
an initial sphere mesh template, thus limiting its applicability
to certain topologies and single object segmentation. Other
approaches resort to refining meshes obtained from voxel
predictions [33]. Here we adopt a different approach where
output graphs (2D contours in our case) do not correspond to
a deformed template, but instead are directly sampled from
a latent distribution learnt during training. We also propose a
new image-to-graph skip connection (IGSC) layer based on the
well-known RoIAlign module [34], which enables end-to-end
learning of localized features guided by node coordinates.

III. ANATOMICAL SEGMENTATION VIA HYBRID GRAPH
NEURAL NETWORKS

A. Preliminaries

Problem setting: Let us have a dataset D =
{(I,G)n}0<n≤N , composed of N images I and their
corresponding landmark-based segmentation represented
as a graph G = 〈V,A,X〉. V is the set of nodes for
M landmarks, A ∈ {0, 1}M×M is the adjacency matrix
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Fig. 1. HybridGNet architecture. The proposed HybridGNet architecture combines standard convolutions for image feature encoding (blue)
with graph spectral convolutions (green) to decode plausible anatomical graph-based representations. The Image-to-Graph skip-connection (IGSC)
blocks provide localized features to the intermediate graph representations.

indicating the connectivity between pairs of nodes (aij = 1
indicates an edge connecting vertices i and j, and aij = 0
otherwise) and X ∈ RM×s is a function (represented as a
matrix) assigning a feature vector to every node. In our case, it
assigns a 2-dimensional spatial coordinate to every landmark
(s = 2). In the context of landmark-based segmentation and
point distribution models, it is common (and useful) to have
manual annotations with a fixed number of points. Therefore,
we assume that V and A are the same for all the images
in the dataset. The only difference among them is given by
the spatial coordinates defined in X. This assumption enables
us to follow the work of [10], [13] and use spectral graph
convolutions to learn latent representations of anatomy.

Spectral graph convolutions: Spectral convolutions are built
using the eigendecomposition of the graph Laplacian matrix L,
exploiting the property that convolutions in the node domain
are equivalent to multiplications in the graph spectral domain
[35]. The graph Laplacian is defined as L = D −A, where
D is the diagonal degree matrix with dii =

∑
j aij . The

Laplacian can be decomposed as L = UΛUT , where U ∈
RM×M = [u0,u1, . . . ,uM−1] is the matrix of eigenvectors
(Fourier basis) and Λ = diag(λ0, λ1, . . . , λM−1) is the matrix
of eigenvalues (frequencies of the graph). By analogy with the
classical Fourier transform for continuous or discrete signals,
the graph Fourier transform of a function X defined on the
graph domain can be obtained as X̂ = UTX, while its inverse
is given by X = UX̂. Based on this formulation, the spectral
convolution between a signal X and a filter gφ = diag(φ) is
defined as gφ ∗X = gφLX = gφ(UΛUT )X = UgφΛUTX,
where φ ∈ Rn is a vector of coefficients parameterizing the
filter. We follow the work of Defferrard et al [10] and restrict
the class of filters to polynomial filters with the form gφ =∑K
k=0 φkΛ

k. Polynomial filters are strictly localized in the
vertex domain (a K-order polynomial filter considers K-hop
neighborhoods around the node) and reduce the computational

complexity of the convolutional operator. Such filters can
be well approximated by a truncated expansion in terms
of Chebyshev polynomials, computed recursively. Following
[10], [13] we adopt this approximation to implement the
spectral convolutions. Note that a spectral convolutional layer
will take feature matrices X` as input and produce filtered
versions X`+1, similar to what standard convolutions do with
images and feature maps.

B. HybridGNet: Image-to-graph extraction via hybrid
convolutions

The proposed neural network takes images as input and
produces graphs as output, combining standard with spec-
tral convolutions in a single model that is trained end-to-
end. The current HybridGNet formulation follows the same
principles introduced in our original MICCAI publication
[14], but incorporates new elements like image-to-graph skip
connections, graph unpooling operations and variations in the
training strategy, that will be later highlighted. Let us start by
defining the basic architecture, which resembles a variational
autoencoder (VAE) [36] (see Figure 1) in the sense that the
latent space models a variational distribution parameterized as
a multivariate Gaussian.

Autoencoders are neural networks designed to reconstruct
their input. They follow an encoder-decoder scheme, where
an encoder z = fe(I) maps the input image I to a lower
dimensional latent code z, which is then processed by a
decoder fd(z) to reconstruct the original input. The bottleneck
imposed by the low-dimensionality of the encoding z forces
the model to retain useful information, learning powerful
representations of the data distribution. The model is trained
to minimize a reconstruction loss Lr(I, fd(fe(I))) between
the input and the output reconstruction. To constrain the
distribution of the latent space z, we add a variational term to
the loss function, resulting in a variational autoencoder (VAE)



4 GAGGION et al.: IMPROVING ANATOMICAL PLAUSIBILITY IN MEDICAL IMAGE SEGMENTATION VIA HYBRID GRAPH NEURAL NETWORKS

[36]. We assume that the latent codes z are sampled from a
distribution Q(z) for which we will impose a unit multivariate
Gaussian prior. In practise, during training, this results in the
latent codes z being sampled from a distribution N (µ, σ) via
the reparametrization trick [36], where µ, σ are deterministic
parameters generated by the encoder fe(I). Given a sample
z, we can generate (reconstruct) the corresponding data point
by using the decoder fd(I). This model is usually trained by
minimizing a loss function defined as:

La = Lr(I, fd(z)) + w KL (N (0, 1)||Q(z|I)) , (1)

where the first term is the reconstruction loss, the second term
imposes a unit Gaussian prior N (0, 1) via the KL divergence
loss and w is a weighting factor.

In our previous work [14], HybridGNet was constructed
by first pre-training two independent VAEs with the same
latent dimension: one to reconstruct images using standard
convolutions fI(I) = fId (f

I
e (I)) and another one to recon-

struct graphs via spectral convolutions fG(G) = fGd (f
G
e (G)).

Once both models were trained, we decoupled their encoders
and decoders, keeping only the image encoder fIe (I) and
graph decoder fGd (z). The HybridGNet was then constructed
by connecting these two pre-trained networks as fH(I) =
fGd (f

I
e (I)) and re-training until convergence by minimizing:

LH = Lr(G, fGd (z)) + w KL (N (0, 1)||Q(z|I)) , (2)

where Lr(G, fGd (z)) is the graph-reconstruction loss com-
puted as the mean squared error (MSE) of the predicted node
positions, and Q is the variational distribution parameterized
by fIe (I).

Here we simplify the training strategy by eliminating the
pre-training stage and directly training fH(I) from scratch,
since we observed that pre-training only helps to achieve faster
convergence, but does not produce significant improvements
in terms of segmentation accuracy. This simplified end-to-end
training process directly learns a single latent space relating
images and graphs.

Graph unpooling: We included a fixed graph unpooling
layer in the graph decoder fGd (z), to learn representations at
multiple resolutions [13]. We adopted a simple strategy where
all graphs G in our dataset are pre-processed to produce lower
resolution graphs Gk by reducing to half the number of nodes
k times, replacing pairs of consecutive neighboring nodes with
a single one, whose position is computed as their average. The
unpooling layer is defined so that it reverses this operation by
duplicating the number of nodes and interpolating the features
between them. The unpooling layer was included after the 3rd
GCNN layer of the decoder as shown in Figure 1.

Localized image-to-graph skip connections (IGSC) and deep
supervision: Under the hypothesis that local image features
may help to produce more accurate estimates of landmark
positions, we designed a localized Image-to-Graph Skip Con-
nection (IGSC) layer (see Figure 1). IGSC uses the well-
known RoIAlign module [34] to sample localized features
for each node from a specific encoder level. This layer is
parameterized by a window size, indicating the area that will
be sampled for every node. It receives a tensor of feature maps
and a list of node positions which indicate the spatial location

from where the feature map will be sampled, and returns the
corresponding regions of interest (RoIs) of the given window
size centered at the node positions. In our model, an internal
GCNN layer learns intermediate node positions via deep-
supervision [37], resulting in extra loss terms LDS which
compute the mean squared error between the ground truth
node position (for both graph resolutions) and the intermediate
predictions. The desired window input size was set to 3x3,
while the output size was set to 1x1, so it only returns a
single value per feature-map, which is calculated using average
pooling. Then, this array of features is concatenated with the
original node features and an augmented graph is obtained.

IV. EXPERIMENTAL SETUP

A. Database description
We evaluated the proposed model in a variety of tasks

involving chest x-ray image segmentation. In what follows,
we describe the databases used to perform these experiments.

1) JSRT Database: The Japanese Society of Radiologi-
cal Technology (JSRT) Database [38] consists on 247 high
resolution x-ray images, with expert landmark annotations
(120 landmarks per image) for lung and hearth [39]. The
image resolution was 1024x1024 px, with a pixel spacing of
0.35x0.35 mm. The dataset was randomly split into 70%-10%-
20% partitions for training, validation and test, respectively.

2) Montgomery County and Shenzhen Hospital x-ray sets:
Two public chest x-ray datasets with dense lung segmentation
masks were used as external test sets to evaluate inter-dataset
DS. The Montgomery County dataset (138 images) [40]
was acquired from the tuberculosis control program of the
Department of Health and Human Services of Montgomery
County, MD, USA. The Shenzhen dataset (566 images) [41]
was collected as part of the routine care at Shenzhen No.3
Hospital in Shenzhen, Guangdong providence, China.

3) Padchest dataset: Consists of 160,868 chest x-ray im-
ages from 67,000 patients [42] including labels for 174 ra-
diological findings, 19 diagnostic labels, and 104 anatomic
locations. Although this dataset does not contain segmentation
masks, a subset of 137 images with cardiomegaly diagnosis
label were manually segmented by two radiologists who
delineated the lungs and heart as dense masks, to evaluate
our method in a real clinical task, namely cardiothoracic
ratio estimation. From these images, 20 included pacemakers
and 45 also included an aortic elongation label. The images
with pacemakers were used to evaluate the robustness of the
proposed model to occlusions produced by external artifacts.

B. Baselines models
Our work builds on the hypothesis that encoding connec-

tivity information through graph structures can provide richer
representations than standard landmark-based point distribu-
tion models. To evaluate this hypothesis, we build standard
point distribution models from the graph representations by
considering landmarks as independent points. For a given
graph G = 〈V,A,X〉, we construct a vectorized represen-
tation by concatenating the rows of X in a single vector as
ρ = [x0,0, x0,1, x1,0, x1,1, . . . , xM−1,0, xM−1,1].
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TABLE I
LANDMARK-BASED ANATOMICAL SEGMENTATION RESULTS FOR JSRT DATASET. MEAN (STD). HD IN MILLIMETERS.

Model MSE Dice Lungs HD Lungs Dice Heart HD Heart
PCA 340.024 (243.549) 0.945 (0.014) 17.445 (9.669) 0.906 (0.037) 14.602 (5.400)
FC 332.197 (242.379) 0.945 (0.017) 17.535 (10.352) 0.910 (0.038) 15.020 (5.785)
MultiAtlas 492.262 (298.138) 0.944 (0.013) 20.317 (9.344) 0.886 (0.056) 16.780 (6.839)
HybridGNet (without IGSC) 294.621 (274.497) 0.952 (0.013) 15.642 (10.922) 0.913 (0.038) 13.658 (5.548)

Layer 3 277.536 (298.725) 0.954 (0.014) 14.565 (11.441) 0.917 (0.037) 13.401 (5.376)
Layer 4 288.597 (272.538) 0.956 (0.013) 16.054 (11.284) 0.916 (0.038) 14.153 (6.038)
Layer 5 258.413 (245.724) 0.963 (0.010) 13.662 (11.107) 0.915 (0.039) 13.738 (5.181)1 IGSC

Layer 6 250.123 (232.032) 0.960 (0.011) 14.378 (9.262) 0.924 (0.030) 12.339 (4.844)
Layers 4-3 263.973 (262.700) 0.963 (0.011) 14.942 (10.589) 0.921 (0.036) 13.198 (5.514)
Layers 5-4 246.845 (230.235) 0.968 (0.009) 13.692 (10.984) 0.924 (0.040) 13.417 (6.144)2 IGSC
Layers 6-5 200.748 (211.080) 0.974 (0.007) 12.089 (9.344) 0.933 (0.031) 11.613 (5.581)

UNet − 0.981 (0.008) 21.839 (26.291) 0.942 (0.030) 25.176 (34.570)

Ground Truth MultiAtlas PCA FC HybridGNet 1-IGSC Layer 6 2-IGSC Layers 6-5 UNet

Fig. 2. Landmark-based anatomical segmentation. Qualitative analysis for the JSRT test set. Results reflect the improvement in anatomically
plausibility obtained when using the HybridGNet.

1) PCA: We first consider a single baseline similar to
[26], [27], by performing principal component analysis (PCA)
to transform the vectorized representation ρ into lower-
dimensional embeddings. We then optimize the CNN encoder
fIe to estimate the PCA coefficients, reconstructing the land-
marks as a linear combination of the principal components.

2) FC: The second baseline combines the CNN encoder fIe
with a fully connected (FC) decoder that directly reconstructs
the vectored representations ρ.

3) Multi-atlas: The third baseline implements a multi-atlas
segmentation approach [43], [44], which employ several la-
beled atlases (i.e. pairs consisting of an image and its associ-
ated landmark-based segmentation) to delineate the structures
of interest. Given a target image to be segmented, the 5
atlases most similar to the target image (based on the mu-
tual information metric) are obtained from the training set.
Then, we perform pairwise non-rigid registration (with affine
initialization) using SimpleElastix [45]. Registration allows to
transfer the landmarks of each selected image into the target
space. The final landmark-based segmentation is obtained by
averaging the position of the set of candidate landmarks.

4) UNet: Finally, a UNet [1] model was also included
to benchmark our approach against a standard pixel-level
segmentation method. We used the CNN encoder fIe and
decoder fId with standard skip-connections via concatenation,
to guarantee comparable complexity.

C. Implementation and training details
All models were implemented in PyTorch [46], using

PyTorch Geometric [47] for the spectral GCNN layers1.
Every model and baseline shares the same CNN encoder
fIe , with 6 residual blocks [48] interleaved with max-
poolings as shown in Figure 1. For the GCNN decoders,
we use 6 layers of Chebyshev convolutions with Layer
Normalization [49] and ReLU nonlinearities. We set the
k-hop neighbourhood parameter for the graph convolutions at
6. This hyperparameter was chosen performing an ablation
study on the validation data, which is not included for
space restrictions, but it is available in our repository. For
HybridGNet models, we evaluated the inclusion of 1 and 2
IGSC modules, extracting features from layers 3 to 6 of the
encoder.

1) Data augmentation: Online data augmentation was
used to train all the models (i.e. baselines and HybridGNet)
including: i) bright augmentation using a Gamma correction
with random gamma between 0.60 and 1.40; ii) random
image rotations between -3 and 3 degrees; iii) vertical and
horizontal random scaling, ensuring that landmarks remain

1Source code is publicly available at https://github.com/
ngaggion/HybridGNet. The experiments are saved on Jupyter notebooks
and extra information on statistical significance is also available in the repos-
itory. The Multi-atlas implementation is available at https://github.
com/lucasmansilla/multiatlas-landmark.

https://github.com/ngaggion/HybridGNet
https://github.com/ngaggion/HybridGNet
https://github.com/lucasmansilla/multiatlas-landmark
https://github.com/lucasmansilla/multiatlas-landmark
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inside the visible area; iv) cropping or padding the images
randomly if the shape was different to the expected input
shape (1024× 1024).

2) Model training: All models were trained for 3000 epochs,
with a learning rate of 1e-4, a weight decay of 1e-5, and a
KL divergence weight factor w =1e-5. To prevent overfitting,
learning rate decay was set to reduce it by 0.9 every 100
epochs (for IGSC models) and by 0.9 every 50 epochs (for
HybridGNet model). We used the MSE in pixel space over
the vectored landmark location as loss function for landmark
models, and a combination of Dice and cross-entropy for the
UNet. Checkpoints were selected based on validation loss.

V. EXPERIMENTS AND DISCUSSION

We performed a series of experiments to compare the
proposed HybridGNet and its variants with the aforementioned
baselines, and evaluate their performance in a variety of
scenarios and tasks.

1) Model comparison: First, we compared HybridgGNet
with the baselines using the JSRT dataset, and assessed the ef-
fect of skip connections by evaluating alternative HybridGNet
architectures. We used metrics that can be derived from
graph representations, including landmark MSE and Hausdorff
distance (HD, in millimeters). To benchmark our methods
against the UNet model which produces dense segmentation
masks, we filled the organ contours to obtain pixel-level masks
from graph representations, and computed the Dice coefficient.

Table I reports metrics on the test set of JSRT dataset
(bold numbers indicate significant differences according to
Wilcoxon’s test). First, it is worth noting that when comparing
HybridGNet models with and without skip connections, there
is a big difference in terms of MSE and HD in favor of
the model with 2 IGSC (Layers 6-5), implying that localized
features help to improve landmark prediction accuracy. More-
over, the HybridGNet 2 IGSC (Layers 6-5) outperforms the
landmark-based baselines on MSE, Dice, and HD, confirming
our hypothesis that incorporating graph connectivity structure
helps in producing more realistic segmentations.

When compared with the UNet model, HybridGNet sur-
passes it by a large margin in terms of HD. On the contrary,
the dense UNet model slightly outperforms the HybridGNet
variants when it comes to Dice, what is somehow expected
since dense predictions are not directly optimized in our
models. In that sense, while Dice is agnostic to topological
errors and islands of pixels (in the sense that wrong predictions
are penalized independently of their location), due to its
formulation HD is more sensible to them, better reflecting
anatomical plausibility, which is the main interest of this work.
Figure 2 shows qualitative results for 3 exemplar cases.

2) Generating landmark-based representations from dense
segmentations: In this work we considered landmark-based
segmentations with a fixed number of points, that enable
establishing correspondences across images. This is desirable
in scenarios like population shape analysis, where we are
interested in understanding how certain anatomical keypoints

TABLE II
RESULTS FOR GENERATING LANDMARK ANNOTATIONS FROM DENSE

SEGMENTATIONS IN THE JSRT DATASET. MEAN (STD). HD IN

MILLIMETERS.

Model MSE Dice Lungs HD Lungs Dice Heart HD Heart
PCA 77.2 (133.7) 0.978 (0.009) 6.02 (3.46) 0.97 (0.007) 4.37 (1.61)
FC 105.3 (173.2) 0.970 (0.014) 7.82 (3.96) 0.96 (0.014) 5.78 (2.94)
Multi-atlas 236.3 (244.8) 0.991 (0.004) 10.98 (8.53) 0.99 (0.006) 4.64 (2.48)
HybridGNet 96.9 (145.0) 0.970 (0.009) 7.65 (3.75) 0.96 (0.013) 6.02 (2.77)
1 IGSC: L6 70.5 (144.9) 0.983 (0.005) 5.54 (5.30) 0.97 (0.011) 4.02 (2.24)
2 IGSC: L6-5 55.1 (113.4) 0.991 (0.003) 3.92 (4.42) 0.99 (0.005) 2.58 (1.59)

TABLE III
DOMAIN SHIFT RESULTS FOR LANDMARK-BASED ANATOMICAL

SEGMENTATION FROM JSRT DATASET TO MONTGOMERY AND

SHENZHEN. MEAN (STD). HD IN PIXELS.

Model
Montgomery Shenzhen

Dice Lungs HD Lungs Dice Lungs HD Lungs
PCA 0.906 (0.082) 60.08 (36.89) 0.894 (0.054) 79.12 (47.73)
FC 0.897 (0.087) 60.02 (35.77) 0.895 (0.051) 77.11 (48.15)
Multi-alas 0.909 (0.080) 61.77 (31.62) 0.900 (0.054) 88.13 (48.94)
HybridGNet 0.909 (0.070) 55.97 (35.70) 0.901 (0.047) 72.13 (47.40)
1 IGSC: L6 0.930 (0.062) 48.22 (33.43) 0.914 (0.044) 67.39 (48.53)
2 IGSC: L6-5 0.954 (0.043) 45.50 (32.48) 0.935 (0.038) 64.46 (51.53)
UNet 0.944 (0.068) 127.721 (97.76) 0.933 (0.055) 220.89 (102.94)

vary for different individuals. However, in most segmenta-
tion datasets, only pixel-level annotations are available. In
these cases, automated estimation of landmarks from dense
segmentations can be useful. HybridGNet can be trained to
recover landmark-based representations from dense segmen-
tation masks in a natural way. Thus, we trained our best
performing models and baselines with dense segmentation
masks as input (instead of images), to perform landmark
estimation. Table II shows the results on the JSRT test set:
the proposed HybridGNet 2 IGSC (Layers 6-5) outperforms
the other baselines and architectures, proving useful in the
building of shape models with landmark correspondences
from pixel-level masks. Multi-atlas showed no differences in
Dice with respect to our HybridGNet 2 IGSC (according to
Wilcoxon’s test), but we observed that it loses track of the
point-to-point correspondences as it is exhibited by the higher
MSE error, which is computed for pairs of matching points.

HybridGNet was used to create landmark annotations for
the Montgomery, Shenzhen and Padchest datasets, which
originally did not include this type of segmentations. We are
publicly releasing these new annotations2 hoping that they
will serve for future studies where point correspondences
across individuals are required.

3) Domain shift (DS) evaluation: DS refers to a variation
in the target (test) domain concerning the source (training)
domain [50]. In most cases, such DS drops performance sig-
nificantly as supervised learning assumes that training samples
have the same distribution as the test samples. DS can be
caused by multiple factors including changes in acquisition
parameters, medical center or population demographics. We
compared the effect of DS on baseline methods and Hy-
bridGNet by measuring segmentation performance on datasets
captured at different medical centers, i.e. training in the JSRT

2Annotations available at: https://github.com/ngaggion/
Chest-xray-landmark-dataset

https://github.com/ngaggion/Chest-xray-landmark-dataset
https://github.com/ngaggion/Chest-xray-landmark-dataset
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Fig. 3. Assessing the impact of domain shift by age distribution
on lung segmentation. Scatter plot of the lung Dice coefficient vs. age
of patient for every individual in both (a) Montgomery and (b) Shenzhen
datasets. Histograms show the age distribution for test set (blue) and
the training set (orange).

dataset and testing with Shenzhen and Montgomery datasets.
Table III shows how HybridGNet models greatly outperform
all baselines both in terms of HD and Dice coefficient,
confirming that the proposed model yields more generalizable
predictions across medical centers.

Moreover, recent studies on fairness in machine learning
have shown that under-representation of certain demographic
groups in the training data (e.g. in terms of gender [51] or
ethnicity [52]) may result in biased models which present
unequal performance in minority groups. Here we are
interested in evaluating if the same holds for chest x-ray
segmentation, in particular when considering age distribution
shifts between training and test patients. To perform this
analysis, we take our best performing model (HybridGNet
2 IGSC Layers 6-5) and build a scatter plot (see Figure
3) depicting the Dice coefficient for lung segmentation vs
patients age. When observing the age histograms between
training and test sets, we note that young patients are highly
underrepresented in the training set. Interestingly, we found
that model performance drastically drops for patients between
0-18 years old in both Montgomery and Shenzen datasets,
what can be attributed to the lack of young people on the
JSRT database. This experiment highlights the importance
of performing this type of disaggregated analysis to detect
potential subgroups where the model may under-perform, due
to changes in patient demographics or under-representation
in the training database.

4) Robustness to image occlusions (IO): IO are common in
chest x-rays, for example due to patient de-identification (i.e.,
covering protected information with black patches) or exter-
nal devices such as pacemakers, electrodes, tubes, or cables
covering certain organs or structures of interest. We designed
two experiments to assess the robustness of HybridGNet to
artificial and real IO that were not represented in the training
set, by comparing it with pixel-level prediction models like
UNet.

Image Ground Truth HybridGNet HybridGNet 2-IGSC UNet

(a)                                                 (b)

                         (c)
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Fig. 4. Artificial occlusions study. (a) Dice coefficient and (b) HD
distance for increasing block size in artificial occlusions. (c) Shows
qualitative results.

First, we simulated artificial occlusions by overlapping a
random black box on every image. We applied boxes of
different sizes over the JSRT test set on random positions.
Figures 4 (a) and (b) show Dice and HD distance for lungs
and heart segmentation (averaged) as the occlusion block size
increases. Although UNet slightly outperforms HybridGNet
in Dice for very small boxes, its performance drops with a
steeper slope than HybridGNet as we increase the size of the
occlusion block. Figure 4 (c) shows some qualitative results
for three cases with different occlusion level. Both quantiative
and qualitative results show that HybridGNet is more robust
to IO than pixel-level prediction models like UNet.

Robustness to real occlusions produced by external devices
was also assessed. To this end, we used 20 segmented images
with pacemakers from Padchest as test set. To evaluate solely
the occlusion effect on performance and alleviate DS issues
due to intensity differences across different medical centers,
we retrained the models (both HybridGNet and baseline) with
an extended training dataset that includes Padchest images
(without pacemakers). In Figure 5 we can see how our model
outperforms the UNet both on Dice and Hausdorff distance.

5) Model behaviour on pathological anatomy.: We are also
interested in analyzing the behaviour of HybridGNet in the
context of pathological anatomy. To this end, we followed
the experimental setup introduced in [24] where a subset
of patients from the Shenzhen database diagnosed with tu-
berculosis was considered. These patients have a collapsed
lung and therefore a reduced air cavity. Every image was
annotated by two expert radiologists following two different
approaches to delineate the lungs (as discussed in [53]). The
first approach was to segment only the air cavity of the lung
field, i.e. segmenting only the dark areas (regions of lucency)
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Fig. 5. Real occlusions study. (a) Dice coefficients and (b) HD
distances for the pacemaker Padchest subset. Wilcoxon test showed
significant differences on Dice for heart segmentation and HD for both,
lungs and heart. (c) Shows qualitative results.

and ignoring areas of increased attenuation (opacities), which
correspond to infected lung tissue. Following [24] we call them
air masks. In the second approach, the annotator delineated
the expected anatomy of the lungs, including opaque areas
following a comparative approach by mirroring the normal
lung field onto the abnormal one. We call these anatomy
masks.

We compared the segmentation performance of HybridGNet
and UNet considering both types of annotations as ground-
truth, when trained on JSRT (which contains only masks of
non-pathological lungs). Quantitative results shown in Fig-
ures 6 (a) and (b) confirm that HybridGNet obtains results
that are much closer to the anatomy masks than to the air
masks, obtaining a higher Dice coefficient and a lower HD.
Wilcoxon’s test showed that the difference between the means
on both metrics was indeed significative. Conversely, this
tendency is less pronounced for UNet predictions, suggest-
ing that HybridGNet encourages more anatomically plausible
predictions, while UNet focuses on local texture patterns.
Figure 6 (c) shows examples of air and anatomy masks, and
qualitative results of both methods for three different images.
Regarding clinical utility, this opens the door for applications
that combine both architectures: for example, the severity
of tuberculosis infection could be estimated by measuring
the difference between the UNet mask, representing the non-
infected lung regions, and the HybdriGNet mask, representing
the healthy lung area if there was no lung collapse.

6) Cardiothoracic ratio estimation clinical use-case: A rele-
vant intended use for lung and heart segmentation in chest
x-rays is the detection of heart diseases, by identifying an
enlargement of the cardiac silhouette. In radiology, this is done
by measuring the CTR on a posteroanterior chest x-ray. This
is calculated as the ratio between the (maximal) horizontal
diameters of the heart and the thorax (inner edge of ribs/edge
of pleura), which are manually measured by radiologists [54].
A normal CTR lays between 0.42 and 0.50, while a CTR > 0.5
is considered an abnormal finding. For example, in young
patients it might indicate a heart disease, such as cardiomegaly
or pericardial effusion.

Manual calculation of CTR introduces observer variation
and it is time consuming. Thus, here we evaluated the per-
formance of HybridGNet for CTR estimation using a testing
subset of 100 images from Padchest: 50 images with a
cardiomegaly label, and 50 without this label. Two radiology
specialists from Hospital Italiano de Buenos Aires collaborated
in our study by manually calculating the CTR for this subset.
The mean CTR among the two specialists was considered as
ground-truth. To reduce the DS due to the change of medical
center and the lack of pathological anatomy, we constructed
an augmented training set by merging the JSRT images with a
subset of 117 images from Padchest with cardiomegaly label.
Since Padchest did not originally included landmark annota-
tions, in this augmented set we used the ones generated from
dense segmentations in the previous experiment described in
section V-.2.

We compared model performance when training solely with
JSRT images and when training with the aforementioned aug-
mented dataset. The predicted CTR was calculated automat-
ically from HybridGNet outputs by measuring the maximum
horizontal distance between lung borders and the maximum
horizontal diameter of the heart mask. We found that the
Pearson correlation coefficient between ground-truth CTR and
predicted CTR increased when the model was trained with the
augmented dataset. For the images with a ground-truth CTR <
0.5 (normal cardiac silhouette) correlation increased from 0.80
to 0.88 when target-domain images where included during
training. This improvement was even stronger for abnormal
cases (CTR > 0.5), increasing from 0.70 to 0.85. Figure 7
shows a scatter plot of the 100 test images as data points,
where the diagonal represents a perfect agreement between the
CTR measurement of HybridGNet and physicians. We can see
how the model trained solely with normal cardiac silhouette
cases (JSRT) tends to underestimate the CTR, while the model
trained with target-domain cases improves CTR calculation on
abnormal hearts. These results suggest that even when using
models which encourage anatomically plausible predictions
like HybridGNet, the construction of diverse databases for
training (i.e. including representative samples of the target
population) is still needed to guarantee that performance is
maintained in real clinical scenarios.

VI. CONCLUSIONS

In this paper we introduced HybridGNet, a new method to
perform landmark based anatomical segmentation via hybrid
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Fig. 6. Model behaviour on pathological anatomy. Top boxplots
show Dice coefficient (a) and HD (b), taking the air mask as ground
truth (green) and taking the anatomy mask as ground truth (orange)
for the HybridGNet and UNet models. * indicates significant differences
between means according to Wilcoxon’s test (p-value < 0.05). (c) Visual
examples for the air and anatomy masks, and outputs given by both
models. Results shows that our model tends to predict masks that follow
the expected shape of the organs, while UNet predictions resamble the
visible air section of the lungs.

graph neural networks with image-to-graph localized skip
connections. Our study confirms that incorporating connectiv-
ity information through the graph adjacency matrix helps to
improve anatomical plausibility and accuracy of the results
when compared with other landmark-based and pixel-level
segmentation models. We also showcased several application
scenarios for HybridGNet in the context of chest-x ray image
analysis, and assessed its robustness with respect to different
types of domain shift and image occlusions. We observed that
HybridGNet produces more anatomically plausible results in
these contexts, specially when compared with dense pixel-
level prediction models like UNet. We also evaluated the
clinical utility of our model in the context of cardiothoracic
ratio estimation and audited potential biases that may appear
due to under-representation of certain demographic groups or
pathologies. Our results go in line with the evidence reported
in recent studies on fairness in biomedical image segmentation,
highlighting the importance of constructing diverse databases
which include representative demographic samples from the
targeted population. In the future, we plan to extend the
proposed HybridGNet model to volumetric images, where
graphs can be used to represent meshes instead of contours.

Fig. 7. CTR study. Ground-truth CTR vs HybridGNet CTR when
training with JSRT dataset only (left) and the dataset augmented with
cardiomegaly images from Padchest (right). The vertical line indicates
the boundary between normal and abnormal CTR.
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