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Summary
Background Proximal femoral fractures are an important clinical and public health issue associated with substantial 
morbidity and early mortality. Artificial intelligence might offer improved diagnostic accuracy for these fractures, but 
typical approaches to testing of artificial intelligence models can underestimate the risks of artificial intelligence-
based diagnostic systems.

Methods We present a preclinical evaluation of a deep learning model intended to detect proximal femoral fractures 
in frontal x-ray films in emergency department patients, trained on films from the Royal Adelaide Hospital (Adelaide, 
SA, Australia). This evaluation included a reader study comparing the performance of the model against 
five radiologists (three musculoskeletal specialists and two general radiologists) on a dataset of 200 fracture cases and 
200 non-fractures (also from the Royal Adelaide Hospital), an external validation study using a dataset obtained from 
Stanford University Medical Center, CA, USA, and an algorithmic audit to detect any unusual or unexpected model 
behaviour.

Findings In the reader study, the area under the receiver operating characteristic curve (AUC) for the performance of 
the deep learning model was 0·994 (95% CI 0·988–0·999) compared with an AUC of 0·969 (0·960–0·978) for the 
five radiologists. This strong model performance was maintained on external validation, with an AUC of 0·980  
(0·931–1·000). However, the preclinical evaluation identified barriers to safe deployment, including a substantial shift 
in the model operating point on external validation and an increased error rate on cases with abnormal bones 
(eg, Paget’s disease).

Interpretation The model outperformed the radiologists tested and maintained performance on external validation, 
but showed several unexpected limitations during further testing. Thorough preclinical evaluation of artificial 
intelligence models, including algorithmic auditing, can reveal unexpected and potentially harmful behaviour even in 
high-performance artificial intelligence systems, which can inform future clinical testing and deployment decisions.

Funding None.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 
4.0 license.

Introduction
Hip fractures are an important global clinical and public 
health issue. In older people, proximal femoral fractures 
are the second most frequent cause of hospitalisation and 
are common causes of morbidity and long-term mortality,1 
with a lifetime risk of 17·5% for women and 6% for men.2 
Up to 10% of patients with suspected proximal femoral 
fractures are not diagnosed on the initial pelvic x-ray 
study and undergo further diagnostic imaging, primarily 
due to the subtle findings in a subset of these fractures.3 
Of those patients undergoing additional imaging, only 
around a third are ultimately ever diagnosed with a 
fracture.3,4 Not only does further imaging increase the 
diagnostic costs, the burden on doctors and patients, and 
resource use, but so-called occult fractures could also lead 
to delayed diagnoses and concomitant worse patient 
outcomes, including increased mortality rate,5,6 length of 
hospitalisation,7 and cost of care.8

Improved diagnostic accuracy at first clinical presen
tation could plausibly reduce both harms and costs. Many 
studies have reported that artificial intelligence systems 
might exceed human performance for certain diagnostic 
tasks.9 To reduce the rates of misdiagnosis or incomplete 
diagnosis of an initial radiograph in an emergency 
department, we have previously developed a deep 
learning-based proximal femoral fracture detection model 
with exceptional performance characteristics.10 We 
evaluate the performance of the deep learning model, and 
compare this against the current standard of care (clinical 
radiologists) in a multi-reader, multi-case (MRMC) study.

The performance of deep learning models for medical 
image analysis has been reported in many preclinical 
studies,11 yet almost no clinical trials have been done to 
show how these results translate into clinical practice.9 
Historically, computer-aided diagnosis systems have often 
performed unexpectedly poorly in the clinical setting 
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despite promising preclinical evaluations,12 a concept 
known as the implementation gap.13 Factors posited to 
explain poor clinical performance include: the misappli
cation of models outside of intended use cases,14,15 a varying 
ability to generalise to new clinical environments,16–19 
statistical flaws when estimating the pooled performance 
and variability of human readers,20 and the occurrence of 
unidentified poor performance in clinically important 
subgroups of cases.21 Few preclinical artificial intelligence 
research studies have addressed these concerns; for 
example, external validation—an assessment of the ability 
of a model to generalise to new environments—has only 
been done in around a third of studies.11 In the past few 
years, formal algorithmic auditing has been proposed22 as a 
mechanism to identify and mitigate sources of undesirable 
machine learning model behaviour.

We performed a preclinical evaluation of a previously 
developed high-performance proximal femoral fracture 
model.10 This work is intended to reflect current best 
practice for preclinical assessment, by meeting the 
following criteria: an MRMC study design that is 
adequately powered to determine the relative 
performance of an artificial intelligence model and 
human experts; external validation of a model on 
international data to attempt to replicate the results and 
identify any challenges for generalisation to new clinical 
environments; and an algorithmic audit to identify any 
unexpected behaviour of a deep learning model and to 
estimate any gaps between preclinical performance and 
safe clinical deployment.

Methods
Deep learning model
The deep learning model evaluated in this study was 
developed previously and has been described in detail.10 

Briefly, the model consists of a DenseNet architecture23 
with 172 layers, trained on a development dataset that 
had no patient overlap with the study datasets, consisting 
of 45 786 unilateral proximal femoral x-ray images with a 
fracture prevalence of 11% (4861 fractures).

A large local dataset was obtained from the Royal 
Adelaide Hospital (Adelaide, SA, Australia), a tertiary 
public teaching hospital that serves adult patients (aged 
>16 years). The Royal Adelaide Hospital dataset included 
all frontal pelvic x-rays ordered between Jan 1, 2005, and 
Dec 31, 2015, as part of standard clinical care, obtained 
using a wide variety of x-ray equipment and imaging 
techniques (the exact models of scanning equipment and 
imaging parameters used were not available in our 
dataset). X-ray studies with no frontal pelvic film were 
excluded. Likewise, cases with previous surgical 
intervention (implanted metalwork) were excluded 
because fractures in postoperative hips were thought to 
represent a visually and clinically distinct class of injury, 
and this work focused only on the detection of fractures 
in preoperative hips.

Visual assessments to exclude cases were performed by 
a series of so-called helper artificial intelligence models 
developed and validated during earlier work, with human 
review of all included films to ensure the validity of 
inclusion.10

Primary validation dataset
The primary validation dataset was randomly selected (at 
the patient level) from the emergency department cases 
in the Royal Adelaide Hospital dataset. Emergency 
department referrals were used for the primary validation 
dataset because we considered this to be the most 
clinically challenging setting; lateral films and cross-
sectional imaging are often not immediately available 

Research in context

Evidence before this study
We searched Google Scholar on Dec 10, 2019, for literature 
published up to Dec 10, 2019, with no language restrictions, 
on: deep learning-based detection of hip fractures with use of 
the keywords “hip fracture” or “proximal femoral fracture”, 
and “deep learning” or “artificial intelligence”; and algorithmic 
audits of deep learning studies using the keywords “deep 
learning” or “artificial intelligence” and “audit”. These 
literature searches were repeated on Dec 1, 2021. The 
literature on hip fracture detection using deep learning models 
was scarce and only six relevant studies were retrieved before 
study inception on Dec 10, 2019. The majority of studies 
reported internal performance of the artificial intelligence 
model only, with few reader studies and little external 
validation. There were no studies reporting further analysis 
into unexpected model behaviour or failure modes. 
Furthermore, to our knowledge, no audits of medical artificial 
intelligence systems have been reported.

Added value of this study
This study presents a thorough preclinical evaluation of a 
medical artificial intelligence system (trained to detect proximal 
femoral fractures on plain film imaging). Despite high 
performance of the model, which outperformed human experts 
in the task of proximal femoral fracture detection, an evaluation 
including algorithmic auditing showed unexpected and 
potentially harmful algorithmic behaviour.

Implications of all the available evidence
Thorough evaluation of artificial intelligence systems, 
including algorithmic auditing, can identify barriers to safe 
artificial intelligence deployment that might not be 
appreciated during standard preclinical testing and which 
could cause significant harm. Regulators, medical governance 
bodies, and professional groups should consider the need for 
more comprehensive preclinical testing of artificial intelligence 
before clinical deployment.
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and management is often initiated before a formal 
radiology report. A total of 4577 unilateral hip x-rays were 
selected, including 640 proximal femoral fractures. The 
ground truth for fracture status was determined through 
a combination of x-ray reports, follow-up imaging with 
CT (91 patients) or MRI scans (five patients), and surgical 
records, with a follow-up period of at least 6 months. 
Mortality records were searched but identified no further 
cases of proximal femoral fractures. The majority of 
proximal femoral fracture cases were surgically validated 
(585 fractures, 91·4%), meaning the patients were 
surgically treated for fracture. The rest of the patients 
either did not receive surgery (ie, they died before surgery 
or were palliated), or they were transferred to other 
institutions before treatment.

The primary validation dataset was intended to 
investigate the application of our model to de-novo 
clinical cases; such cases were not available to the model 
during training. The remainder of the Royal Adelaide 
Hospital dataset (45 786 images) was used for model 
development.

MRMC dataset
200 positive cases (fractures) and 200 negative cases 
(non-fractures) from the primary validation dataset were 
randomly selected to form the reader study (MRMC) 
dataset. The sample size was chosen to balance the 
requirements for as large a sample as possible with the 
need to provide a dataset that busy clinicians would find 
feasible to read. There was no overlap of patients with the 
development dataset and all patients were imaged from 
the emergency department.

External validation dataset
An international external validation dataset from 
Stanford University Medical Center (Stanford, CA, USA) 
was obtained to assess the replicability and generalisability 
of our artificial intelligence model.

The external validation dataset consisted of 93 455 images 
collected from patients at Stanford University Medical 
Center who underwent a radiographic examination of the 
lower extremity between Jan 1, 2003, and Dec 31, 2014, as 
well as the associated examination reports.24 Each image 
was prospectively labelled as normal or abnormal by the 
attending radiologist at first presentation. From this 
group, 46 positive and 100 negative hip radiographs were 
randomly selected. The negative images were reviewed by 
an attending radiologist to exclude the presence of a 
fracture, and the positive (fracture) cases were confirmed 
either via follow-up radiographs with surgical fixation or 
review of follow-up cross-sectional imaging.

Exclusion of images with burned-in private health 
information (ie, identifiable information stored within 
the image pixels themselves) and those which contained 
metalwork resulted in a final external validation dataset 
of 40 positive cases and 41 negative cases. Among the 
positive cases, 22 (55%) involved fractures in the 

trochanteric region, and 18 (45%) involved fractures of 
the femoral neck.

Reader study
13 practising clinicians who might be expected to review 
these films in an emergency department setting were 
included in the reader study, with five radiologists in 
standard diagnostic conditions, as well as a mix of eight 
other clinicians (radiologists and surgical, emergency 
department, and general practice doctors) who read the 
images under normal clinical conditions (ie, without 
diagnostic quality monitors). In this context, diagnostic 
conditions refers to the use of high-fidelity monitors and 
a fully featured Picture Archiving and Comunication 
System viewer, as required by the Royal Australian and 
New Zealand College of Radiologists25 for all primary 
diagnostic reads performed by radiologists. Clinical 
conditions refers to the use of lower-resolution monitors 
typically found in emergency departments and inpatient 
wards, commonly used for case review or by non-
radiologist clinicians. All readers reviewed the images 
with a locally developed web Digital Imaging and 
Communications in Medicine viewer, which provided a 
standard set of image manipulation tools such as 
windowing, zoom, and panning methods.

None of the readers had access to clinical information 
from the referral. The radiologists were only told that 
each case was an acute presentation to an emergency 
department, and the patient required pelvic x-ray 
imaging.

The five radiologists who were reporting in diagnostic 
conditions consisted of three musculoskeletal specialists 
and two general radiologists. All radiologists were fully 
qualified, and the musculoskeletal radiologists had 
completed appropriate subspecialty training. The 
radiologists had a median of 10 years of clinical 
experience (range of 5–19 years post fellowship).

Readers were asked to classify each x-ray into one of 
four categories: “definitely fracture”, “likely fracture, 
needs further imaging”, “likely not a fracture, needs 
further imaging”, or “no fracture”. These categories were 
dichotomised into “definite fracture” (the first category) 
or “equivocal/non-fracture” (the latter three categories) 
for analysis, to estimate the potential of the model to 
avoid further follow-up imaging or investigation and 
therefore reduce delays to admission and surgery.

Outcomes
The primary measure of performance for the deep 
learning algorithm and the readers was the area under 
the receiver operating characteristic (ROC) curve (AUC) 
for the binary outcome, and the primary comparison was 
between the algorithm and the five radiologists reading 
under diagnostic conditions. 

To estimate the average performance of the readers, we 
adopted the well established practice of meta-analysis for 
diagnostic accuracy studies.20 By treating each reader as a 



Articles

4	 www.thelancet.com/digital-health   Published online April 5, 2022   https://doi.org/10.1016/S2589-7500(22)00004-8

distinct diagnostic study with a known confusion matrix, 
we used summary ROC curve (SROC) analysis to 
summarise reader performance. This approach prevents 
the underestimation of human performance that is seen 
when sensitivity and specificity are independently pooled 
across readers,26,27 and allows for the robust statistical 
comparison of AUC measures between human and 
artificial intelligence decision makers. The 95% CIs for 
the deep learning model were produced from a non-
parametric bootstrap with 10 000 samples, and we 
performed null hypothesis testing on the difference of 
AUC measurements with the method reported by 
DeLong and colleagues.28

We report multiple secondary findings to further 
characterise the performance of the deep learning model. 
First, we report the performance of the deep learning 
algorithm on an external validation dataset obtained 
from Stanford University Medical Center, reporting the 
AUC as well as the sensitivity and specificity at the 
selected operating point. If there was any discrepancy in 
sensitivity and specificity, we also planned to present 

results for these metrics at an operating point selected 
post hoc to obtain a similar sensitivity (>95%) on the 
Stanford dataset, to aid in the comparison between 
primary validation and external validation dataset 
performance. The model was not retrained or fine-tuned 
before this assessment. Second, we present the results of 
the full set of 13 readers, including the non-radiologists 
and the radiologists who did not interpret the images 
under diagnostic conditions. Third, we present results of 
a forced choice experiment, in which equivocal reader 
responses were treated as definitive for fracture or non-
fracture, to further characterise human diagnostic 
performance, albeit in a manner that does not reflect 
typical clinical practice. Finally, we report the performance 
of the deep learning algorithm at clinical prevalence 
(14%), and the sensitivity and specificity of the algorithm 
at the selected operating point.

R version 3.62 was used for statistical analysis. p values 
less than 0·05 were considered to be statistically 
significant.

Algorithmic audit
We performed a medical algorithmic audit22,29 by 
modifying the audit framework described by Raji and 
colleagues22 to detect and characterise algorithmic 
errors, defined as any outputs of the artificial 
intelligence system that are inaccurate, including those 
which are inconsistent with the expected performance 
or which can result in harm if undetected. This process 
involved scoping and mapping the task, the model, and 
the environment, as well as defining the intended use 
and intended impact of the artificial intelligence 
system. We then performed a failure mode and effects 
analysis, and multiple subgroup analyses of the MRMC 
dataset including a patient-specific subgroup analysis, a 
task-specific subgroup analysis, and an exploratory 
error analysis. These subgroup analyses were intended 
to be descriptive and null hypothesis significance 
testing was not performed. The methodology and 
structure of the medical algorithmic audit has been 
described in detail by Liu and colleagues.30

For the task-specific subgroup analysis, the fractures 
were labelled using a process of schema completion,21 in 
which an ontology of clinically relevant fracture 
subtypes was prospectively defined by a radiologist 
(LO-R). These subtypes included features regarding the 
fracture location (eg, subcapital, cervical) and the 
fracture character (eg, undisplaced, comminuted; 
appendix p 11). To describe displacement, we used the 
following system: “subtle” displacement referred to no 
or minimal cortical step, “mild” displacement referred 
to up to one cortical width, “moderate” displacement 
was up to half the bone width, and “severe” displacement 
was more than half the bone width. We did not 
distinguish between translation and angulation or tilt, 
but instead referenced only the most displaced 
component or region of the fracture. We felt that this 

Figure 1: Study flow diagram
The Royal Adelaide Hospital data were further divided into the development, primary validation, and MRMC 
datasets by randomisation at the patient level (ie, no patients occur in both the development and primary 
validation or MRMC datasets). MRMC=multi-reader, multi-case. *Only x-rays without burned-in private health 
information were selected.

4577 hip x-rays in primary 
validation dataset

69 344 unilateral hip x-rays 
after bounding box 
localisation and 
separation of left 
and right hips

400 hip x-rays in MRMC 
dataset

50 363 unilateral hip x-rays

18 981 excluded due to 
implanted 
metalwork

64 858 pelvic x-ray studies 
from Royal Adelaide 
Hospital, 2005–15

34 672 frontal pelvis x-rays

30 186 excluded due to no 
frontal pelvic film

45 786 hip x-rays in 
development 
dataset

 

146 unilateral hip x-rays 
randomly selected*

81 hip x-rays in external 
validation dataset

65 excluded due to 
implanted 
metalwork

93 455 lower limb x-ray 
studies from 
Stanford University 
Medical Center, 
2003–14

2620 unilateral hip x-rays

90 835 excluded due to no 
frontal hip film

See Online for appendix
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descriptive ontology best described the useful elements 
of visual variation in the x-rays. Performance was 
reported in these subgroups and compared against the 
performance of human readers using the ROC-AUC of 
the model and the SROC-AUC of the readers. For the 
exploratory error analysis, a qualified radiologist 
reviewed all errors the model produced to identify 
common patterns (failure modes) within the MRMC 
dataset. This involved visual inspection of the image 
data, as well as the use of Grad-CAM saliency maps31 to 
better characterise model behaviour. The Central 
Adelaide Local Health Network provided ethical 
approval for this study (R20171104 HREC/17/RAH/480) 
and patient consent was waived. The Stanford instit
utional review board waived the need for approval.

Role of the funding source
There was no funding source for this study.

Results
The numbers of cases and images in the Royal Adelaide 
Hospital development, primary validation, and the 
MRMC dataset, and the external validation dataset are 
shown in figure 1, with dataset characteristics shown in 
table 1.

In the primary performance comparison (the reader 
study), the model AUC was 0·994 (95% CI 0·988–0·999), 
and the AUC of the SROC for the five radiologists was 
0·969 (0·960–0·978; figure 2). 

A confusion matrix showing the number of false 
positive and false negative errors is presented in the 
appendix (p 1); nine false negatives and one false negative 
were found in the test set of 200 fractures and 200 non-
fractures. In a simulated forced choice experiment, in 
which all definite or equivocal fracture responses from 
the readers were treated as a positive finding (instead of 
only the definite responses), reader performance was 
higher, with an SROC-AUC of 98·5 (95% CI 
0·958–1·000), although this approach does not reflect 
clinical practice (appendix p 2).

Our model achieved an AUC of 0·980 (95% CI 
0·931–1·000) on the external validation dataset, which 
was not significantly different from the results reported 
on the primary validation dataset (p=0·20). However, the 
operating point (0·62) did not produce a similar balance 
of sensitivity and specificity as on the primary validation 
set when the model was applied to the external validation 
dataset, producing a sensitivity of 75·0 and a specificity 
of 100·0 (vs sensitivity of 95·5 and specificity of 99·5 in 
the MRMC dataset). In a post-hoc analysis, the same 
sensitivity level (ie, >95%) was achieved with an operating 
point of 0·0001, with a sensitivity of 97·4% and a 
specificity of 87·8%.

The sensitivity and specificity of the deep learning 
model at the preselected operating point (0·62) and the 
performance of the model at clinical prevalence (14%) are 
presented in the appendix (p 3), with an unchanged AUC 

of 0·994, a sensitivity of 94·5%, and a specificity of 
99·1%. The full set of audit artefacts are provided in the 
appendix (pp 6–19), including the full failure mode and 
effects analysis documents.

The performance of the additional readers in the 
primary reader study is shown in figure 3; the SROC-
AUC for radiologists using non-diagnostic conditions 
was 0·943 and for non-radiologists was 0·902.

The performance of our artificial intelligence model for 
demographic subgroups (patient-specific subgroup 
analysis) is presented in table 2 and for clinically relevant 
fracture subgroups (task-specific subgroup analysis) is 
presented in table 3. Patient race and ethnicity information 
was not available. These analyses show no obviously 
aberrant model behaviour. Although the performance of 
the model is slightly lower in the oldest patient cohort (age 
>80 years), a similar reduction in diagnostic accuracy is 

Development 
dataset 
(n=18 178)

Primary 
validation dataset 
(n=2449)

MRMC dataset 
(n=400)

External 
validation 
dataset (n=81)

Frontal pelvic x-rays 32 182 2490 400 NA

Unilateral hip images 45 786 4577 400 81

Age, years 69·9 (22·0) 63·7 (25·4) 74·3 (24·0) 63·5 (23·5)

Sex

Female 9543 (52%) 1178 (48%) 242 (60%) 50 (62%)

Male 8725 (48%) 1271 (52%) 158 (40%) 31 (38%)

Images referred from 
emergency 
department

15 127 (47%) 2490 (100%) 400 (100%) NA

Fracture prevalence 4861 (11%) 356 (14%) 200 (50%) 40 (49%)

Data are n, mean (SD), or n (% of patients). MRMC=multi-reader, multi-case. NA=not applicable.

Table 1: Dataset characteristics

Figure 2: Primary performance comparison
Green triangles show the individual performance of the five radiologists. 
The solid green line shows the average human performance with a summary 
ROC curve, with the 95% confidence region shown by the shaded area. 
The purple line shows the ROC curve for the performance of the deep learning 
model. ROC=receiver operating characteristic.
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seen among the radiologists. Furthermore, model 
performance does not decrease substantially for 
intracapsular fractures (subcapital and cervical locations), 
which have distinct clinical implications.

In the exploratory error analysis, other than the 
subgroups already identified in the patient-specific 
subgroup analysis and the task-specific subgroup 
analysis, cases with abnormal bone or joint appearances 
were noted to be overrepresented among the errors for 
the model (appendix pp 11–13). Targeted relabelling of 
the MRMC was done, which revealed six cases with 
abnormal trabecular patterns due to Paget’s disease of 
the pelvis or femur, or severe femoral head deformities.

A subgroup analysis was performed, and although 
limited by the modest number of cases involved, there 
was a large difference in the error rates for the overall 
MRMC dataset (error rate of 2·5%) and the cases with 
abnormal bones and joints (error rate of 50·0%; 
appendix p 15).

No other obvious subgroups were identified during 
exploratory error analysis. One further surprising error 
occurred, which was a false negative in a significantly 
displaced fracture (appendix p 12). The remaining 
six false negatives (ie, those not already presented on 
appendix pp 12, 15) are also shown in the appendix (p 5).

On review of Grad-CAM saliency maps,31 the model 
was noted to have a tendency to focus on the inner 
cortex of the neck of the femur region, which is part of a 
clinically relevant feature for proximal femoral fracture 
detection known as Shenton’s line.32 However, the 
saliency maps often did not highlight outer cortex 
fracture lines (appendix p 4), even when the model 
correctly diagnosed the fracture. In the example in the 
appendix (p 12), the outer cortex is clearly disrupted, but 
a plausible intact curve along Shenton’s line is able to be 
discerned. This could reflect a failure mode of the 
model: if displaced fracture elements form a pseudo-
Shenton’s line, our model might misinterpret this as an 
intact hip. However, little can be determined from this 
single error.

Discussion
We report a thorough investigation of a high-performance 
deep learning algorithm for the detection of proximal 
femoral fractures from frontal pelvic radiographs. The 
deep learning model achieved high performance, 
outperforming radiologists in diagnostic reporting 
conditions on both the primary metric (AUC 
0·994 vs 0·969) and by showing both higher sensitivity 
(95·5% vs 94·5% for the best radiologist) and specificity 
(99·5% vs 97·5%) than any doctor tested in the reader 
study. We also note that the model’s performance was 
higher than that reported by Krogue and colleagues,33 
perhaps due to the smaller dataset and image down
sampling used in their research. To investigate concerns 
that preclinical artificial intelligence testing can obscure 
various problems with artificial intelligence models and 

Cases AUC

Artificial 
intelligence 
model

Radiologists

Male 160 0·996 0·979

Female 240 0·994 0·967

Age <40 years 53 0·993 0·970

Age 40–60 years 63 1·000 0·992

Age 61–80 years 59 0·999 0·998

Age >80 years 225 0·988 0·967

Overall performance 400 0·994 0·969

AUC=area under the receiver operating characteristic curve.

Table 2: Patient-specific subgroup analysis

Cases AUC

Artificial 
intelligence 
model

Radiologists

Subtle fractures 9 0·964 0·982

Mild displacement 61 0·998 0·969

Moderate displacement 56 1·000 0·990

Severe displacement 74 1·000 0·946

Comminuted fracture 75 1·000 0·971

Subcapital location 66 0·999 0·980

Cervical location 23 0·984 0·982

Pertrochanteric location 105 0·999 0·958

Subtrochanteric location 6 0·970 0·968

Overall performance 400 0·994 0·969

AUC=area under the receiver operating characteristic curve.

Table 3: Task-specific subgroup analysis
Figure 3: Additional performance results for other readers
Symbols show the individual performance of each reader. The summary receiver 
operating characteristic curves are shown for the primary reader study 
radiologists in diagnostic conditions (n=5), additional radiologists using non-
diagnostic monitors (n=3), and non-radiologists (n=5).

0 0·2 0·4 0·6 0·8 1·0
0·70

0·75

0·80

0·85

0·95

0·90

1·00
Se

ns
iti

vi
ty

False positive rate

Radiologists in diagnostic conditions
Radiologists in non-diagnostic conditions
Non-radiologists



Articles

www.thelancet.com/digital-health   Published online April 5, 2022   https://doi.org/10.1016/S2589-7500(22)00004-8	 7

lead to a so-called implementation gap,13 we performed a 
series of secondary analyses and an algorithmic audit.

In terms of generalisability, our external validation 
results from a US cohort were informative. Whereas the 
discriminative performance of the artificial intelligence 
system (the AUC) appears to be maintained on external 
validation, the decrease in sensitivity at the prespecified 
operating point (from 95·5 to 75·0) would make the 
system clinically unusable in the new environment. 
Although this shift could be mitigated by the selection of 
a new operating point, as shown when we found similar 
sensitivity and specificity in a post-hoc analysis (in which 
the smaller decrease in specificity reflects the minor 
reduction in discriminative performance), this would 
require a localisation process to determine the new 
operating point in the new environment. To our 
knowledge, this is the first report of such behaviour in 
the medical artificial intelligence literature.

Given the tendency of artificial intelligence models to 
behave in unexpected ways (ie, unlike a human expert 
would), the inclusion of an algorithmic audit appears to 
be informative. As stated by Liu and colleagues,30 the 
audit approach changes the focus from evaluating the 
best performance an artificial intelligence system can 
achieve to identifying the worst mistake it could make. 
Identifying the types of cases an artificial intelligence 
model fails on might assist in bridging the current gap 
between apparent high performance in preclinical 
testing and challenges in the clinical implementation of 
an artificial intelligence model.

We note that although our model shows high perform
ance, and does not appear to deviate from human 
performance in prespecified subgroups, it does still make 
the occasional inhuman error (eg, misdiagnosing a highly 
displaced fracture). We also note on saliency mapping 
that although the model reproduces some recognisable 
aspects of human practice (eg, it appears to pay attention 
to Shenton’s line), the visualisations nonetheless raise 
concerns about the regions that are not highlighted in the 
heatmaps. In particular, the saliency maps almost never 
show strong activity along the outer region of the femoral 
neck, even in cases where the cortex in this area is clearly 
disrupted. Saliency maps should be interpreted with 
caution due to known failings of these methods,34 but 
these findings together raise the concern that, despite the 
model performing extremely well at the task of proximal 
femoral fracture detection when assessed with summary 
statistics, the model appears to be prone to making 
unexpected mistakes and can behave unpredictably on 
cases that humans would consider simple to interpret. 
These results will hopefully be useful when planning to 
integrate our model into clinical workflows. Possible 
strategies to mitigate various issues have been suggested 
in the algorithmic audit report, such as detailed planning 
discussions with the relevant clinical teams to consider 
the effect of the algorithm on care pathways (appendix 
pp 16–19).

Our study had a number of limitations. First, the deep 
learning model itself is limited by being unable to act on 
cases with implanted metalwork (although our system is 
able to automatically identify these cases and exclude 
them from analysis). Second, the sample size of the 
MRMC study was limited by the availability of readers; 
we determined a total dataset of 400 cases (200 positive 
and 200 negative cases) was as many as we could 
reasonably expect the readers to review, and only five 
radiologists reviewed the cases under diagnostic 
conditions as defined in the local standards of practice. 
However, the sample size is similar to that in other 
similar studies11 and the 95% CIs are not excessively 
wide. Similarly, the sample size for the external validation 
is modest but, again, the CIs are reassuring from a 
clinical perspective. Third, we were unable to access 
racial identity or ethnicity data for our local population 
for subgroup testing, and as such were unable to evaluate 
the stability of the model performance on groups with 
different racial and ethnic backgrounds.

Regarding the audit, we note that given the reliance on 
individual human interpretation and small subgroups 
(or even individual examples), it would be reasonable to 
suspect that the findings of the audit and subgroup tests 
are not statistically reliable. We believe that such concerns 
are orthogonal to the motivation for these techniques, 
because the intention is to discover potential sources of 
unexpectedly poor clinical performance in a descriptive 
or exploratory manner, and not to show a statistically 
robust effect.

Our study evaluated a high-performance proximal 
femoral fracture detection deep learning model, which 
outperforms highly trained clinical specialists in 
diagnostic conditions, as well as other clinical readers in 
normal clinical conditions. The performance of the 
artificial intelligence system was maintained when 
applied to an external validation sample, and a thorough 
analysis of the behaviour of the artificial intelligence 
system shows that it is mostly consistent with that of 
human experts. We also characterised the occasional 
aberrant or unexpected behaviour of the artificial 
intelligence model which could inform future clinical 
testing protocols. We next intend to test our model in a 
clinical environment, in the form of an interventional 
randomised controlled trial.
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