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Abstract

The increased use of machine learning to assist with decision-making in high-stakes do-

mains has been met with both enthusiasm and concern. One source of ongoing debate is the

effect and value of decision makers’ discretionary power to override algorithmic recommen-

dations. In this paper, we study the adoption of an algorithmic tool used to help with decisions

in child maltreatment hotline screenings. By taking advantage of an implementation glitch,

we investigate corrective overrides: whether decision makers are more likely to override al-

gorithmic recommendations when the tool misestimates the risk score shown to call workers.

We find that, after the deployment of the tool, decisions became better aligned with algorith-

mic assessments, but human adherence to the tool’s recommendation was less likely when the

displayed score was misestimated as a result of the glitch. Then, analyzing the effect of adop-

tion and overrides on racial and socioeconomic disparities, we find that the deployment of the

tool did not affect disparities with respect to the pre-deployment period. We also observe that
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the disparities resulting from algorithmic-informed decisions were substantially smaller than

those associated with the algorithm in isolation. Together, these results make a case for the

value of humans in-the-loop, showing that in high-stakes contexts, human discretionary power

can mitigate the risks of algorithmic errors and reduce disparities.

1 Introduction
Algorithmic decision support tools are increasingly being incorporated into expert-driven decision-
making pipelines across domains, such as inventory management (Kesavan and Kushwaha 2020),
retail pricing (Phillips et al. 2015), healthcare (Caruana et al. 2015, Ganju et al. 2020), criminal
justice (Kleinberg et al. 2017), education (Smith et al. 2012), and public services (Chouldechova
et al. 2018). Many of these tools rely on statistical models, ranging in complexity from simple
regression to deep neural networks, which distill available information about a given instance into
a risk score or label reflecting the likelihood of one or more outcomes of interest. For example, a
model deployed in healthcare may estimate the risk of complications from pneumonia for a patient
(Caruana et al. 2015), and in the child welfare system it may estimate the risk of out-of-home
placement for a child (Chouldechova et al. 2018). Although such systems have long been used in
industries such as finance (Baesens et al. 2003), the uptake of machine learning has significantly
expanded the application domains where these tools can be found and has brought renewed interest
and scrutiny into machine learning’s costs and benefits. Bolstered by decades of research showing
that statistical models can outperform human experts on prediction tasks (Meehl 1954, Dawes et al.
1989, Grove et al. 2000, Ægisdóttir et al. 2006, Kleinberg et al. 2017), there is widespread opti-
mism that these tools can increase the quality of human decisions. This optimism is tempered by
evidence that human-machine complementarity can be an elusive goal because humans provided
with machine predictions can fall prey both to automation bias, resulting in overreliance (Marten
et al. 2004) and algorithm aversion, which induces underreliance (Dietvorst et al. 2015). Hu-
mans may also uptake information in ways that lead to increased disparities in decision outcomes
(Skeem et al. 2019). Such findings raise critical questions about the role of humans in the loop.
For example, after conducting a field-experiment examining the profit implications of providing
discretionary power to merchants in the automotive industry, Kesavan and Kushwaha (2020) sug-
gest that “As data-driven decision-making (DDD) emphasizes data over intuition, organizations
need to reevaluate the value of providing discretionary power to managers to override DDD tools
in their organizations" (Kesavan and Kushwaha 2020, p.1). And even when the desire for a human
in the loop is not in question, how to design a system that complements human abilities is not well
understood.

In this work, we study a child welfare decision-making context in which hotline call workers
are tasked with deciding whether a call concerning potential child neglect or maltreatment should

2

Electronic copy available at: https://ssrn.com/abstract=4050125



be screened in for investigation. In 2016, Allegheny County (Pennsylvania, US) deployed a risk
assessment tool, called the Allegheny Family Screening Tool (AFST), to support call workers’
screening decisions. The tool uses multi-system administrative data to assess the likelihood that
children in the case will experience adverse child welfare events in the near future.

Some time after the tool was deployed, the county discovered that a technical glitch caused
a subset of model inputs to be incorrectly calculated in real time.1 This glitch, in turn, resulted
in the display of misestimated risk scores in some cases. Although the misestimation was often
mild and the shown score generally provided reasonable risk information, the glitch gives us a
rare opportunity to investigate real-world, algorithm-assisted decision making in the presence of
misestimated scores.

In this work, we focus on three important questions in this area: (1) Did the tool’s deployment
affect call workers’ decisions? (2) Did call workers treat misestimated scores differently, or did
they indiscriminately adhere to recommendations? (3) How did the tool’s deployment and call
workers’ overrides affect racial and socioeconomic disparities? We begin our analysis by deter-
mining that there was a marked change in workers’ screening decisions in the post-deployment
period. After establishing that an overall change in behavior did occur, we then investigate the
extent to which call workers deviated from recommendations based on a misestimated risk score.
We find that, although workers did exhibit a slight tendency of automation bias in cases where the
tool required a supervisor’s approval for screen-out (i.e. deciding not to screen in a case for investi-
gation), they were able to appropriately override the tool’s recommendations in the majority of the
cases. In particular, we find that they avoided errors of omission when the score underestimated
the risk. We also investigate questions of potential disparities in adherence to recommendations
across racial and socioeconomic groups. Our findings show that the deployment of the tool neither
significantly mitigated nor exacerbated disparities with respect to the pre-deployment period, and
workers did not exhibit differential overrides across groups. Furthermore, we observe that humans
in the loop mitigated disparities when compared to the algorithm in isolation, and the results in-
dicate that this outcome was driven by human decisions that relied on factors other than the risk
score alone.

2 Background
Prior research has sought to answer the questions of whether and how the deployment of algorith-
mic tools for decision support affects the quality of the resulting decisions. Many researchers and
practitioners have advocated for the adoption of these tools on the basis of their superior predictive

1Before proceeding, we pause to note that these types of technical issues are not uncommon. What is uncommon is
for organizations to choose to be transparent about their occurrence. We respect and value Allegheny County for its
transparency and hope that this approach becomes the norm in the deployment of algorithmic systems in sensitive
societal domains.
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accuracy, but findings are mixed on whether integrating these predictive tools into decision-making
processes significantly improves the quality of the resulting decisions. In this regard, how these
tools should be integrated into decision-making pipelines is also a subject of debate, both in terms
of algorithmic design and discretionary power afforded to the human.

In the operations management literature, the effectiveness of algorithmic decision support in
the contexts of pricing and inventory management has attracted significant attention. Empirical
evidence has shown that human overrides of centralized autonomous systems may be detrimental to
overall performance (Phillips et al. 2015, Van Donselaar et al. 2010, Karlinsky-Shichor and Netzer
2019). However, the effect may be heterogeneous for different subsets of instances (Kesavan and
Kushwaha 2020), and human discretion can improve performance when information is available
that the algorithm ignores. For example, in the context of inventory replenishment, store managers
may optimize for relevant objectives that the algorithm’s optimization objective does not capture.
Van Donselaar et al. (2010) find that managers can complement the algorithm by accounting for
factors such as costs of in-store handling of products and potential to improve sales by maintaining
a better stock. In addition to optimizing for outcomes that are unobserved by the algorithm, humans
also may account for unobserved attributes that can lead to higher profits–for example, in the
context of B2B personalized pricing, when the pricing involves individualized quotes with unique
or complex characteristics (Karlinsky-Shichor and Netzer 2019). Importantly, there is evidence
that whether inventory support can be enhanced by the presence of algorithmic tools depends on
how the tools’ recommendations are communicated (Acimovic et al. 2020).

Needless to say, decision making in the context of child maltreatment hotlines differs from
pricing and inventory management in significant ways. Most notably, the high-stakes nature of the
task implies different costs associated with different types of errors. Recent work has audited risk
assessment models used in this context (Chouldechova et al. 2018), studied the public perceptions
of these systems (Brown et al. 2019), and raised concerns over the risk of automating historical
patterns of discrimination (Eubanks 2018). For a review of algorithms used within the U.S. Child
Welfare System, we refer the reader to Saxena et al. (2020). To the best of our knowledge, we
are the first to study human adherence to algorithmic recommendations in this context.2 A related
domain in which algorithmic overrides have been studied is the criminal justice system, where risk
assessment models that predict future recidivism are increasingly deployed. In both domains, the
decision tasks are high stakes and concern the government’s allocation of goods and burdens. In
the pretrial context, the main driver behind the rapid adoption of these tools was the hope of sharp

2The present paper builds on an earlier paper by the authors (De-Arteaga et al. 2020), which appeared in conference
proceedings. We offer two novel contributions in this manuscript. First, our empirical strategy in this paper is more
robust and relies on regression analyses. Second, the research questions that we investigate now include an analysis
of overrides across racial and socioeconomic groups, which is key to understanding potential disparities that may
arise from the use of algorithmic decision support.

4

Electronic copy available at: https://ssrn.com/abstract=4050125



and persistent reductions in incarceration rates, as indicated by policy simulations (Kleinberg et al.
2017). However, recent studies of deployed systems suggest that these reductions rarely occur
(Stevenson and Doleac 2019, Sloan et al. 2018, Berk 2017). These lackluster results have been
attributed, in large part, to the vast heterogeneity in judges’ compliance with the tools’ recommen-
dations (Cohen and Yang 2019, Stevenson and Doleac 2019). Notably, differential compliance
has been shown to be a factor driving increased poor-rich (Skeem et al. 2019) and black-white
(Stevenson 2018, Albright 2019) disparities in the post-deployment period. For instance, Albright
(2019) found that the increased racial gap in incarceration rates post-deployment resulted both
from inter-variation (i.e., judges in whiter counties showed higher compliance with algorithm rec-
ommendations) and from intra-variations (i.e., overrides of predicted low and moderate risk were
more frequent for black defendants than for white ones).

More broadly, two competing tendencies have been observed in studies of human compliance
with algorithmic recommendations: algorithm aversion and automation bias. Algorithm aversion
is the user’s tendency to ignore tool recommendations after seeing that they can be erroneous;
it originates from the user’s self-perceived lack of agency (Lim and O’Connor 1995, DeMichele
et al. 2018) and from a lack of algorithmic transparency (Yeomans et al. 2017). Users’ reliance
on the system is known to vary with the observed accuracy (Yu et al. 2016, 2017) and the asserted
accuracy (Yin et al. 2019) of the system. However, humans may not follow algorithmic recommen-
dations even when they are highly reliable (Goodwin and Fildes 1999). Moreover, agents affected
by algorithm aversion may prefer human judgment over algorithmic predictions, even when evi-
dence known to both the designer and the user clearly indicates that algorithmic predictions are
more accurate than human assessment (Dietvorst et al. 2015).

In contrast, users affected by automation bias may follow algorithmic recommendations despite
available (but unnoticed or unconsidered) information that would indicate that the recommendation
is wrong. Automation bias consists of two classes of errors: errors of omission and errors of
commission. Omission errors are instances where humans fail to detect cases that should have
warranted action because the cases were not flagged by the algorithmic system. A prominent
example is that of pilots in high-tech cockpits, who are prone to relying only on automated cues as a
heuristic replacement for vigilant information seeking (Mosier et al. 1998). Commission errors are
instances in which humans take action on the basis of an erroneous algorithmic recommendation,
failing to incorporate contradictory external information into the decision process. For example, in
the clinical decision support context, commission errors may result in patients’ being subjected to
unnecessary, potentially invasive testing or treatment.

Studies analyzing factors that contribute to automation bias have found that complex tasks and
time pressure may increase overreliance on decision support (Sarter and Schroeder 2001, Goddard
et al. 2011). The users’ experience level and confidence in their own decisions seems more likely
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to lead to automation bias (Marten et al. 2004, Moray et al. 2000). Social accountability has been
found to reduce automation bias (Skitka et al. 2000)—an important result in relation to decision
support systems that experts who have high public visibility or who are publicly elected (e.g.,
judges) use. Meanwhile, studies focused on the causes of algorithm aversion have found that
repeatedly seeing the algorithm make the same mistake leads to an agent’s decreased reliance
on the system (Dietvorst et al. 2015); giving some control over the algorithm can counter this
phenomenon (Dietvorst et al. 2016).

Motivated by these challenges, recent work has explored approaches to characterizing human-
machine complementarity in risk assessment contexts and devising approaches to combine the
strengths of both agents. A prominent line of research has focused on the effect of algorithmic ex-
plainability on adherence to algorithmic recommendations. These studies show that the perceived
accuracy of the system depends on the degree to which the explanations can be understood (Kizil-
cec 2016, Nourani et al. 2019), while also highlighting that explanations may induce overreliance
(Lakkaraju and Bastani 2019). Importantly, findings from ethnographic research that studies the
uptake of AI to assist medical diagnosis have shown that AI interrogation practices may extend
beyond what can be explained; these findings highlight the need for human experts to be able to
relate their own knowledge to AI predictions to make sense of how differences or disagreements
arise (Lebovitz et al. 2021). Evidence assessing the effectiveness of interventions designed to
mitigate underreliance and overreliance, such as querying the user’s decision before showing the
recommendations, has shown mixed outcomes (Buçinca et al. 2021, Fogliato et al. 2021, Gajos
and Mamykina 2022). Hilgard et al. (2021) propose that, instead of generating predictions, al-
gorithms meant for decision support should be trained with a human in the loop to incorporate
the human decision process and should only report to the human user the simpler and more use-
ful representations of the data features. Grounded in the idea of complementarity, new research
proposes algorithms that are trained to optimize performance on instances that are difficult for hu-
mans, while deferring to human decision makers elsewhere (Madras et al. 2018, Wilder et al. 2020,
Raghu et al. 2019). In this line of work, studies have shown that taking into account the hetero-
geneity of workers’ expertise can yield superior human-AI performance (Gao et al. 2021). Finally,
and from an algorithmic fairness perspective, recent theoretical work has emphasized the impor-
tance of considering the structure of decisions when relating machine predictions to the fairness
properties of algorithms (Gillis et al. 2021).

Our work contributes to the nascent literature on human-machine complementarity by con-
ducting a retrospective analysis of whether humans adopt a risk assessment tool and whether they
indiscriminately adhere to misestimated risk scores in a real-world decision-making context. The
study that is closest to ours is Bushway et al. (2012), which analyzed the effects of inconsistencies
in sentencing recommendations resulting from human errors in the judicial setting in Maryland.
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The authors find that in aggregate judges become more lenient in the presence of mistakenly rec-
ommended lesser sentences for violent offenses but but tend to discount recommendations that are
mistakenly too high.

3 Setting and data
Call workers at Allegheny County’s child welfare hotline are tasked with deciding whether a call
alleging potential child maltreatment or neglect should be screened in for investigation. In making
their decisions, call workers have access to the information communicated in the referral call,
along with multi-system administrative data on demographics, child welfare involvement, criminal
history, and other information related to the children and adults associated with the referral. The
administrative data consist of hundreds of data elements. Making systematic and effective use of
the administrative data in each case can therefore be challenging for workers. To help workers
make better use of this data, Allegheny County introduced a risk assessment tool that distills the
information contained therein into a single risk score. The risk score reflects the likelihood that
the children on the referral will experience adverse child welfare-related outcomes in the months
following the referral. The intended use of the tool is to help workers identify high-risk cases in
instances where the information communicated in the call may be insufficient, inconclusive, or
otherwise incomplete in reflecting the risk to the children. As we discuss in Section 3.2, the county
created specific guidelines to strongly encourage screen-in, and thus the consequent investigation,
for the highest scoring cases.

3.1 Risk assessment tool

A case associated with a call is termed by the county a referral, and each referral may have several
referral records associated with it–one for each child involved in the call. The assessment tool that
had been deployed was trained with all referral records collected by Allegheny County between
April 2010 and July 2014. The tool comprises two distinct predictive models: one to estimate the
probability of out-of-home placement and one to estimate the probability of a future referral for
each child. Out-of-home placement refers to the child’s being placed out of the home following
an investigation, and a future referral refers to a future call involving the same child. Both models
are based on features that include demographics, past welfare interaction, public welfare, adult and
juvenile criminal justice involvement, and behavioral health information available on all persons
associated with each referral. The predicted probabilities are then converted into an integer score
ranging from 1 to 20, corresponding to the ventiles. The score shown to workers is calculated as
the maximum score over both models and over all children involved in a referral. For example, if
the estimated risk of re-referral is 15 and the estimated risk of out-of-home placement is 17, the
resulting combined risk score will be 17. We denote this aggregated score as S ∈ {1, . . . ,20}. A
more detailed description of the model can be found on the County’s website (Allegheny County
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DHS n.d.).The resulting model was deployed in August 2016.

3.2 Deployment

By design, call workers are shown risk scores only for cases with sufficient information. During
the analyzed deployment period, 92.5% of referrals had an associated score shown. In addition to
displaying a risk score, the tool assigns a mandatory flag to certain referrals, which means that the
supervisor’s approval is required to screen out the referral. Flags are placed on cases where at least
one of the children associated with the referral has an out-of-home placement score of at least 18.
Figure 1 presents a graphical representation of the decision-making pipeline.

Figure 1: Decision pipeline for child welfare services in Allegheny County. Re-referral risk score
and out-of-home placement risk score are calculated for all children associated with a referral. A
single score–the maximum over these scores–is shown to the call worker, who also has access to
historical records and the information conveyed in the call. The call worker decides whether to
screen in the referral for investigation. If a call worker believes that a referral with an out-of-home
placement risk score of 18 or more should be screened out, the decision requires a supervisor’s
approval.

3.3 Scores misestimation

During deployment, a glitch in the system caused certain model inputs to be calculated incorrectly
in real time. There are two reasons for this mismatch between the assessed and the shown scores.
First, the primary miscalculation issue occurred when real-time database queries erroneously re-
turned counts and indicators of 0. Second, as cases evolved, the roles of different adults associated
with the case and information about them may have changed. For instance, the individual identi-
fied as a perpetrator may change between the initial run and the retrospective analysis. This type
of mismatches is less likely to have a substantial effect on the calculated score.

As a result of the glitch in the retrieval of model inputs, the score displayed (i.e., shown)
to the call workers during deployment did not always correspond to the score that should have
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Figure 2: Heatmap of the density of shown score S̃, conditional on assessed score S. A cell at
row r and column c shows the fraction of the times that a referral assessed at a score of S = c was
shown to have a score of S̃ = r.

been shown. Figure 2 shows the distribution of the scores. The concentration of cases around
the diagonal indicates that the shown scores were most often equal or very close to the assessed
score that should have been displayed. These circumstances of the system’s deployment allowed
us to study the behavior of call workers when the shown score was inaccurate. In particular, we
analyzed what happens when differences between the assessed score and the shown score result in
the application of a different “mandatory screen-in” policy. The terminology and notation we use
throughout the paper are detailed in Table 1.

3.4 Data

We used data from January 2015 to July 2016 to analyze the behavior of call workers before the
deployment of the tool, and we used data from August 2016 until December 2017 to study their
behavior after adoption. For the data from the post-deployment period, we limited our analysis
to the 93% of referrals for which the system showed an associated score. Moreover, existing
regulation dictates that certain calls must be investigated. Referrals that fall under this category
include calls that concern bodily injury and sexual abuse. Because call workers have no discretion
about whether to screen in these calls, we excluded from our analysis the referrals to which this
legislation applies. We also excluded referrals associated with open investigations because call
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Table 1: Terminology and notation used in the paper.

Term Notation Description

Assessed score S ∈
{1, . . . ,20}

Score assessed by the predictive model. Maximum over as-
sessed risk of out-of-home placement and assessed risk of re-
referral.

Shown score S̃ ∈
{1, . . . ,20}

Score shown to the call worker, which should correspond to
the assessed score. A glitch in the system resulted in non-
correspondence.

Assessed manda-
tory screen-in

M ∈ {0,1} M = 1 if assessed risk of out-of-home placement is greater
than or equal to 18. Supervisor’s approval required for screen-
ing out.

Shown manda-
tory screen-in

M̃ ∈ {0,1} Mandatory screen-in label shown to the call worker, which
should correspond to assessed mandatory screen-in. A glitch
in the system resulted in non-correspondence.

workers do not make any determination in these cases. Once we limited the data to cases that have
a score shown and over which call workers had some discretion, we were left with 12,680 and
10,946 referrals in the pre- and post-deployment periods, respectively.

4 Model Specification and Estimation
We investigated the effects of the tool’s deployment and of the misestimation of the scores on call
workers’ decisions using a regression model. In building the model, we identified three factors that
likely correlate with both the decisions and the assessed score S, based on our domain knowledge
and conversations with the county’s staff. These factors include the month of the year, the identity
of the call worker who handles the call, and the types of allegations. The first of these variables,
the month, reflects seasonal variations in the nature of the calls and likely reporters. For example,
during the school year, more calls from teachers–who are mandatory reporters–may be received.
The second, the identity of the call worker, captures any existing heterogeneity in leniency across
individuals. The third factor, the nature of the allegations, reflects the seriousness of the case,
which may influence the likelihood of screen-ins. For example, the data indicate that workers
more often screen in cases where the child lacks a caregiver than they do other cases. Note that
each case can have multiple allegations. These considerations led us to formulate a regression
model that accounts for the three different factors. For case i that occurred in month t and that was

10

Electronic copy available at: https://ssrn.com/abstract=4050125



handled by call worker c, we model the likelihood of screen-in as follows:

screen-initca ∼ β0 +β1Si +β2Mi +[β3 +β4Si +β5Mi]Di

+[β61S̃i>Si
+β71S̃i<Si

+β8M̃i(1−Mi)+β9(1− M̃i)M]Di +ψt +µc +θa (1)

where the β s indicate the coefficients. The dummy variables screen-in, D, M, and M̃ are indicators
of whether a given case was screened in, whether it occurred in the period after the tool’s deploy-
ment, whether the tool’s recommendation corresponded to a mandatory screen-in, and whether a
mandatory screen-in was required in practice, respectively. The model includes fixed effects for
months (ψt) and call workers (µc) to account for shocks over months of the year and for the time-
invariant heterogeneity across decision makers. In addition, it contains a series of dummy variables
corresponding to the types of allegations (θa).

According to our model specification, decisions depend, ceteris paribus, on the assessed score
S both in the pre- and post-deployment periods.3 The strength of this association between decision
and score is allowed to vary between the two periods. The dummy variables M and DM are
included to incorporate the potentially higher screen-in rates for cases where children are assessed
as being at highest risk of out-of-home placement. We handle the misestimation of the scores and
its effect on decisions through two sets of components that capture the discrepancy between shown
S̃ and assessed scores S, and the interplay between M and M̃. Regarding the former, we distinguish
between cases where the assessed score S is underestimated and cases where it is overestimated
using the indicator functions 1(S̃ < S) and 1(S̃ > S), respectively. We include each of these terms
separately because call workers may be more prone to commit errors of omission or errors of
commission, and the distinction between overestimated and underestimated scores allows us to
differentiate between these two types of errors. In terms of the latter discrepancy (i.e., between
shown and assessed mandatory screen-ins), we include in the model two dummy variables: one
that flags cases for which mandatory flags were incorrectly shown, M̃(1−M)D, and one that flags
cases that, according to assessed scores, should have had a mandatory flag but did not have it
shown, (1− M̃)MD. To facilitate the interpretation of these coefficients, the distribution of cases
across (S, S̃,M,M̃) shown in Table 4 in the Appendix is useful.

To assess racial and poverty disparities in screen-in rates, we use models that include all terms
in Equation (1), as well as interactions between each of these terms (excluding the fixed effects)

3A common econometrics approach used to assess the effect of risk assessment tools on decisions is the regression
discontinuity design. This approach leverages the fact that risk scores are continuous but are presented to users in
rounded buckets (Cowgill 2018). However, the regression discontinuity design is not suitable for our domain because
the discrete nature of the features yields scores that are not continuous. Thus, cases whose risk scores are right
below or above a given threshold may differ in key ways, and thus differences in the treatment they receive could be
explained by factors other than the score shown.
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and a dummy variable corresponding to a demographic attribute. We consider one model for
race and one for poverty. The dummy variable for race indicates whether any of the children
present in the referral are black, and the dummy variable for poverty indicates whether any of the
children involved in the call live in a neighborhood where 20% or more of the households in that
neighborhood are below the poverty level. We use one model to assess each type of disparity, and to
simplify the notation, we refer to the demographic attribute variable in the generic form of A, which
is equal to race or to poverty depending on the model. Our inclusion of the terms corresponding
to [1+ S+M][1+D]A in the model is motivated by the fact that the use of the tool may have
affected heterogeneity in screen-in rates across racial and socioeconomic groups. Thus, including
them allows us to study whether workers likelihood to override a recommendation varied across
demographic groups. We also include interactions with the terms corresponding to the treatment
of misestimated scores–that is, [1(S̃ < S)+1(S̃ > S)+(M̃(1−M)D))+((1− M̃)MD)][1+D]A–
to ensure that our model accounts for potential differences in adherence to misestimated scores.
However, we do not report these terms in the regression results because the sample size is too small
to allow for precise estimation and a meaningful interpretation of the coefficients.

We use the same model specification to analyze the quality of the decision-making process,
changing the dependent variable from screen-in to a relevant outcome that indicates the appro-
priateness of call workers’ decisions. Cases that are screened in are subject to further scrutiny,
including home visits by a social worker. As a result of this process, if the referral is connected to
a previously closed case, a decision may be made to reopen the investigation. The case also may
be “accepted for services,” which means that county services and risk-reduction interventions are
offered to the family. Both outcomes indicate that the screen-in decision was warranted. We use
model specification (1) to investigate whether and how the share of referrals that either were ac-
cepted for services or were connected to previous referrals varied after the deployment of the tool,
while controlling for the fixed effects. In this analysis, we limit the data to screen-in decisions so
that we consider only observed outcomes and make no assumptions based on the counterfactuals.

To estimate the coefficients of model specification in Equation (1), as well as the analogous
model using case outcomes as dependent variable, we use logistic regression and compute sand-
wich standard errors clustered at the call workers’ levels. For the statistical tests on these coefficient
estimates, we consider a significance level of 0.01. To test the statistical significance of individual
coefficients or linear combinations thereof, we use Wald tests.

4.1 Robustness tests

We conduct a series of robustness checks to assess whether our results are threatened by the posited
model specification and estimation strategy. First, we estimate the coefficients in Equation (1)
using ordinary least squares (OLS) regression and probit regression, i.e., assuming different link
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functions. Second, we fit one logistic regression model on data of referrals occurring in the three
months prior to and the three months following the tool’s deployment, and another on data only
from the post-deployment period. Third, we use the focal reweighting variable graphical model
diagnostics proposed by Buja et al. (2019) to investigate changes in the coefficient estimates when
the distribution of the regressors varies. For this analysis, we study the estimates when the model
is fitted on data relative to a single month of the year, on referrals handled by an individual call
worker, or on cases characterized by similar values of the assessed scores. Fourth, we use a model
specification different from that in Equation (1). Here, we assume that the dependent variable (e.g.,
decisions) depends on a smooth function of the assessed scores S and on the difference between the
shown and assessed scores, S̃−S. For the estimation, we use a generalized additive model (GAM)
with a logit link function (Hastie and Tibshirani 2017).

The set of results delivered by the robustness tests, using alternative estimation strategies and
different time periods, is virtually analogous to the results that we discuss in Section 5 of the paper.
Thus, these findings corroborate the conclusions that we draw in this paper. Additionally, the
reweighting diagnostics reveal that the regression model in our main analysis is, not surprisingly,
misspecified. Similarly, the GAM reveals that logistic regression may not be flexible enough to
accurately describe the phenomenon. Nonetheless, our interpretation of the results does change
in light of these findings. We discuss the findings and our interpretations in the next sections. In
addition, we describe the results of the robustness tests when they are relevant to our discussion
but explain most of their details in Section 8 of the Appendix.

5 Analysis
In our analysis, we answer three central questions: (1) Algorithm aversion: Did call workers’ de-
cisions change after the tool was deployed, or were the recommendations ignored? (2) Automation

bias: Did call workers treat misestimated scores differently, or did they indiscriminately follow
recommendations? and (3) Disparate treatment: Did call workers’ adherence to algorithmic rec-
ommendations vary across racial and socioeconomic groups? If so, did this exacerbate or mitigate
existing disparities?

5.1 Algorithm adoption: Change in call workers’ behavior

First, we investigated whether the association between assessed scores and call workers’ decisions
changed after the tool’s deployment.4 If call workers had ignored algorithmic recommendations,
the association between the screen-in rates and the assessed score S should have remained the
same, ceteris paribus. Meanwhile, if the tool’s deployment had affected the likelihood of a case
being screened in, we would expect the association between the screen-in rates and the assessed

4We focused this analysis on assessed score rather than on shown score because the glitch could not be reproduced.
Thus, we could not estimate what shown scores S̃ would have been prior to the tool’s deployment.
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Figure 3: Screen-in rates by assessed score S before and after deployment. Shaded regions and
error bars in the left and right figures, respectively, indicate 95% confidence intervals for the esti-
mates.

score S to become stronger after the tool’s deployment, ceteris paribus. In the left panel of Figure
3, note that screen-in rates in the post-deployment period appear to be slightly more aligned with
the score than screen-in rates in the pre-deployment period. Pearson’s correlation coefficients in
pre-deployment and post-deployment periods are consistently 0.90 and 0.98, respectively. We
found a substantial increase in the screen-in rates, post-deployment, for cases with large values of
the assessed score. The plot in the right panel reveals that, for the set of cases with an assessed
mandatory flag M = 1, screen-in rates increased from 65% in the pre-deployment period to 77%
after the deployment. In contrast, screen-in rates for cases without an assessed mandatory flag went
down from 61% to 49%. Although the overall screen-in rates remained relatively stable–63% and
57% in pre- and post-deployment periods, respectively–we saw a shift in the types of cases that
were screened in. The small change in the screen-in rates can be explained by resource constraints,
which limit the number of cases that the county can investigate.

To assess whether the presence of underlying temporal trends may explain these findings, we
conducted a placebo test by comparing screen-in rates across score values on data from two periods
preceding the tool’s deployment: 2015 and the pre-deployment period of 2016 (Figure 6 in the
Appendix). Screen-in rates in the two periods were similar across the entire range of scores,
indicating that the calibration change seen post deployment was driven by the tool rather than
being explained by general temporal trends. We conducted an additional test by comparing the
rates before and after deployment only for the call workers that reviewed at least 500 cases in
both periods (Figure 6 in the Appendix). On this subset of the data scores and screen-in rates also
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became more aligned in the post-deployment period compared to the pre-deployment period.
However, that these patterns might be explained by other factors is possible, and thus, we ap-

plied the empirical strategy described in Section 4. For this analysis, we were interested in the
estimates of the coefficients in model specification in Equation (1), which are shown in column
(1) of Table 2. In particular, we studied the coefficient values concerning the assessed scores S

and mandatory flag M, relative to the pre- and post-deployment periods. We observe that, ce-
teris paribus, cases with larger values of the assessed score S were significantly more likely to
be screened in, both pre- and post-deployment (coefficient of S=0.064, 95% confidence interval
[0.054, 0.075]). Meanwhile, the coefficient associated with deployment D is negative and statisti-
cally significant (-0.62, [-0.984, -0.257]). The two terms that capture the effect of the deployment
on the alignment between assessed scores and decisions are SD and MD. These terms estimate the
effect of the assessed scores and mandatory flags on screening decisions in the post-deployment
period. The coefficient estimate of SD is close to zero and not statistically significant (-0.002,
[-0.026, 0.023]). The coefficient estimate of MD, instead, is positive and statistically signifi-
cant, which suggests that screen-in rates for the subset of cases that were estimated as being at
the highest risk for out-of-home placement substantially increased from the pre-deployment pe-
riod to the post-deployment period, ceteris paribus (1.170, [0.985, 1.355]). Because the screen-in
rates remained approximately constant across the pre- and post-deployment periods, the increase
in screen-in rates for these cases was associated with the observed decrease in screen-ins for the
remaining cases (coefficient of D).

These results are consistent with all of our robustness checks. However, the re-weighting
diagnostics reveal that the estimate of the coefficient relative to S is positive and large for low
values of S, and close to zero for higher values of the assessed score. Thus, in the pre-deployment
period changes in the estimated level of risk were associated with larger changes in the likelihood
of screen-in for cases in the low-score range (recall that during this period call workers did not
see the score). Meanwhile, the coefficient estimate of SD is positive for cases in the high-score
range, which suggests that communicating the risk scores to call workers may have influenced
more their post-deployment decisions on this set of referrals, which is consistent with what is
observed in Figure 3. The estimates of the coefficients relative to M and MD were approximately
constant across the re-weighting diagnostics. We find analogous patterns in the model specification
estimated using the GAM.

We next analyzed whether the deployment of the tool affected the quality of the outcomes
of the decision-making process. We did so by studying whether the share of referrals that were
accepted for services or connected to existing cases varied after the tool’s deployment. Before the
tool’s deployment, 14% of the screened-in referrals were accepted for services; meanwhile, 11%
were connected to an existing case involving the same family, and the investigation was reopened.
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Figure 4: Analysis of screen-in rates across misestimated scores. In the left panel, screen-in rates
by assessed score S and shown score S̃. In the right panel, screen-in rates by assessed mandatory
flag M and presence of such flag M̃. The summary statistics are computed on data from the post-
deployment period only. Error bars indicate 95% confidence intervals.

In the post-deployment period, these rates increased to 17% and 16%, respectively. The regression
results in column (2) of Table 2 similarly suggest that, despite the the post-deployment period’s
substantial increase in screen-in rates for cases with an assessed mandatory flag, the likelihood that
they would be accepted for services or connected to other existing referrals was even higher (0.326,
[0.034, 0.618]), although not statistically significant. This finding, which is consistent across all
of our robustness tests, indicates that the additional screened-in cases did merit an investigation
at the same rate (or higher) as previously screened-in cases that had a similar estimated risk of
out-of-home-placement.

5.2 Corrective overrides: Decisions in the presence of misestimated scores

Having established that call workers did update their behavior after the deployment of the tool, we
investigated whether they indiscriminately adhered to algorithmic recommendations. We had some
evidence that they did not do so because we had observed that not all cases that were assigned a
mandatory flag were screened in. We performed a more nuanced analysis by studying decisions in
the presence of misestimated scores. For this analysis, we used the fact that, because of the glitch
that occurred during the post-deployment period (described in Section 3.3), the shown score did
not always correspond to the assessed score. As already noted, we distinguish between two types
of automation bias: errors of omission and errors of commission. For the former, we investigated
call workers’ behavior when the shown score underestimated the assessed score–that is, S̃ < S

or M̃ < M). For the latter, we analyzed cases where the shown score overestimated the assessed
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Table 2: Regression results for the assessment of the tool’s deployment on call workers’ decision-
making and case outcomes.

Dependent variable:

Call worker’s decision Case outcome

(1) (2)

S 0.064∗∗∗ 0.082∗∗∗

(0.005) (0.008)

D -0.620∗∗∗ -2.094∗∗∗

(0.185) (0.193)

SD -0.002 0.087∗∗∗

(0.013) (0.013)

M -0.216∗∗∗ 0.054
(0.049) (0.114)

MD 1.170∗∗∗ 0.326∗∗

(0.094) (0.149)

1(S̃ > S)D 0.174∗∗∗ 0.203∗

(0.052) (0.120)

1(S̃ < S)D 0.530∗∗∗ 1.015∗∗∗

(0.057) (0.084)

M̃(1−M)D 0.721∗ -1.445∗∗

(0.379) (0.564)

(1− M̃)MD -0.220∗∗∗ 0.125
(0.073) (0.107)

Month FE Yes Yes
Call worker FE Yes Yes
Allegation type FE Yes Yes

Observations 23,626 14,263

Notes: Months of referral, call workers’ identity, and allegation types fixed effects (FE) are included in
the model but excluded from the table. Standard errors are clustered at the call workers’ level. Intercept
coefficients are omitted from the table. The dependent variable in the regression in the left column indicates
whether the case was screened in (coding=1) or not (0). The dependent variable ‘case outcome’ indicates
whether the case was accepted for service or a closed case was reopened (coding=1), or the case was not
accepted for service (0). For the regression where case outcomes are used as the dependent variable, only
cases that have been screened in are considered. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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score–that is, S̃ > S or M̃ > M.
A crucial limitation to keep in mind for the interpretation of these results is that the glitch did

not affect cases completely at random; the misestimate depended, at least in part, on the charac-
teristics of the case.5 Thus, call workers may have treated correctly estimated and misestimated
cases differently because of changes in the underlying level of risk, despite similar values of the
assessed score S. This limitation allows for the possibility that call workers screen out a larger
share of the cases for which the assessed score is underestimated precisely because these cases
are effectively less risky than those for which no misestimation occurred. Analogously, they may
screen in a larger share of the cases for which the assessed score is overestimated precisely because
these cases are more risky. If and when such a pattern is observed, an analysis of call workers’
decisions alone cannot explain the cause of the differences in screen-in rates between misestimated
and correctly estimated scores. However, the model still allows us to study whether call workers
indiscriminately adhere to the shown score. In other words, based on this model alone, we can-
not claim the presence of automation bias just because the regression analysis suggests it, but the
model does lend itself to studying the absence of automation bias. The latter can be inferred if we
observe that call workers treat correctly estimated and misestimated cases differently, indicating
that they integrate other sources of information into their decisions.

To overcome the limitation resulting from the non-random nature of the glitch, we comple-
mented our analysis with the second regression model, the results of which are reported in column
(2) of Table 2; the table shows the effect of algorithmic deployment on an outcome of interest:
whether the referral is accepted for service or results in a reopened investigation. In cases where
the first regression analysis suggested possible automation bias, this second model allowed us to
study whether the level of risk was effectively different. Conversely, in cases where evidence
showed that call workers did not indiscriminately adhere to the score, the second model enabled us
to study whether overrides improved decision quality. The four interactions that capture potential
automation bias are 1(S̃ > S)D, 1(S̃ < S)D, M̃(1−M)D, and (1−M̃)MD. In the remainder of this
section we focus on these interactions and consider both models shown in Table 2.

5.2.1 Misestimation of the score

The left panel of Figure 4 shows the screen-in rates for overestimated, underestimated, and cor-
rectly estimated assessed scores S. In this exploratory data analysis, we observe that cases with

5To assess whether the misestimation depended on other features present in the data, we tried to predict the difference
between the assessed and shown scores using the data that were available to us. We trained two models: a Lasso re-
gression and a random forest; their hyperparameters were tuned, via cross-validation, on a superset of the features that
were available to the model. The two fitted models achieved moderate predictive accuracy, which was substantially
higher than random guessing. This evidence suggests that the misestimation of the score did not occur completely at
random. However, neither the county nor our research team has been able to reproduce the glitch. Thus, we cannot
retroactively compute the misestimated scores for referrals occurring before the deployment of the tool.
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overestimated and correctly estimated scores (S̃ > S and S̃ = S, respectively) are screened in at sim-
ilar rates. Interestingly, cases with underestimated scores (S̃ < S) are screened in at higher rates.
This apparently counterintuitive finding can be potentially explained by the non-random nature of
the glitch, as already discussed; that is, cases with underestimated scores may be more risky. Con-
sistent with this hypothesis, we find that this set of cases, when screened in, is accepted for service
more frequently than screened-in cases that have lower, correctly estimated scores (see Figure 5 in
the Appendix).

Next, we next turn to our regression analysis. The estimate of the coefficient associated with
1(S̃ < S)D in column (1) of Table 2, which is both positive and large, corroborates that cases with
underestimated scores were more likely to be screened in than cases with correctly estimated scores
S (0.53, [0.419, 0.642]). The results in column (2) of Table 2 show that this set of cases also was
significantly more likely to be accepted for service (1.015, [0.850, 1.181]), indicating that they
were indeed higher risk. This analysis suggests that call workers avoided errors of omission by
successfully integrating other sources of information into their decision-making. The estimated ef-
fect of the overestimation of the assessed score 1(S̃ > S)D on decisions is positive and statistically
significant, yet small (0.174, [0.071, 0.277]). This analysis suggests possible errors of commis-
sion, meaning that call workers would screen in these cases at higher rates than their risk level
warranted. If this were the case, we should observe in the second regression model that cases with
overestimated scores are associated with a lower likelihood of screen-in in the post-deployment
period. However, results from this regression reveal that screened-in cases with overestimated
scores were not less likely to be accepted for service than comparable cases with correctly esti-
mated scores (0.203, [-0.033, 0.439]); thus, the regression with respect to case outcomes indicates
that call workers’ decisions may have been warranted. Two results from the robustness tests are
noteworthy here. First, the reweighting diagnostics show that the estimate of the coefficient for
1(S̃ > S)D is positive for low values of the assessed score and that it is close to 0 for higher values
of the assessed score. Because the association between screen-in decisions and assessed scores is
strongest for cases involving low scores, this measure might suggest some degree of automation
bias. Second, the estimates using the GAM show that, as the difference S̃− S increases, the like-
lihood that the case would be screened in increases, and the likelihood that the screened-in cases
would be accepted for service remains approximately constant, consistent with our results from the
main model. To summarize, in this analysis of the effect of the misestimation of the assessed score
S on call workers’ decisions, we find little evidence of automation bias and significant indication
that call workers avoided errors of omission.
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5.2.2 Misestimation of the mandatory flag

In the presence of automation bias, a mandatory flag that resulted from a misestimated score should
have increased the likelihood of screen-in. Conversely, the likelihood of screen-in should have
decreased if a mandatory flag was mistakenly absent absent. The right panel of Figure 4 shows
the screen-in rates for cases with the assessed and shown mandatory flags and cases without them–
that is, across the values of (M̃,M). The screen-in rate is constant across cases involving the
assessed mandatory flag M = 1, regardless of whether the flag was actually shown. This result is
reassuring because it suggests that the cases at high risk of out-of-home placement were screened
in at high rates, despite the underestimation. Our exploratory analysis also shows that cases that
were mistakenly assigned a mandatory flag (M̃ = 1,M = 0) were screened in at higher rates than
those that were not. Note, however, that the confidence intervals around the former estimate are
wide because of the small sample size (41 cases).

The regression analysis in Table 2 reveals similar patterns. The coefficient relative to the lack
of mandatory flags (1− M̃)MD is negative and statistically significant (-0.22, [-0.364, -0.077]).
However, the majority of these cases (86%) also are such that 1(S̃ < S) = 1. Thus, this coefficient
must be interpreted jointly with the coefficient associated with 1(S̃ < S)D (0.530, [0.419, 0.642]).
For these cases, the positive and statistically significant sum of the coefficient estimates relative
to (1− M̃)MD and 1(S̃ < S)D (0.31, p-value<0.01) implies that the cases that mistakenly lacked
the mandatory flag were more likely to be screened in, compared to cases for which the scores
were correctly estimated. Applying an analogous argument to an interpretation of the results of
the regression model for case outcomes in column (2) of Table 2, we observe that the coefficient
estimate of (1− M̃)MD is close to zero and not statistically significant (0.125, [-0.084, 0.334]),
while the coefficient estimate of 1(S̃ < S)D is positive and statistically significant (1.015, [0.850,
1.181]). Thus, these results indicate that call workers avoided errors of omission, screening in
cases with underestimated scores at even higher rates than correctly estimated cases, and evidence
suggests that these screen-ins were warranted, based on the likelihood of their being accepted for
service.

In analyzing errors of commission, we observe that in column (1) of Table 2, the estimate of
the coefficient corresponding to the overestimated flags M̃(1−M)D is positive and large, but not
statistically significant (0.721, [-0.021, 1.464]), as a result of the small sample size. The change
in the likelihood of screen-in in the presence of an erroneously assigned flag (given by the sum of
the coefficients estimates of M̃(1−M)D and 1(S̃ > S)D), compared to the absence of the flag, is
positive but not statistically significant (0.895, p-value=0.02). Similarly, the coefficient associated
with the term M̃(1−M)D in column (2) is negative but not statistically significant (-1.445, [-2.550,
-0.334]). The negative sum of this coefficient estimate and the coefficient estimate of 1(S̃ > S)D,
indicates that cases that were mistakenly assigned the mandatory flag were less likely to result in
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investigations or to be accepted for service than similar cases. Although the small sample size does
not allow us to conclusively identify the presence of automation bias, note that this result does hint
at the possibility that the presence of a flag requiring a supervisor’s approval to screen-out a call
might have induced errors of commission.

Together, the analysis of decisions in the presence of misestimated scores shows compelling
evidence indicating that call workers avoided errors of omission, while their behavior showed a
tendency toward automation bias when a mandatory flag was shown.

5.3 Disparate treatment

Bias in algorithmic-informed decisions may stem from biased predictions or from disparate al-
gorithmic uptake. A comprehensive evaluation of the fairness properties of the tool in isolation
has been conducted by Chouldechova et al. (2018). In this section, we investigate whether the
adherence to the tool’s assessment by the call workers varied on the basis of a child’s race and of a
family’s socioeconomic status.

5.3.1 Racial disparities

We first focus on the analysis of racial disparities. When considering disparities in algorithmic-
informed decisions, two points of reference are relevant: the human decisions prior to the tool’s
deployment and the algorithmic predictions in isolation (i.e. what the decisions would have been
if the tool made autonomous decisions). Among all cases involving Black children (A = 1), 68%
and 62% were screened in in the periods before and after the deployment of the tool, respectively.
Among the remaining cases (A = 0), the screen-in rates were 59% and 53%. Thus, we observe
that screen-in rates for Black children were higher both before and after deployment, and that
the differences between groups remained largely the same. If the tool were making autonomous
decisions and screening in the highest scoring cases while maintaining the same screen-in rate, 66%
of the cases involving Black children would be screened in (based on the shown score S̃), while
51% of other cases would be. Thus, human decisions in isolation and algorithmic-informed human
decisions led to smaller disparities than those associated with autonomous algorithmic decisions.

To understand what is driving the reduced disparities when humans are involved in the deci-
sions, and whether the likelihood of call workers’ adhering to algorithmic recommendations varies
based on a child’s race, we turn to the regression analysis presented in column (1) of Table 3.
The positive and statistically significant coefficient estimate for the race intercept A (0.426, [0.220,
0.632]), together with the near-zero estimate for AS ([-0.019 , 0.018]), indicates that Black children
were more likely to be screened in regardless of the level of risk. This disparity was unaffected
by the tool’s deployment, as indicated by the coefficient associated with AD (-0.035, [-0.455,
0.385]) and by ASD’s being close to zero and not statistically significant (-0.007, [ -0.036 0.022]).
These coefficients estimates suggest that call workers interpreted changes in the assessed scores
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Table 3: Regression results for the assessment of racial and socioeconomic disparities in screen-in
rates.

Dependent variable: Screen-in decision

Demographic attribute A
A=1 if at least one child

in referral is black
A=1 if % families living below

poverty threshold ≥ 20%

(1) (2)

A 0.426∗∗∗ -0.320∗

(0.105) (0.168)

S 0.055∗∗∗ 0.054∗∗∗

(0.005) (0.005)

AS -0.0004 0.031∗∗

(0.010) (0.013)

D -0.675∗∗∗ -0.607∗∗∗

(0.239) (0.185)

AD -0.035 -0.020
(0.214) (0.220)

SD 0.005 0.002
(0.015) (0.013)

ASD -0.007 -0.012
(0.015) (0.016)

M -0.169∗∗ -0.203∗∗∗

(0.083) (0.057)

AM -0.097 -0.118
(0.122) (0.113)

MD 1.397∗∗∗ 1.205∗∗∗

(0.169) (0.128)

AMD -0.311 -0.003
(0.219) (0.221)

Month FE Yes Yes
Call worker FE Yes Yes
Allegation type FE Yes Yes

Observations 23,626 23,626

Notes: Month of referral’s, call workers’, and allegation types’ fixed effects (FE) included. Stan-
dard errors are clustered at the call workers’ level. Intercept coefficients are omitted from the table.
Terms relative to the shown scores also are included in the model, but the corresponding coefficient
estimates are omitted from the table. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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in a similar manner, regardless of the racial identity of the child. This result, in turn, indicates
that the racial differences in screen-in rates, whether comparing the algorithm in isolation or the
algorithm-informed decisions, are driven not by differential adherence to recommendations but by
human decisions relying on factors other than the risk score alone.

5.3.2 Socioeconomic disparities

The second part of our analysis targets socioeconomic disparities. Here, A indicates whether the
child resides in a neighborhood where more than 20% of the families live under the poverty thresh-
old (A = 1). For cases with A = 1, we observe a reduction in the screen-in rates–from 66% to
58%–from the pre-deployment to the post-deployment period. The remaining cases (A = 0) are
characterized by lower screen-in rates in the pre-deployment period (61%), but they are screened
in at similar levels (57%) after deployment. Thus, after the deployment, these two types of cases
were screened in at similar rates, despite having different screen-in rates before deployment. This
similarity in the post-deployment period is surprising: If the tool were used to make autonomous
decisions, 65% of the cases with A = 1 and 54% of those with A = 0 would have been screened
in. Thus, we again observe that algorithmic-informed human decisions exhibit less disparities than
the algorithm in isolation.

In the regression results reported in column (2) of Table 3, we observe that none of the interac-
tions with the demographic attribute are statistically significant at the 0.01 level. Nonetheless, the
estimates of the coefficients associated with A, which is negative (-0.32, [-0.649, 0.009]), and with
AS, which is positive (0.031, [0.006, 0.056]), would indicate that, regardless of the time period,
the relationship between the assessed score and the screen-in decisions differed across socioeco-
nomic groups: Increases in the assessed score were associated with larger incremental increases in
screen-in rates if the child lived in a neighborhood with more than 20% of families living below
the poverty threshold. Thus, ceteris paribus, these children were more likely to be screened in than
their counterparts in other neighborhoods when the level of risk was higher than average (S>10).
Because the estimates of the coefficients relative to the deployment of the tool were close to zero
and not statistically significant, they indicate that the deployment did not have a substantial effect
on decisions for either of the two groups–neither because of the access to the score nor because
of the presence of the mandatory flag. This result, again, suggests that algorithmic-informed deci-
sions exhibit smaller disparities than the algorithm in isolation because the call workers integrate
other sources of information into their decisions.

6 Discussion
Our research has analyzed algorithmic adoption, overrides, and disparities in the context of a risk
assessment tool that assists call workers tasked with deciding which calls concerning potential
child neglect or abuse should be screened in for further investigation. We focused the first part of
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our analysis on investigating whether humans changed their behavior when the tool was deployed
and whether they were more likely to deviate from recommendations that resulted from misesti-
mated algorithmic scores. We found that call workers did change their behavior when the tool was
deployed, showing partial adherence to the tool’s recommendations. We also found that, despite
evidence of a slight tendency toward automation bias in the presence of a mandatory flag, call
workers did make corrective overrides. In particular, strong evidence suggested that call workers
avoided errors of omission, dismissing recommendations that would have led them to erroneously
screen out calls when the technical glitch resulted in an underestimation of the score.

When considering how humans make use of recommendations provided by an algorithmic sys-
tem, the phenomena of algorithm aversion and automation bias can be seen as two ends of a broad
spectrum, and both of them are undesirable. On the one end, algorithm aversion leads humans to
completely disregard the machine, even when the recommendation may be providing useful in-
formation. On the other end, automation bias results in humans blindly following the machine’s
recommendations, failing to make use of other sources of information and their own judgment to
disregard the recommendation when evidence suggests that the machine may be mistaken. The
call workers in our study were found to be at neither extremum: They changed their decision-
making following the deployment of the tool, but they did not indiscriminately adhere to the tool’s
recommendations.

Perhaps one surprising result is that cases with assessed mandatory flags M were more likely
to be screened in, even though the glitch very often resulted in the flags not being shown (as seen
in Table 4). Here, recall that most of these cases still had relatively high shown scores; only 10%
of cases were misestimated by more than 5 points. Thus, the deployment of the tool resulted in
the availability of new information indicating that these cases possibly involved high risk to the
child. Furthermore, the deployment of the tool might have shifted the decision-making criteria, as
suggested by recent research (Green and Chen 2021), and this shift might have led to increased
attention to historical indicators of risk in the administrative data.

The risk of reproducing and exacerbating societal disparities is a central concern around the
deployment of algorithmic tools to assist with experts’ decisions (Barocas and Selbst 2016). As
discussed in Section 2, differential adherence to recommendations has been shown to be a potential
source of disparities. In this work, we have studied whether call workers’ adherence to recommen-
dations varied on the basis of the race and socioeconomic status of the children involved in the call.
Our findings differ from the results of research that studies the adoption of risk assessment tools
in other domains, such as recidivism prediction for bail decisions. We find that racial or socioeco-
nomic disparities in screen-in rates were not affected by the deployment of the tool. Our findings
also show that, when comparing humans’ algorithmic-informed decisions with algorithmic predic-
tions in isolation, humans in the loop mitigated disparities. This effect was not driven by disparate
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adherence to recommendations. Instead, it was driven by the way call workers integrated factors
other than the score into their decisions. This finding highlights that humans’ discretionary power
and ability to integrate information that is unobserved by the algorithm can have important fairness
implications.

The nature of our study has the advantage of inherent field validity, by virtue of its being a study
of a system deployed in the real world. Although crowdsourcing studies and randomized field ex-
periments allow for controlled variations of different factors, even the best-conceived randomized
trials can fail to have field validity in social policy settings (Nagin and Sampson 2019). Moreover,
given the high-stakes nature of the task, behaviors displayed by call workers when given hypothet-
ical calls in a lab setting may differ from their behavior when faced with a real allegation of child
abuse. Thus, studying human decisions in the presence of a technical glitch offered a rare oppor-
tunity to study a phenomenon that would not be ethically feasible to investigate as a randomized
field trial. Nonetheless, the retrospective nature of our study represents a clear limitation.

What contributed to the desirable human behaviors we observed? The retrospective nature
of our analysis means that we were unable to identify how different elements of the decision-
making framework impacted decision outcomes. However, through our analysis and discussions
with jurisdiction staff, we were able to identify certain elements of the deployment setup that could
have influenced the observed behavior, which we elaborate on next. An important direction for
future research is to further investigate these and other factors in more controlled settings to gain
a better understanding of their influence on commission and omission errors in algorithm-assisted
decision-making.

We discuss three elements of our particular setup. First, a key property of this deployment
setup is that, throughout the process, call workers continued to have access to both the referral
calls and the administrative data system. This access provided a different and broader view of the
case than what was being pulled into the risk score calculation. In particular, even when inputs
related to past child welfare history were being miscalculated in real time, workers still had access
to the correct information in the data system. Having access to the raw features and the time to
inspect them may have played an important role. Importantly, many call workers had also been
previously trained to make decisions without the aid of a risk assessment tool. Therefore, they had
experience in parsing and interpreting the raw data themselves. A question that arises is whether
this previous experience played an important role, and whether similar decision-making could be
expected from call workers who started working after the tool’s deployment. The answer to this
question could inform decisions about the need to train experts on how to use other data sources
appropriately, to avoid an over-reliance on algorithmic recommendations.

Second, the risk tool provides workers only with a score and does not "explain" its predictions,
nor does it display values of any of the features involved in the score calculation. If this additional
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information had been provided, the glitch might have been detected by workers. However, this
distillation of the data also might have been trusted by workers, who in turn would have been
dissuaded from examining the original data. In the latter case, the explanations might have induced
over-reliance.

Research has shown that in some settings algorithms deployed in isolation may outperform
human-in-the-loop systems, leading some to call for complete automation. Instead, the results
presented in this paper highlight one of the beneficial roles that trained and experienced humans-
in-the-loop can play, guarding against harmful effects that can result from erroneous algorithmic
recommendations. Providing humans with autonomy to override the machine mitigated the effects
of miscalculated scores in the child maltreatment call screening context, and also mitigated racial
and socioeconomic disparities that would have resulted from algorithmic autonomous decisions.
Given that technical glitches, such as the one studied in this paper, always represent a potential risk,
and that any statistical model will make inaccurate predictions, design should focus on augmenting
the human’s ability to identify and correct those mistakes. Future research in controlled settings
that evaluates the effect of individual elements of the decision-making pipeline described in this
paper could identify specific design practices that effectively strengthen the human’s role.
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7 Additional exploratory data analysis

Table 4: Distribution of cases by assessed and shown scores and flags (S, S̃,M,M̃) after deploy-
ment.

M = 0,M̃ = 0 M = 0,M̃ = 1 M = 1,M̃ = 0 M = 1,M̃ = 1
S < S̃ 23% (2506) 0% (33) 0% (53) 1% (60)
S = S̃ 16% (1730) 0% (7) 2% (223) 5% (498)
S > S̃ 35% (3820) 0% (1) 15% (1682) 3% (333)
Notes: Raw numbers are reported in parentheses.

Figure 5: Analysis of rates of cases accepted for services or connected to a previously closed
case across misestimated scores. In the left panel, accepted/connected rates by assessed score S
and its relationship to the shown score S̃. In the right panel, accepted/connected rates by assessed
mandatory flag M and presence of such flag M̃. The summary statistics are computed on data from
the post-deployment period only. Error bars indicate 95% confidence intervals for the mean.
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Figure 6: Screen-in rates across values of the assessed score S. The lines indicate screen-in rates.
The bands indicate 95% confidence intervals for the mean. The left panel shows screen-in rates for
two periods preceding the tool’s deployment: 2015 and the pre-deployment period of 2016. The
right panel shows screen-in rates computed solely on data of call workers that handled at least 500
cases in both pre- and post-deployment period.

8 Robustness tests
In this section, we present the results of several tests we conduct to assess the robustness of the
findings presented in the main body of the paper. Those findings are based on the model speci-
fication in Equation (1), estimated through logistic regression. The tests that we discuss here use
alternative estimation strategies and modeling specifications.

8.1 Alternative link function

We first compare the coefficients estimated through the logistic regression with those obtained us-
ing probit regression and linear regression via ordinary least squares (OLS, a.k.a. linear probability
model) to estimate model specification (1). The coefficients estimates produced by the three mod-
els are displayed in Table 5 and 6 for decisions and outcomes, respectively. We observe that the
signs and statistical significance of the estimates of the regression coefficients produced via OLS,
the probit regression, and the logistic regression match for all terms. Thus, the probit regression
and OLS deliver a similar set of results to those of our main regression model, which we have dis-
cussed in Section 5. The coefficients estimates for the regressions targeting racial disparities and
socioeconomic in screen-in decisions are reported in Tables 7 and 8 respectively. The direction of
the estimated effects is similar across all models.

8.2 Estimation on data from narrower time windows

In this section, we assess whether the estimates obtained by fitting the logistic regression to esti-
mate the coefficients in model (1) remain the same when the same model and estimation strategy
are employed on data of referrals either from the post-deployment period alone or occurring in a
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Table 5: Comparison of regression results for the assessment of the impact of the tool’s recom-
mendations on call workers’ screen-in decisions via alternative estimation strategies.

Dependent variable: call worker’s decision

Estimation Strategy:

logistic probit OLS

(1) (2) (3)

S 0.061∗∗∗ 0.037∗∗∗ 0.013∗∗∗

(0.005) (0.003) (0.001)

D -0.725∗∗∗ -0.439∗∗∗ -0.107∗∗∗

(0.185) (0.111) (0.037)

SD 0.003 0.002 -0.001
(0.012) (0.007) (0.002)

M -0.210∗∗∗ -0.125∗∗∗ -0.047∗∗∗

(0.049) (0.030) (0.009)

MD 1.160∗∗∗ 0.682∗∗∗ 0.198∗∗∗

(0.099) (0.058) (0.017)

1(S̃ > S)D 0.185∗∗∗ 0.111∗∗∗ 0.024∗∗

(0.052) (0.032) (0.011)

1(S̃ < S)D 0.536∗∗∗ 0.325∗∗∗ 0.093∗∗∗

(0.056) (0.033) (0.012)

M̃(1−M)D 0.719∗ 0.435∗∗ 0.133∗∗

(0.378) (0.219) (0.062)

(1− M̃)MD -0.231∗∗∗ -0.141∗∗∗ -0.045∗∗∗

(0.068) (0.039) (0.010)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 23,795 23,795 23,795
R2 0.233

Notes: Month of referral, call workers’, and allegation types fixed effects (FE)
included. Standard errors are clustered at the call workers’ level. Intercepts coeffi-
cients are omitted from the table.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Comparison of regression results for the assessment of the impact of the tool’s recom-
mendations on outcomes of screened-in cases via alternative estimation strategies.

Dependent variable: Case outcome

Estimation Strategy:

logistic probit OLS

(1) (2) (3)

S 0.084∗∗∗ 0.048∗∗∗ 0.012∗∗∗

(0.008) (0.005) (0.001)

D -2.041∗∗∗ -1.148∗∗∗ -0.242∗∗∗

(0.195) (0.107) (0.023)

SD 0.084∗∗∗ 0.047∗∗∗ 0.008∗∗∗

(0.013) (0.007) (0.002)

M 0.052 0.037 0.029
(0.113) (0.068) (0.022)

MD 0.334∗∗ 0.211∗∗ 0.093∗∗∗

(0.150) (0.091) (0.029)

1(S̃ > S)D 0.204∗ 0.131∗ 0.048∗∗∗

(0.122) (0.070) (0.017)

1(S̃ < S)D 1.015∗∗∗ 0.597∗∗∗ 0.173∗∗∗

(0.085) (0.051) (0.016)

M̃(1−M)D -1.449∗∗ -0.819∗∗∗ -0.191∗∗∗

(0.563) (0.308) (0.047)

(1− M̃)MD 0.128 0.089 0.050∗∗

(0.106) (0.064) (0.023)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 14,399 14,399 14,399
R2 0.152

Notes: Month of referral, call workers’, and allegation types fixed effects (FE)
included. Standard errors are clustered at the call workers’ level. Intercepts coeffi-
cients are omitted from the table. The case outcome is coded as “1” if the case is
accepted for services or connected to a closed case and an investigation is opened,
as “0” if the case is not accepted for services.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Comparison of regression results for the assessment of racial disparities in call workers’
screen-in decisions via alternative estimation strategies.

Dependent variable: call worker’s decision

Estimation Strategy:

logistic probit OLS

(1) (2) (3)

A 0.426∗∗∗ 0.262∗∗∗ 0.098∗∗∗

(0.105) (0.065) (0.021)

S 0.055∗∗∗ 0.033∗∗∗ 0.012∗∗∗

(0.005) (0.003) (0.001)

AS -0.0004 -0.001 -0.002
(0.010) (0.006) (0.002)

D -0.675∗∗∗ -0.399∗∗∗ -0.085∗

(0.239) (0.144) (0.045)

AD -0.035 -0.027 -0.033
(0.214) (0.131) (0.038)

SD 0.005 0.002 -0.001
(0.015) (0.009) (0.003)

ASD -0.007 -0.004 0.0002
(0.015) (0.009) (0.003)

M -0.169∗∗ -0.101∗∗ -0.043∗∗∗

(0.083) (0.051) (0.016)

AM -0.097 -0.056 -0.007
(0.122) (0.073) (0.023)

MD 1.397∗∗∗ 0.820∗∗∗ 0.230∗∗∗

(0.169) (0.097) (0.027)

AMD -0.311 -0.180 -0.045
(0.219) (0.125) (0.034)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 23,626 23,626 23,626
R2 0.238

Notes: Month of referral, call workers’, and allegation types fixed effects (FE)
included. Standard errors are clustered at the call workers’ level. Intercepts coeffi-
cients are omitted from the table.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Comparison of regression results for the assessment of socioeconomic disparities in call
workers’ screen-in decisions via alternative estimation strategies

Dependent variable: call worker’s decision

Estimation Strategy:

logistic probit OLS

(1) (2) (3)

A -0.320∗ -0.189∗ -0.053
(0.168) (0.102) (0.033)

S 0.033∗∗∗ 0.012∗∗∗

(0.005) (0.003) (0.001)

AS 0.031∗∗ 0.018∗∗ 0.005∗∗

(0.013) (0.008) (0.002)

D -0.607∗∗∗ -0.368∗∗∗ -0.097∗∗∗

(0.185) (0.111) (0.037)

AD -0.020 0.012 0.042
(0.220) (0.139) (0.041)

SD 0.002 0.001 -0.001
(0.013) (0.008) (0.003)

ASD -0.012 -0.008 -0.004
(0.016) (0.010) (0.003)

M -0.203∗∗∗ -0.122∗∗∗ -0.048∗∗∗

(0.057) (0.036) (0.011)

AM -0.118 -0.069 -0.015
(0.113) (0.067) (0.021)

MD 1.205∗∗∗ 0.712∗∗∗ 0.209∗∗∗

(0.128) (0.074) (0.019)

AMD -0.003 -0.0005 -0.003
(0.221) (0.129) (0.034)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 23,626 23,626 23,626

Notes: Month of referral, call workers’, and allegation types fixed effects (FE)
included. Standard errors are clustered at the call workers’ level. Intercepts coeffi-
cients are omitted from the table.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0136
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narrower time window around the tool’s deployment. Unfortunately, due to initial limitations in the
implementation, the risk scores of newborns in the first four months after deployment were shown
as 0. This was fixed at the end of November 2016. Since our analysis only considers cases for
which a score was estimated, the characteristics of our sample right before and after deployment
will differ. Consequently, the usual regression discontinuity design cannot be applied to data from
consecutive months. We circumvent the issue by considering referrals that occurred in the three
months prior to deployment and the three months following the resolution of the issue, i.e., the
pre-deployment months that we consider are May, June, and July 2016 and the post-deployment
months are December 2016, January and February 2017.

This analysis is important for several reasons. First, referrals occurring in the period close to
the deployment likely share similar characteristics. Thus, by considering a narrow time window,
it seems possible that our coefficients estimates would be less affected by variations in the cases
characteristics that are associated to both the score and to call workers’ decisions, but that are
not captured by our model. Second, while there were no major changes to the counties’ policies
during the post-deployment time that we consider, it is possible that minor changes regarding how
to handle the various types of allegations may have taken place. Finally, it is also possible that
there were drifts in call workers’ behavior over time. Through the regression results presented in
this section, we wish to test whether any of these factors, if present, affected our interpretation of
the main regression results.

We run two separate regressions with decisions and outcomes as dependent variables, respec-
tively. Tables 9 and 10 show the results of these regression analyses. The two additional regression
models where call workers’ decisions represent the dependent variable deliver a set of coefficients
estimates whose signs are identical to those in our main model. The size of the estimated effects are
also similar. For the models where the outcomes of screen-in decisions are the dependent variable,
we observe only one marginal difference between the alternative regressions and our main model:
While the estimate of the coefficient of 1(S̃ > S)D is positive and statistically significant in the
main regression model, its estimate is close to 0 for the regression fitted on data around the period
of deployment. This finding does not affect our conclusions on the absence of automation bias in
the call workers’ interactions with the score. All other coefficients estimates are similar across the
three models. The regression results for the assessment of racial and socioeconomic disparities in
screen-in decisions, which are reported in Tables 11 and 12 respectively, are consistent with our
discussion in the main body of the paper as well.
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Table 9: Comparison of regression results for logistic regression estimating the impact of the score
on screen-in decisions on data relative to different time periods

Dependent variable: call worker’s decision

Time period considered:

Entire period
May, Jun, Jul 2016

and Dic 2016, Jan, Feb 2017 Post deployment

(1) (2) (3)

S 0.061∗∗∗ 0.079∗∗∗ 0.067∗∗∗

(0.005) (0.009) (0.011)

D -0.725∗∗∗ -0.586
(0.185) (0.394)

SD 0.003 -0.014
(0.012) (0.029)

M -0.210∗∗∗ -0.390∗∗∗ 0.971∗∗∗

(0.049) (0.144) (0.085)

MD 1.160∗∗∗ 1.528∗∗∗

(0.099) (0.408)

1(S̃ > S)D 0.185∗∗∗ 0.279 0.182∗∗∗

(0.052) (0.171) (0.051)

1(S̃ < S)D 0.536∗∗∗ 0.668∗∗∗ 0.554∗∗∗

(0.056) (0.202) (0.054)

M̃(1−M)D 0.719∗ 0.315 0.715∗

(0.378) (1.065) (0.380)

(1− M̃)MD -0.231∗∗∗ -0.506 -0.263∗∗∗

(0.068) (0.351) (0.068)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 23,795 3,850 10,946

Notes: Month of referral, call workers’, and allegation types fixed effects (FE) included. Standard errors
are clustered at the call workers’ level. Intercepts coefficients are omitted from the table. Note that the
regression coefficients reported in the middle column are based on a logistic regression model estimated
on data from May, June, July 2016 (pre-deployment) and December 2016, January and February 2017
(post-deployment period).

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Comparison of regression results for the assessment of the impact of the tool’s recom-
mendations on outcomes of screen-in decisions on data relative to different time periods

Dependent variable: case outcome

Time period considered:

Entire period
May, Jun, Jul 2016

and Dic 2016, Jan, Feb 2017 Post deployment

(1) (2) (3)

S 0.084∗∗∗ 0.075∗∗∗ 0.171∗∗∗

(0.005) (0.014) (0.013)

D -2.041∗∗∗ -2.523∗∗∗

(0.185) (0.445)

SD 0.084∗∗∗ 0.119∗∗∗

(0.012) (0.023)

M 0.052 -0.189 0.411∗∗∗

(0.049) (0.260) (0.114)

MD 0.334∗∗∗ 0.501
(0.099) (0.352)

1(S̃ > S)D 0.204∗∗∗ -0.016 0.199
(0.052) (0.296) (0.122)

1(S̃ < S)D 1.015∗∗∗ 0.979∗∗∗ 1.065∗∗∗

(0.056) (0.153) (0.086)

M̃(1−M)D -1.449∗∗∗ -1.700 -1.416∗∗

(0.378) (1.586) (0.565)

(1− M̃)MD 0.128∗ 0.140 0.126
(0.068) (0.241) (0.109)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 23,795 2,281 6,255

Notes: Month of referral, call workers’, and allegation types fixed effects (FE) included. Standard errors
are clustered at the call workers’ level. Intercepts coefficients are omitted from the table. Note that the
regression coefficients reported in the middle column are based on a logistic regression model estimated on
data from May, June, July 2016 (pre-deployment) and December 2016, January and February 2017 (post-
deployment period). The case outcome is coded as “1” if the case is accepted for services or connected to
a closed case and an investigation is opened, as “0” if the case is not accepted for services.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Comparison of regression results for the assessment of racial disparities in screen-in
decisions on data relative to different time periods

Dependent variable: call worker’s decision

Time period considered:

Entire period
May, Jun, Jul 2016

and Dic 2016, Jan, Feb 2017 Post deployment

(1) (2) (3)

A 0.426∗∗∗ 0.177 0.433∗

(0.105) (0.340) (0.234)

S 0.055∗∗∗ 0.065∗∗∗ 0.062∗∗∗

(0.005) (0.012) (0.014)

AS -0.0004 0.014 -0.010
(0.010) (0.026) (0.014)

D -0.675∗∗∗ -0.338
(0.239) (0.612)

AD -0.035 -0.630
(0.214) (0.870)

SD 0.005 -0.044
(0.015) (0.043)

ASD -0.007 0.060
(0.015) (0.063)

M -0.169∗∗ -0.436∗∗ 1.208∗∗∗

(0.083) (0.189) (0.142)

AM -0.097 0.092 -0.348∗

(0.122) (0.245) (0.199)

MD 1.397∗∗∗ 1.621∗∗∗

(0.169) (0.489)

AMD -0.311 -0.134
(0.219) (0.624)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 23,626 3,850 10,946

Notes: Month of referral, call workers’, and allegation types fixed effects (FE) included. Standard errors
are clustered at the call workers’ level. Intercepts coefficients are omitted from the table. Note that the
regression coefficients reported in the middle column are based on a logistic regression model estimated
on data from May, June, July 2016 (pre-deployment) and December 2016, January and February 2017
(post-deployment period).

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: Comparison of regression results for the assessment of socioeconomic disparities in
screen-in decisions on data relative to different time periods

Dependent variable: call worker’s decision

Time period considered:

Entire period
May, Jun, Jul 2016

and Dic 2016, Jan, Feb 2017 Post deployment

(1) (2) (3)

A -0.320∗ -0.931∗∗ -0.288
(0.168) (0.392) (0.237)

S 0.054∗∗∗ 0.057∗∗∗ 0.059∗∗∗

(0.005) (0.014) (0.014)

AS 0.031∗∗ 0.077∗∗ 0.017
(0.013) (0.030) (0.016)

D -0.607∗∗∗ -0.812∗

(0.185) (0.444)

AD -0.020 0.819
(0.220) (0.831)

SD 0.002 -0.005
(0.013) (0.033)

ASD -0.012 -0.046
(0.016) (0.057)

M -0.203∗∗∗ -0.417∗∗ 1.006∗∗∗

(0.057) (0.212) (0.110)

AM -0.118 -0.160 -0.088
(0.113) (0.350) (0.150)

MD 1.205∗∗∗ 1.769∗∗∗

(0.128) (0.548)

AMD -0.003 -0.282
(0.221) (0.685)

Month FE Yes Yes Yes
Call worker FE Yes Yes Yes
Allegation type FE Yes Yes Yes

Observations 23,626 3,850 10,946

Notes: Month of referral, call workers’, and allegation types fixed effects (FE) included. Standard errors
are clustered at the call workers’ level. Intercepts coefficients are omitted from the table. Note that the
regression coefficients reported in the middle column are based on a logistic regression model estimated
on data from May, June, July 2016 (pre-deployment) and December 2016, January and February 2017
(post-deployment period).

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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8.3 Focal reweighting variable model diagnostics

In this section, we present the model diagnostics proposed by Buja et al. (2019) to detect and
analyze the consequences of modeling misspecification. The diagnostics leverage the fact that, if
the model is well specified, then its coefficients values do not change under arbitrary reweighting
of the regressors distribution (see proposition 4.1 in Buja et al. (2019)). The type of diagnostic
that we employ in this work is named by the authors “focal reweighting variable”. Through this
graphical device, we aim to understand how the estimates of the coefficients of interest may vary
when we change the distribution of the regressors along a chosen variable, the so-called “reweight-
ing variable”. In particular, we wish to assess whether, for certain configurations of the regressors
distribution, our conclusions based on the regression analysis would change, i.e., whether the di-
rection of the estimated effect would change. Note that our analysis of Section 8.2, where we
fit a regression only on data from the post-deployment period, represents one specific example of
these diagnostics. In terms of reweighting variables, we consider the assessed score S, the identity
of the call worker, and the month in which the referral occurred. To obtain the estimates of the
coefficients of model (1) under the reweighting, we perform the following steps. First, we define
a grid of “reweighting centers”. For the assessed score S, we let the individual scores (1–20) be
the reweighting centers and assign to the observations weights that are proportional to a Gaussian
kernel with mean equal to the value of the reweighting center and standard deviation equal to 2.
For the two categorical regressors, we consider all the values for which the dataset contains at least
100 observations. Then, for each reweighting center we obtain 100 sets of coefficients estimates
via empirical bootstrap. In case of the assessed score, we resample from the data with probabil-
ities given by the sampling weights described above and normalized to 1. The focal reweighting
variable model diagnostics for month of referral, call worker’s identity, and assessed score S are
displayed in Figures 7, 8, and 9 respectively. We focus solely on the analysis of call workers’
decisions as dependent variable.

We first focus on the coefficients estimates obtained with the month of the year as the reweight-
ing variable. We estimate that the positive association of screen-in rates with the assessed score S

is stronger during the summer months (June, July, August) compared to the rest of the year. By
contrast, the estimates of the coefficient relative to SD are close to zero during the summer months
but positive for the first six months of the year. It is possible that our model, despite the inclusion
of allegation types, does not account for the different nature of the cases and of the reporters that
are reported in the two periods of the year. For example, throughout the academic year many cases
are referred by teachers, who are mandatory reporters. We observe that the screen-in rates for
these months are 5–10% higher than in the other months of the year, but the cases show similar
risk levels. The estimates of the coefficients for the other terms are stable across the months of
the year, with the only notable exception being the month of January. For the referrals occurring
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during this month, the estimated coefficients for 1(S̃ > S)D and 1(S̃ < S)D are large.
We then turn to the diagnostics in Figure 8 where the identity of the call worker represents the

reweighting variable. We observe that the models fitted on three of the call workers’ data, which
are denoted as “CW1”, “CW2”, and “CW6”, show larger coefficients estimates for S. One inter-
pretation of this result is that before deployment these two workers relied more heavily on the same
information that is used by the risk assessment tool than on the information that is communicated
in the call. This hypothesis also aligns with the fact that the same set of workers are characterized
by coefficients estimates for SD that are close to zero, which suggests that changes in the assessed
scores did not impact their decisions differently in the two periods. For the other workers, the
estimates of the coefficients for SD are positive. We observe that the mandatory flag increased
the likelihood of screen-in (i.e., MD > 0), and particularly for call worker 6, who was unlikely to
screen-in these cases before the deployment of the tool.

Next, we analyze the results of the diagnostics where the assessed score S represents the
reweighting variable, which are displayed in Figure 9. We observe that the association between S

and screen-in decisions is positive and strong for low values of S, but the corresponding coefficient
estimate is close to zero for large values of S. An analogous pattern can be observed for the (un-
conditional) exploratory analysis presented in Figure 3. The coefficient estimates relative to SD

reveal that in the post-deployment period increases in the assessed score S positively impact the
likelihood of screen-in only for large values of S. This finding suggests that call workers may treat
algorithmic recommendations in low and high risk cases differently. Looking at the two effects
together suggests that, in the post-deployment period alone, increases in the score led to similar
changes in the likelihood of screen-in across all values of the score. In addition, in light of the
strong association between screen-in rates and the assessed scores for cases characterized by low
values of the score in the pre-deployment period, it is perhaps not surprising that the deployment of
the tool only impacted the alignment of screen-in decisions and assessed score for higher scoring
cases. Turning to the diagnostics of the remaining terms, we note that the estimates of the coeffi-
cients relative to M and MD do not change under the reweighting, and they are close to those that
we find in the model fitted on data without reweighting. The estimates of the coefficient relative to
1(S̃ > S)D are largest for low values the assessed score S, which suggests that the overestimation
had the greatest impact on screen-in when the estimate risk was low. The positive coefficients
estimates for 1(S̃ > S)D in case of high-risk cases are consistent with our finding that call workers
avoid errors of omission.
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Figure 7: Focal reweighting variable model diagnostics for the coefficients of model (1) estimated
through logistic regression to predict screen-in decisions, considering the month of referral as the
reweighting variable. Each of the black dots corresponds to one of 100 bootstrap estimates of
the regression coefficient indicated in the panel’s title. The red line corresponds to the coefficients
estimates presented in Table 2. The blue dashed horizontal lines are centered at 0. On the horizontal
axis are displayed the values of the reweighting variable. For visualization purposes, we dropped
the estimates that fell outside of the range [−5,5].
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Figure 8: Focal reweighting variable model diagnostics for the coefficients of model (1) estimated
through logistic regression to predict screen-in decisions, considering the call worker’s identity
as the reweighting variable. We only consider call workers that have handled at least 500 cases
in both the pre- and the post-deployment periods. Each of the black dots corresponds to one of
100 bootstrap estimates of the regression coefficient indicated in the panel’s title. The red line
corresponds to the coefficients estimates presented in Table 2. The blue dashed horizontal lines
are centered at 0. On the horizontal axis are displayed the values of the reweighting variable. For
visualization purposes, we dropped the estimates that fell outside of the range [−5,5].
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Figure 9: Focal reweighting variable model diagnostics for the coefficients of model (1) estimated
through logistic regression to predict screen-in decisions, considering the assessed score as the
reweighting variable. Each of the black dots corresponds to one of 100 bootstrap estimates of the
regression coefficient indicated in the panel’s title. The red line corresponds to the coefficients
estimates presented in Table 2. The blue dashed line is an horizontal line centered at 0. On the
horizontal axis are displayed the values of the reweighting variable. For visualization purposes, we
dropped the estimates that fell outside of the range [−5,5].
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8.4 Alternative modeling specifications

We assess whether our results are affected by an alternative modeling specification. Instead of
model (1), we assume that the decision to screen in a case i made by call worker c in month t is
described by the following equation,

screen-initc ∼ β0 +β1 fS(Si)+β2Mi +[β3 +β4 fSD(Si)+β5Mi]∗Di

+[ f(S̃−S)D(S̃i −Si)+β8M̃i ∗ (1−Mi)+β9(1− M̃i)∗M]∗Di +ψt +µc +θi (2)

where fS, fSD, and fS̃−S are smooth functions. Note that, compared to model (1), here we make
weaker assumptions on the dependence of screen-in rates on the assessed score S, i.e., we only
assume that the functions f are smooth rather than linear. We fit model specification (2) via a gen-
eralized additive model (GAM) with logit link and penalized regression splines for the estimation
of f . We employ the same model specification to predict the likelihood that screened-in cases will
be accepted for service, and for the assessment of disparities in screen-in decisions. The coeffi-
cients estimates produced by the first two models are reported in Table 13, while those relative to
the models containing the interaction terms with the sensitive attributes are reported in Table 14.
The estimates of the smooth functions are shown in Figure 10 and 11.

Let’s first focus on the association between screen-in rates and the assessed score S. On the
one hand, in the top left panel of Figure 10 we observe that the probability that a case will be
screened in increases with the assessed score even before deployment, quite substantially for low
values of the score. This is consistent with our findings from the reweighting diagnostic plots of
the assessed score in Figure 9, which revealed an analogous pattern. The middle panel shows that,
after the deployment of the tool, increases in the values of the scores have a positive impact on the
likelihood of screen-in for high-risk cases, compared to the pre-deployment period (SD). Again,
this is consistent with our results from the diagnostic plots. As in our main regression model, the
coefficients estimates in Table 13 for M and MD show that the presence of the mandatory flag
had a positive and large impact on the likelihood of the case being screened in. We finally turn
to the misestimation of the assessed scores. The top right panel of Figure 10 reveals that, as the
assessed and shown scores diverge, the probability that the case will be screened in increases.
Overestimation appears to increase significantly the likelihood of screen-in, but the function is
not precisely estimated due to the small sample size. In case of underestimation, the likelihood
of screen-in appears to increase as well for S̃− S ∈ [−5,0], and then becomes constant. As we
have discussed in the main body of the paper, this should not be surprising because the glitch was
non-random and S may be an imperfect and non-comprehensive estimate of the underlying level of
risk. Lastly, the effect of requiring screen-in’s for cases that are assessed as not being at high risk
of out-of-home placement is positive but not statistically significant. The direction and size of the
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coefficients estimates relative to the misestimation of the mandatory flag in Table 13 are similar to
those in our main model. The regression results for the outcomes and the assessment of disparities
are similar to those delivered by the regression for model specification (1).

Table 13: Regression results for generalized additive model (GAM) estimating the impact of the
tool’s recommendations on call workers’ decision-making and case outcomes.

Dependent variable:

Call worker’s decision Case outcome

(1) (2)

D -0.592∗∗∗ -2.220∗∗∗

(0.189) (0.268)

M 0.052 0.339∗∗∗

(0.086) (0.106)

MD 1.152∗∗∗ 0.411∗∗∗

(0.137) (0.149)

M̃(1−M)D 0.865∗∗ -1.283∗∗

(0.401) (0.636)

(1− M̃)MD -0.373∗∗∗ -0.048
(0.118) (0.113)

Month FE Yes Yes
Call worker FE Yes Yes
Allegation type FE Yes Yes

Observations 23,626 14,263

Note: Regression coefficients for GAM to estimate the coefficients values in model spec-
ification (2). Standard errors are reported within parentheses.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: Regression results for generalized additive model (GAM) for the assessment of racial
and socioeconomic disparities in decision-making.

Dependent variable: Screen-in decision

Demographic attribute A
A=1 if at least one child

in referral is black
A=1 if % families living below

poverty threshold ≥ 20%

(1) (2)

A 0.311∗∗ -0.447∗∗∗

(0.137) (0.167)

M 0.109 0.080
(0.117) (0.109)

AM -0.134 -0.124
(0.144) (0.148)

D -0.536∗∗ -0.514∗∗

(0.243) (0.253)

AD -0.359 -0.147
(0.484) (0.465)

MD 1.366∗∗∗ 1.146∗∗∗

(0.216) (0.192)

AMD -0.340 0.068
(0.279) (0.274)

Month FE Yes Yes
Call worker FE Yes Yes
Allegation type FE Yes Yes

Observations 23,626 23,626

Note: Regression coefficients for GAM to estimate the coefficients values in model spec-
ification (2). The dependent variable in the regression is whether the case was screened
in. Standard errors are reported within parentheses. Terms relative to the shown scores
are also included in the model but the corresponding coefficients estimates are omitted
from the table.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

49

Electronic copy available at: https://ssrn.com/abstract=4050125



−2

−1

0

1

2

5 10 15 20
Assessed score S

f S
(S

)

−2

−1

0

1

2

0 5 10 15 20
Assessed score x deployment period S*D

f S
D
(S

D
)

−2

−1

0

1

2

−10 −5 0 5 10

(S
~

−S)D

f (S~
−

S
)D

((S~
−

S
)D

)

Assessment of call workers' decicisons via GAM

−2

−1

0

1

2

5 10 15 20
Assessed score S

f S
(S

)

−2

−1

0

1

2

0 5 10 15 20
Assessed score x deployment period S*D

f S
D
(S

D
)

−2

−1

0

1

2

−10 −5 0 5 10

(S
~

−S)D

f (S~
−

S
)D

((S~
−

S
)D

)

Assessment of outcomes via GAM

Figure 10: The plots show the estimates of the smooth functions in model specification (2) es-
timated using a GAM with regression splines to predict screen-in decisions (top panel) and case
outcomes (bottom panel). From the left to right, the estimates of fS, fSD, and f(S̃−S)D are shown.
Confidence bands correspond to two standard deviations.
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Figure 11: The plots show the estimates of the smooth functions in model specification (2) esti-
mated using a GAM with regression splines for the assessment of racial (top panels) and socioeco-
nomic disparities (bottom panel) in screen-in decisions. From the left to right, the estimates of fS
and fSD (in the bottom, fS and fSDA respectively) are shown. Confidence bands correspond to two
standard deviations.
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