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Abstract
This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will 
aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the 
information presented at a symposium, “Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between 
Research and Clinical Application”, co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT 
HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning 
approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajec-
tory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses 
many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into 
the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory 
requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early 
career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.

Keywords Machine learning · Deep learning · Clinical translational neuroimaging · Brain health · MRI · PET · EEG · 
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Introduction

Machine learning is contributing to rapid advances in clinical  
translational imaging to enable early detection, prediction,  
and treatment of diseases that threaten brain health. Brain 
diseases, including cerebrovascular disease, depression, 
migraine headaches, and dementia, are leading causes of 
global disability (Vos et al., 2020). Continued progress in 
neuroimaging and machine learning, and the collection 
of increasingly large-scale data sets, promise to transform 
healthcare by providing non-invasive, reliable indicators of 
brain health, resilience, and vulnerability long before clinical  
manifestations of disease. But many technical challenges 
remain. On February 12th 2021, the MGH McCance Center 
for Brain Health at Mass General Hospital, together with the  
Harvard-MIT Health Sciences and Technology Neuroim-
aging Training Program, co-hosted a virtual symposium, 
“Neuroimaging Indicators of Brain Structure and Function— 
Closing the Gap Between Research and Clinical Application,”  
to highlight some of these remaining challenges and machine 
learning approaches to overcome them. Recorded videos of the  
symposium presentations and discussions are available link 
to YouTube videos https:// www. youtu be. com/ playl ist? list= 
PL0A- NKHLV rNF82 vdjey yaBRo iXg77 lCeW.

In this symposium report, we explore a spectrum of 
machine learning applications in neuroimaging and use sym-
posium presentations to illustrate key points. We cover both 
recent advances and outstanding challenges, beginning with 
image acquisition, and ending with computation of quantita-
tive metrics and initial clinical utilization (Fig. 1):

Section I describes how machine learning improves volu-
metric image acquisition and reconstruction.
Section II describes machine learning approaches to 
image processing, focusing on image harmonization, and 
methods to detect deviations from healthy brain structure 
and function.
Section III describes machine learning advances in inter-
pretation and analysis of non-volumetric EEG data.
Section IV describes multiple approaches to assess brain 
health using deviations from healthy aging.
Section V describes how machine learning techniques 
can be applied to individual patient imaging, and other 
diagnostics, to personalize medical treatments that 
improve brain health.

Finally, Section VI explores the implications of deploy-
ing neuroimaging indicators of brain health into a clinical 
workflow. In particular, we focus on regulatory approval 
pathways of machine learning algorithms and the ethical 
considerations involved in collecting, algorithmically ana-
lyzing, and acting upon the derived information. We raise a 

set of important questions that we believe researchers should 
bear in mind when working in this area.

Machine learning models vary in the amount of domain 
knowledge they incorporate and how they do so. Some mod-
els explicitly enforce that their outputs are consistent with 
the physics of an imaging or measurement process. Other 
methods act upon features explicitly chosen because they 
are known to be relevant for the task at hand. These feature-
based methods are often applied to established clinical use 
cases to reduce time, manual labor, and/or person-to-person 
variation (Gajawelli et al., 2019). "End-to-end" approaches 
abstract out explicit feature definition to go from raw data 
all the way to interpretable quantitative metrics, for exam-
ple, of brain health. All traditional step-by-step processes, 
such as artifact removal, registration, conversion between 
temporal and spectral domains, and feature extraction could 
be encompassed in a single machine learning pipeline. 
In general, models with more explicitly encoded domain 
knowledge are less flexible in adapting to cases where the 
measurement process may be inaccurately characterized. 
That said, these methods are able to incorporate known 
relationships, which can guide the learning process and 
prevent nonsensical results. The methods covered in this 
report represent examples from each of these categories as 
well as intermediate cases which explicitly incorporate some 
domain knowledge but also allow the model significant flex-
ibility in producing unconstrained final outputs.

It is important to acknowledge that the field is dynamic 
with each area undergoing rapid transitions. In some cases, 
machine learning techniques are already deployed or in 
advanced stages of testing for deployment into existing 
clinical workflows. In other cases, efforts are focused on 
early research, with the goal of discovering scientific insight 
or extracting meaningful features from the images that can 
be fed into machine learning methods to generate clinically 
meaningful biomarkers (FDA-NIH Biomarker Working 
Group, 2016; Mateos-Pérez et al., 2018). In all presenta-
tions and throughout this report, our goal is to educate, 
motivate and inspire graduate students, post-doctoral fel-
lows, and early career investigators to contribute to a future 
where imaging meaningfully contributes to the maintenance 
of brain health.

Section I: Machine Learning for Improved 
Volumetric Image Acquisition 
and Reconstruction

Machine learning techniques can be used to improve one of 
the earliest steps in the neuroimaging pipeline even before 
an image is viewed by a clinician or researcher: image 
formation. Typically, scanner-acquired measurements 

https://www.youtube.com/playlist?list=PL0A-NKHLVrNF82vdjeyyaBRoiXg77lCeW
https://www.youtube.com/playlist?list=PL0A-NKHLVrNF82vdjeyyaBRoiXg77lCeW
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represent an encoding of the patient anatomy under the 
physics governing the imaging system. For example, the 
measurements acquired from an MRI scanner represent 
the Fourier transform of the image of interest (Nishimura, 
2010), while the measurements acquired from PET and CT 
scanners represent the Radon transform of the image of 
interest (Ramm & Katsevich, 1996). Recovering the under-
lying image from the acquired scanner data requires solv-
ing an inverse problem. Due to time, patient comfort and 
safety considerations, or monetary constraints, often only 
a limited number of scanner measurements are acquired, 
making this inverse problem highly under-determined. 
Further, the acquired signals may be corrupted by imper-
fections in the imaging process, such as patient motion or 
system noise. Techniques from machine learning, includ-
ing (1) model-based optimization methods (Griswold 
et al., 2002; Lustig et al., 2008; Pruessmann et al., 1999), 
(2) data-driven learning methods (Quan et al., 2018; Yang 
et al., 2018), and (3) combinations of these two strate-
gies (Hammernik et al., 2018; Schlemper et al., 2018), are 
promising approaches for mitigating these image forma-
tion issues, enabling faster, higher-quality image creation 
for downstream analysis.

One such application of machine learning involves deciding 
which exact scanner measurements to acquire. Given time or 
financial imaging budget constraints, machine learning can be 
used to identify which subset of measurements will be the most 
informative for reconstructing the final image. For example, 
several approaches have been proposed for learning the optimal 
k-space acquisition pattern for a specified class of MRI scans, 
often identifying different patterns for different anatomies 
(Bahadir et al., 2020; Wang et al., 2021; Weiss et al., 2021). 
For neuroimaging applications in particular, sampling trajec-
tories could be optimized for specific structures of interest for 
the clinical question being asked. More recent work aims to 
optimize the acquisition pattern with even greater specificity 
for each individual patient (Zhang et al., 2019).

Once all scanner data is acquired, machine learning is 
useful in reconstructing the image of interest itself. Model-
based optimization techniques for MRI, CT, and PET imaging 
have typically provided iteratively refined solutions to under-
determined inverse problems (Griswold et al., 2002; Lustig 
et al., 2008; Pruessmann et al., 1999). Recently, deep-learning 
methods quickly estimate solutions to the inverse imaging 
problems, including network architectures that explicitly employ 
the physics of the imaging system (Hammernik et al., 2018; 
Putzky et al., 2019; Schlemper et al., 2018). Efforts to collect 
large-scale public datasets of raw imaging data have accelerated 
advances in image reconstruction by enabling rapid model 
prototyping and by simplifying and standardizing evaluation 
of varying approaches. For example, the FastMRI dataset 
provides publicly available k-space data for reconstructing over 
six thousand human brain MRIs (Zbontar et al., 2019).

Beyond accelerated reconstruction from limited measurements, 
several machine learning approaches have been proposed 
for correcting artifacts arising during image acquisition and 
reconstruction. For example, both optimization and learning-
based approaches have been proposed for MRI denoising 
(Anand & Sahambi, 2010; Manjon & Coupe, 2019) and motion 
correction (Chun et al., 2012; Haskell et al., 2018; Pipe, 1999). 
At this symposium, Ms. Nalini Singh presented two neural 
network layer structures which can be used to build networks 
which correct each of these artifacts while also being used for 
accelerated reconstruction (Singh et al., 2020). Unlike many other 
reconstruction methods, these layers incorporate convolutions on 
both the frequency space and image space features. By operating 
in both spaces, these layers both correct artifacts native to the 
frequency space and manipulate image space representations 
to form coherent image structures. Figure 2 shows a detailed 
diagram of the layers, and Fig. 3 shows example reconstructions 
demonstrating the positive impact of this method on the quality 
of the reconstructed image in representing the true brain anatomy.

Several deep-learning based approaches have also been 
proposed for metal artifact reduction in CT imaging of other 

Fig. 1  Schematic illustration of the spectrum of machine learn-
ing applications in clinical translational neuroimaging. A typical 
volumetric neuroimaging workflow is shown for MRI. A patient 
is scanned, creating a signal (i.e. k-space data) which is converted 
to an image via a reconstruction algorithm in preparation for clini-
cal review by a radiologist. In some cases, the reconstructed image 
undergoes further computational processing to produce higher-level 
summaries, such as segmentations or registrations to an atlas. Option-
ally, in the future, further computational processing can convert these 

summaries to metrics used to quantify brain health, such as the vol-
ume of a structure or the estimated age of a subject. Finally, these 
quantitative metrics, once comprehensively validated, can be used 
to inform patient care through early detection of subtle abnormali-
ties and to guide treatments such as targeted brain stimulation. These 
steps are not just useful at the individual patient level but can also 
drive population level analyses that can lead to insights regarding 
healthy and disordered brain structure and function
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anatomies (Gjesteby et al., 2017; Hu et al., 2019); these tech-
niques could be extended to improve brain CT imaging for 
patients with deep brain stimulation (DBS) devices in situ. In 
PET imaging, deep-learning based approaches have demon-
strated improved correction of attenuation effects both with 
(Ladefoged et al., 2018; Liu et al., 2018a) and without (Dong 
et al., 2020; Liu et al., 2018b) concordant anatomical imaging, 
or to enable low-dose PET (Xu et al., 2017). Each of these inno-
vations makes critical contributions to improving the safety, 
quality and/or value of clinically meaningful information about 
brain health which can be gleaned from the imaging study.

While machine learning-based approaches promise to 
improve the speed, value, and quality of brain image acquisition, 
several challenges must be solved before they are incorporated 
into standard clinical workflows. For example, many current 
reconstruction methods require large datasets of thousands of 
high-quality acquired signals from a particular imaging proto-
col. This requirement makes it difficult to apply these methods 
to new imaging protocols for which large datasets have not yet 
been collected. New techniques are being developed to adapt 
these learning-based approaches to either require fewer train-
ing examples or to transfer the information from previously 

Fig. 2  Two joint layer architectures combining frequency and image 
space representations, embedded within full network architectures 
for MRI reconstruction. Red squares represent frequency space quan-
tities, while blue squares represent image space quantities.  un rep-

resents frequency space features at the nth  layer, and  vn represents 
image space features at the nth  layer. At each layer, Batch Normali-
zation (BN), a convolution, and an activation function are applied to 
both  un and  vn, summarized by `F-Conv' or `I-Conv', respectively
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collected datasets of one protocol to a new protocol of inter-
est (Han et al., 2018). And, for any reconstruction method, 
uncertainty quantification techniques will be needed to high-
light regions of reconstructions with a high likelihood of error 
(Edupuganti et al., 2021). These uncertainty quantifications will 
enable radiologists to understand when more detail is needed to 
identify a particular feature of interest (Edupuganti et al., 2021), 
possibly requiring re-imaging of the patient.

Section II: Machine Learning Applications 
for Volumetric Image Processing

Once brain imaging data is collected and reconstructed, 
there are several steps in the image analysis pipeline where 
machine learning can improve the extraction of meaningful, 
quantitative features related to brain health. In this section 
we explore some of these advances, giving an overview of 
each step and examples of how machine learning models are 
used. We focus on MRI to demonstrate how ML techniques 

can be incorporated in each workflow step, but similar prin-
ciples extend to other volumetric imaging techniques such 
as PET and CT.

Quality Assurance and Harmonization

Expert human labellers typically perform image quality 
assessment (QA), but this process is labor-intensive and 
can suffer from low inter-rater reliability. Carefully designed 
machine learning techniques promise to enable fast, easily 
accessible, consistent QA. Previously proposed approaches 
use carefully curated quality metrics as input features to 
various types of classifiers which label images as usable or 
unusable (Esteban et al., 2017; Küstner et al., 2018; Pizarro 
et al., 2016). Crowdsourcing approaches have also been used 
to improve the accuracy of these automatic QA tools. The 
use of many non-expert, human raters as inputs to a convo-
lutional neural net improves the accuracy of classification 
over a single site data set (Keshavan et al., 2019). Further, 
a web-based API acting as a quality metric repository has 

Fig. 3  Example reconstructions from 4 × undersampled data (row 1), 
zoomed-in image patches (row 2), difference patches between recon-
structions and ground truth images (row 3), and frequency space 
reconstructions (row 4) are shown here to visually communicate the 
impact of this reconstruction approach. It is most easily appreciated 

by comparing the final two columns. The Interleaved and Alternating 
architectures produce two slightly different reconstructions, both of 
which better eliminate blurring and 'ringing' artifacts, where multiple 
copies of the image appear stamped on top of each other
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increased the volume of quality metric labeled, multi-site 
data available to be used to develop new, more generalizable 
QA tools (Esteban et al., 2019).

In addition to ensuring the quality of individual scans, 
batch effects affecting images acquired at different locations 
or times must be eliminated to perform large-scale, multi-
site studies. Machine learning approaches provide flexible 
methods to detect and remove the relevant site-specific 
effects. One approach is to directly convert data acquired 
in one setting to the data that would have been acquired 
in a different setting. During the symposium, Dr. Cetin-
Karayumak presented such a retrospective harmonization 
technique which represents diffusion MRI (dMRI) data as a 
combination of spherical harmonic basis functions. Rotation-
invariant features are derived at each voxel from the computed 
basis function coefficients for each image, and a mapping 
is computed between the features of target and reference 
scanners in order to harmonize them (Cetin Karayumak 
et al., 2019). A different approach is to learn intermediate 
representations invariant to the scanner on which any image 
was acquired. These intermediate representations can then 
be used to reconstruct images without site-specific effects 
(Moyer et al., 2020). Alternatively, instead of removing or 
transforming site-specific effects at the image level, a third 
strategy is to encourage downstream features derived from the 

images for a machine learning prediction task to be invariant 
to the scanners on which they were acquired (Dinsdale et al., 
2021).

Quantification of Brain Health and Detection 
of Abnormality

Machine learning approaches can also be used to charac-
terize healthy brain characteristics and identify deviations 
from the norm. During the symposium, Dr. Yangming Ou 
described how to construct ‘normal’ atlases using group-
wise unbiased image registration. Brain MRI atlases sum-
marize healthy brain anatomy and typical signal intensity 
profiles at the voxel-, regional-, fiber-, and whole-brain 
levels (Guimond et al., 2000) (Fig. 4A). Brain atlases con-
structed from imaging data can be used in multiple ways 
to quantify brain health. One example is the quantification 
of normal childhood development (Ou et al., 2017; Sotardi 
et al., 2021). A series of constructed atlases from cohorts 
of healthy subjects clustered by age can enable longitu-
dinal quantification of brain development from data sets 
where every subject was scanned once (Fig. 4B). This is 
not only cost effective when constructed from clinically 
acquired brain scans, but also has the potential to incorpo-
rate a more comprehensive range of healthy variation than 

Fig. 4  Atlas construction (concept in panel A) can enable quantifica-
tion of brain development across ages (panel B- schematically indi-
cating the benefits of using a clinical cohort of individuals for atlas 

construction versus a prospectively gathered longitudinal cohort) 
and can detect abnormalities as outliers to normal (panel C). ADC- 
Apparent Diffusion Coefficient
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data acquired in a single or set of pooled research studies. 
Another use of quantitative brain atlases is to detect subtle 
abnormalities due to a wide range of disorders (Pinto et al., 
2018) (Fig. 4C). Atlas-quantified voxel-wise deviation val-
ues can be used as features in classical machine classifiers 
(O’Muircheartaigh et al., 2020) or deep convolutional neural 
networks (Baur et al., 2021) to further improve the accuracy 
and generality of atlas-based detection of deviations from 
brain health. This strategy has been used for structural MRI 
(Baur et al., 2021; O’Muircheartaigh et al., 2020) and diffu-
sion MRI (Pinto et al., 2018).

Segmentation

Automatic segmentation of brain images enables quantita-
tive estimation of the volumes of brain structures that can 
lead to other indicators of brain health. These quantitative 
estimates enable population studies as well as longitudinal 
analysis within individual subjects. Most previous work on 
brain segmentation has focused on MRI, which provides 
detailed images with an ever increasing range of specifi-
cally tuned contrasts for visualizing different details of brain 
anatomy and function (Akkus et al., 2017).

Freesurfer is one example of a widely used package 
for brain MRI analysis and includes a machine learning 
approach to segment many brain structures (Fischl et al., 
2002) as part of a larger image analysis pipeline. This tech-
nique involves finding the maximum a posteriori estimate 
of a segmentation of an anatomical brain region (e.g. hip-
pocampus), given the image to be segmented and a linear 
transform mapping it to an expertly curated segmentation 
atlas. This technique only employs approximately one hun-
dred labeled scans for a specific atlas, but the entire segmen-
tation procedure takes several hours. There has therefore 
been recent interest in neural network-based segmentation 
methods, which provide segmentations on the order of sec-
onds (Akkus et al., 2017; Despotović et al., 2015) to address 
the requirement to perform expert level segmentation on 
large scale image data sets.

In these approaches, a convolutional neural network typi-
cally directly predicts human-labeled segmentations from 
patches or volumes and requires many labeled images to 
train. Furthermore, these approaches are extremely sensitive 
to shifts in input image intensity. To apply these methods to 
scans of a different contrast or resolution, additional labels 
must be collected and used to retrain or fine-tune the net-
works. Thus, recent research has focused on unsupervised 
deep learning approaches for training brain segmentation 
networks, (Dalca et al., 2019) or on adapting trained net-
works to new imaging analysis task scenarios (Kamnitsas 
et al., 2016).

It is now possible to aggregate larger cohorts of 
useful brain image data from clinical and/or research 

archives by using deep learning to transform lower-
quality images into higher-quality ones, thus enabling 
use of advanced image segmentation tools. In particular, 
several such tools are built for MP-RAGE scans, which 
are popular due to their SNR efficiency and contrast. 
At this symposium, Dr. Juan Eugenio Iglesias presented 
an approach to synthesize isotropic 1 mm MP-RAGE 
volumes from low-resolution scans of arbitrary contrast, 
enabling their segmentation and analysis with standard 
neuroimaging tools (Iglesias et al., 2020). An example 
is shown in Fig.  5, where a 5 mm axial FLAIR scan 
is transformed into a 1 mm isotropic MP-RAGE scan, 
and subsequently segmented with FreeSurfer, which 
requires 1 mm isotropic T1 data—and thus could not 
have processed the FLAIR scan directly, due to MR 
contrast mismatch and insufficient resolution.

Visualization

Visualization frameworks can foster deeper understanding and 
facilitate interpretation of high-dimensional clinical imaging 
data. Further, targeted visualizations allow developers to 
design and optimize computational algorithms. State-of-the-art 
visualization tools deal with challenges such as large amounts of 
data such as in diffusion and functional MRI, and the inevitable 
variation of file formats across different institutions. Web-based 
tools such as Fiberweb (Ledoux et al., 2017) or XTK (Haehn 
et al., 2014) have contributed to brain imaging visualizations 
and 3D rendering of connectivity in recent years. Many other 
visualization tools not limited to DTI data emerged recently, 
such as Neurolines (Al-Awami et al., 2014) to visualize 3D brain 
tissue in 2D, and comparative visualizations for fMRI brain 
images (Jönsson et al., 2019).

At the symposium, Ms. Loraine Franke presented her 
work on developing web-based interactive visualization 
tools for diffusion tractography imaging data (Franke & 
Haehn, 2020; Franke et al., 2020). Her open-source tool, 
FiberStars (Franke et al., 2020) (Fig. 6) enables researchers 
to create low-dimensional cluster representations of high 
dimensional data, select, visualize, and compare multiple 
clusters across multiple patients, and visualize individual 
patient fiber tracts. By using different projection techniques 
for multidimensional scaling such as t-SNE (van der Maaten 
& Hinton, 2008), PivotMDS (Brandes & Pich, 2007) and 
others, the FiberStars tool lets the user interactively explore 
high dimensional data. For example, FiberStars enables 
users to answer research questions with comparative ensem-
ble visualizations, especially for evaluating and testing 
hypotheses, or to analyze factors combined with pathologi-
cal findings. FiberStars addresses a large class of complex 
visualization challenges for multidimensional data or data 
composed of collections of patients.
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Section III: Machine Learning Advances 
in Interpretation and Analysis 
of Non‑volumetric EEG Data

Another important, and emerging, area where machine 
learning approaches are enhancing the understanding of brain 
health is in clinical applications of electroencephalography, 
or EEG data. EEG is multidimensional time series data, 
where multiple electrodes are placed on the scalp resulting 
in simultaneous channels of data being collected at a high 
time resolution. EEG is currently in clinical use for multiple, 
specific applications, such as for diagnosing and monitoring 
sleep disorders, epilepsy, disorders of consciousness, stroke, 
real-time electroconvulsive therapy (ECT) patient monitoring, 
and anesthesia (Roy et al., 2019a, b). EEG has the unique 
advantages of being non-invasive, relatively inexpensive, and 
more adaptable to naturalistic or ambulatory settings compared 
to other imaging modalities. In some cases, even a few EEG 
electrodes in a specific location can yield enough information 
for inference, without the need for EEG across all of the cortex. 
Therefore, machine learning approaches can not only greatly 
streamline existing clinical applications of EEG, but they can 
also open the door to new applications such as earlier, less 
expensive, or more accessible diagnostics (Michel & Murray, 
2012; Miranda et al., 2019).

Some of the most advanced work focuses on the diag-
nostic needs for patients with epilepsy, an area for which 
EEG is already in active clinical use. In the current standard 
of care, making diagnoses and therapeutic decisions relies 
on painstaking manual annotation of many hours of EEG 
recording by highly-trained expert epileptologists (Si, 2020). 
Machine learning methods enable automatic detection of 
markers of epilepsy in interictal (non-seizure) data using 
specific spectral, morphological, or network-based features. 
While some feature-based approaches attempt to replicate 
the eye of the expert using features like those epileptologists 
observe; other end-to-end deep learning and neural network 
models attempt to glean undiscovered signatures of epilepsy 
from the raw data itself. One example of this is classifying 
routine EEGs into normal vs. abnormal, where abnormal 
is, by definition, heterogeneous and context-dependent (van 
Leeuwen et al., 2019). Machine learning based clinical deci-
sion support for epileptologists for diagnosis and localiza-
tion of epileptic foci are highly promising as they reveal 
interrelationships between brain regions and activity that 
are difficult to discern by eye.

In contrast to epilepsy, where EEG is already being used 
clinically, machine learning approaches are expanding the 
potential for EEG-based diagnostic biomarkers for other 
diseases, such as Alzheimer’s Disease (Escudero et al., 2006; 

Fig. 5  Left column: coronal plane of an MP-RAGE scan (top, slice 
thickness: 1  mm)) and corresponding coronal plane of an axial 
FLAIR scan (bottom, slice thickness: 5 mm) from the ADNI dataset 
(adni-info.org). Middle column: synthetic 1  mm MP-RAGE volume 

produced by Dr. Iglesias’s tool. Right column: automated segmenta-
tion of the original and synthetic MP-RAGE volumes produced by 
FreeSurfer (Fischl et al., 2002)
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Gallego-Jutglà et al., 2015; Jelles et al., 1999; Lehmann et al., 
2007; Tzimourta et al., 2021; Woon et al., 2007). However, 
these methods are further from clinical deployment than those 
for epilepsy, mostly in feature discovery stages. Analogous 
strides are being made to discover novel, cost-effective, and 
ambulatory EEG-based biomarkers for diagnosing stroke, 
schizophrenia, and attention deficit hyperactivity disorder 
(Ahmadlou & Adeli, 2011; Hosseini et  al., 2020; Phang 
et al., 2020; Sastra Kusuina Wijaya et al., 2015). While these 
directions have great potential for impact if successful, since 
they are new clinical applications of EEG, their success 
depends on connecting sound and robust machine learning 
algorithm design to underlying physiology, which can prove 
elusive. Interpretability will likely also come into play, since 
clinicians must be convinced of the specific clinical utility of 
EEG for each new application.

A recurring theme in the development of machine 
learning methods that is the same for EEG, as it is for any 
other imaging modality, is the availability of large, labeled 
datasets. Three such sources for large EEG datasets are the 

National Sleep Research Resource (Sleep Data—National 
Sleep Research Resource, 2021  https:// sleep data. org/), 
the PhysioNet Computing in Cardiology Challenge 2018 
(Ghassemi et al., 2018), and the TUH Abnormal EEG corpus 
(Alhussein et al., 2019; Gemein et al., 2020; Roy et al., 
2019a, b; Temple University EEG Corpus Downloads, 2021).

Section IV: Brain Health as Assessed 
by Deviations from Healthy Aging

Another machine learning approach to characterize brain health 
is to summarize an image or biosignal into a single metric that 
reflects brain health, such as brain age estimation (Fig. 7d) 
(Cole et al., 2019). The difference between estimated brain 
age and actual chronologic age, known variously as predicted 
age difference (PAD), Brain Age Index (BAI) or ΔBrainAGE, 
has identified accelerated aging in individuals with cognitive 
impairment (Liem et al., 2017; Poddar et al., 2019), traumatic 
brain injuries (Cole et al., 2015), schizophrenia (Cole et al., 

Fig. 6  Split screen showing 3D representations of fiber tract anatomy 
given by fibers of dMRI scans across different subjects. The menu 
bar at the left facilitates toggling on and off visualization of differ-
ent subjects (top left), cluster (middle left, showing the Callosum 
Forceps Major), and coloring of the 3D tract by a selected scalar 
value (bottom left, showing a measurement of fractional anisotropy 
(FA2) from the DTI scan). High values of fractional anisotropy are 
colored in red while lower values are colored in blue. Inter-hemi-
sphere crossing of the third patient shows no red colors and therefore 
no high fractional anisotropy values. Tractography from five differ-

ent patients is displayed with additional two-dimensional representa-
tion radial plots at the bottom of each patient’s panel showing scalar 
values associated with each of the fiber tracts. For each anatomical 
tract, the 2D radial plots show mean and standard deviations of the 
different scalars on each axis. Demographic information about each 
patient is shown above the 3D visualization, for example, age, gen-
der, height and weight. Each patient is anonymized by a number seen 
in the labels next to the anatomical fiber tract name in purple. Other 
relevant measurements for analysis are mean fiber length, number of 
fibers or fiber similarity

https://sleepdata.org/
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2018), Alzheimer's disease (Bashyam et al., 2020), and diabetes 
(Franke et al., 2013). Deviations from expected brain age have 
also been reported for more subtle changes due to social and 
environmental influences, including a protective decrease in 
brain aging for long-term meditation practice (Luders et al., 
2016), music-making (Rogenmoser et al., 2018), and a higher 
level of education (Steffener et al., 2016), as well as accelerated 
aging associated with smoking and alcohol consumption 
(Guggenmos et al., 2017; Ning et al., 2020).

At the symposium, Dr. Ou presented his recent work (He 
et al., 2020, 2021) on a novel, deep convolutional neural net-
work brain age prediction model that uses both morphologi-
cal and contrast-based changes in brain MRI data to estimate 
brain age. This work was enabled by collating 11 different 
data sets and carefully curating a very large, harmonized 
dataset that included enough healthy subjects of all ages 
to train, test and validate the method (Fig. 7a). By explic-
itly splitting the T1-weighted brain MRI into morphometry 
(spatial information) and contrast (tissue based signal infor-
mation) channels, his attention-driven multi-channel fusion 
network (Fig. 7b) improved the accuracy of age estimation 
as compared to each channel alone, or naive fusion of two 
channels without their proposed attention mechanisms, when 
applied to 16,705 normal brain MRIs acquired over the lifes-
pan (0–97 years of age) (He et al., 2021). The team cross 
validated their work against multiple published brain age 
estimation algorithms and using multiple independent test 
data sets (Fig. 7c). A critical advantage of this end-to-end 
method is that it has the potential to differentiate between 
abnormal aging associated with contrast change (e.g., 
lesions) and those associated with morphometric changes 
(e.g., atrophy). This is an important contribution toward 
increasing the specificity of brain age estimator biomark-
ers, a major issue for this line of research (Kaufmann et al., 
2019).

Another symposium speaker, Dr. Haoqi Sun, presented 
his work on a feature-based machine learning model that 
takes advantage of the fact that brain activity as recorded 
by EEG during sleep naturally varies with age (Leone 
et al., 2021; Paixao et al., 2020; Sun et al., 2019; Ye et al., 
2020). Features from both time and frequency domains 
of each sleep stage are used to compute an overall brain 
age. Figure 8 shows the scatter plot of chronological age 
vs. sleep EEG-predicted brain age, and eight example sleep 
EEGs from across the lifespan with their chronological 
age and calculated brain age shown. Dr. Sun showed that 
across two large sleep EEG datasets, people with significant 
neurological or psychiatric disease show a mean excess brain 
age (compared to chronological age) of 4 years compared 
to healthy controls on a population level, while those with 
hypertension or diabetes show a mean excess brain age of 
3.5 years compared to healthy controls (Sun et al., 2019). 
Sun and colleagues have validated the association of 
significant differences between sleep EEG based age and 
chronological age in patients with dementia and MCI (Ye 
et al., 2020), people diagnosed with HIV under antiretroviral 
therapy (Leone et al., 2021), and all cause mortality (Paixao 
et al., 2020).

As with sleep EEG, features of brain activity under gen-
eral anesthesia have also been demonstrated to change with 
age, allowing the EEG patterns measured during adminis-
tration of general anesthesia to be evaluated as a marker of 
brain age (Akeju et al., 2015; Lee et al., 2017; Purdon et al., 
2015). Similar ideas about indicators of brain health under 
general anesthesia are motivating the development of EEG 
machine learning methods to monitor and assess disorders 
of consciousness, since no other behavioral markers can be 
used (Engemann et al., 2018).

A fundamental challenge in using brain age estimation as 
an index of brain health and/or meaningful clinical indicator 

Fig. 7  Machine learning (ML) can estimate a patient’s brain age and 
quantify abnormal (accelerated or delayed) aging. (a) training sam-
ples consisting of normal brain MRIs from a large set of individu-
als; (b) ML algorithm that learns how a normal brain MRI appears 

at various ages; (c) cross validation to quantify the accuracy of the 
ML model; and (d) when applied to target patients, the ML model 
can quantify deviations from normal brain aging
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is that the rate of age-related changes in brain structure 
and function (e.g. sleep) vary across the lifespan such that 
early and late life changes are more readily detected, but 
are very subtle between 30 and 60 years of age. For both 
MRI- and EEG-based brain age prediction, the sensitivity is 
lowest during this part of the lifespan. Not surprisingly, one 
promising application of MRI-based brain age prediction 
is early detection of future neuropsychiatric disorders in 
children and/or adolescents (Chung et al., 2018). The relative 
stability of structural MRI measures bound the temporal 
resolution of brain age estimates using that modality (Cole 
& Franke, 2017; Karch et al., 2019), while the significantly 
higher night-to-night variability of sleep EEG-based brain 
age estimates is both a challenge to overcome if looking 
for stability, but also a potential additional source of 
meaningful signal to exploit in future work (Arnal et al., 
2020; Arnardottir et al., 2021; Hogan et al., 2021).

There are important caveats to the use of a brain age as a 
marker of brain health since deviations from chronological 
age could be due to multiple factors. Brain age estimation 
studies remain population-level statistical tests because 
current approaches lack the sensitivity to accurately assess 
clinically meaningful deviation at the individual patient 
level. Because of these limitations, brain age is currently 
viewed as a screening tool where large deviations call for 
further investigation. More work is required to improve 
the specificity and clinical utility of brain age estimation. 
Combining EEG- and MRI-based brain-age estimation 
techniques with and without additional features (e.g. 
genomic markers, demographics, socioeconomics status, and 
environmental factors) to more accurately predict disease 

status at individual level is an active area of research (Al 
Zoubi et al., 2018; Cole & Franke, 2017; Mohajer et al., 
2020; Varikuti et al., 2018). For example, in the case of sleep 
EEG-based brain age, the density of sleep spindles (count/
hour) one of the features used in the model, appears to be a 
heritable trait based on the expression of CACNA1l, a gene 
that is associated with both schizophrenia and sleep spindle 
formation (Merikanto et al., 2019).

Despite these limitations, it is intriguing, and poten-
tially clinically advantageous, that lifestyle choices such 
as exercise and sleep can modify these quantitative metrics 
of brain age in directions that reflect known associations 
with brain health. Studies have shown that actively exercis-
ing leads to an orchestra of changes in energy metabolism, 
oxidative stress, inflammation, tissue repair, growth factor 
response, and regulatory pathways in the brain (Contrepois 
et al., 2020). Sleep has a bidirectional relationship with the 
immune system (Irwin, 2019), therefore there is evidence 
for and reason to expect that exercise can improve sleep and 
thereby improve brain health, which will be reflected in nor-
malized sleep-based brain age biomarkers in people with 
evidence of accelerated aging.

Section V: Application of Machine Learning 
Techniques for Diagnostics, Prognostication, 
and Personalization of Medical Treatments

Imaging plays a key role in the clinical evaluation of 
pathological changes that can be readily distinguished 
from a healthy brain. Neuroradiologists routinely use 

Fig. 8  Illustration of sleep EEG-based brain age. (Left) The scatter 
plot of chronological age vs. brain age where the diagonal dashed 
red line indicates where chronological age equals brain age. The 
mean absolute deviation (MAD) is 7.8  years and Pearson’s correla-
tion R = 0.82. (Right) The confusion matrix of example EEG spectro-
grams (bottom in each subplot) and hypnogram (trajectory of sleep 

stages) (top in each subplot), where the top, middle, and bottom rows 
are patients with young, middle, and old chronological age (CA, in 
years) respectively; while the left, middle, and right columns are sub-
jects with young, middle, and old brain age (BA, in years). Compari-
son within each row reveals different sleep EEG microstructures for 
different brain ages while at similar chronological age
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neuroimaging modalities such as CT, MRI, and PET for 
both qualitative and quantitative assessment of diseases 
from infectious, autoimmune, oncological, degenerative, 
and vascular etiologies. However, despite standardization 
efforts, manual assessment is subject to inter- and intra-
rater variability (Filippi et  al., 1995; Provenzale & 
Mancini, 2012; Provenzale et al., 2009; van Horn et al., 
2021). As such, there is intense interest in automating 
radiological assessment with machine learning. A popular 
approach is radiomics (Beig et al., 2020), which focuses 
on the extraction of pertinent quantitative imaging features 
often followed by incorporation of these features into a 
predictive machine learning algorithm. These imaging 
features are computational imaging descriptors reflecting 
measures such as size, shape, intensity distribution, and 
intensity heterogeneity (Zhou et al., 2018). Indeed, these 
feature-based radiomic approaches have found success for 
early detection (Sørensen et al., 2016), diagnosis (Kniep 
et al., 2019; Regenhardt et al., 2021; Tanioka et al., 2020; 
Zhou et al., 2020), prognostication (Macyszyn et al., 2016; 
Stefano et al., 2020; Tang et al., 2020), treatment response 
prediction/assessment (Cai et al., 2020; Chang et al., 2016; 
Hofmeister et al., 2020), and non-invasive determination 
of molecular markers (Beig et  al., 2018; Pan et  al., 
2019) for a wide variety of diseases. More recently, deep 
learning approaches (Chang et al., 2018a, b; Rauschecker 
et al., 2020; Titano et al., 2018) have gained traction for 
similar tasks due to these approaches foregoing the need 
to pre-engineer imaging features. Some approaches have 
even shown the utility of combining radiomics with deep 
learning (Lao et al., 2017; Xiao et al., 2019). While there 
is great promise for these automated approaches, they do 
not come without pitfalls. Radiomics, in particular, has 
been challenged by variability stemming from differences 
in image acquisition, pre-processing, segmentation, and 
feature implementation (Hoebel et al., 2021; Kalpathy-
Cramer et al., 2016; Schwier et al., 2019). Approaches 
to rectify these sources of variability and harmonize 
radiomic features have been an active area of study (Carré 
et al., 2020; Marcadent et al., 2020; Orlhac et al., 2018; 
Parmar et al., 2014; Zwanenburg et al., 2020). Similarly, 
deep learning approaches also suffer from a lack of 
generalizability across different image acquisition settings 
and patient populations (AlBadawy et al., 2018; Chang 
et al., 2020; Zech et al., 2018). These challenges will need 
to be addressed before these automated approaches can be 
effectively utilized.

Beyond its neuroradiologic applications to promote brain 
health with early detection, diagnostics, or prognostication 
related to neurologic disease, machine learning also has 
applications towards brain health as it relates to precision 
medicine—i.e. the development of personalized interventional 
therapies for a broader range of neuropsychiatric disorders 

informed by both data from a specific patient and aggregated 
information from larger patient datasets (Calhoun et al., 2021; 
Vieira et al., 2017; Zhang et al., 2020).

Data-driven precision therapeutics are already being 
translated to the clinic using transcranial magnetic stimula-
tion (TMS) and other targeted brain stimulation approaches. 
At the symposium, Dr. Shan Siddiqi presented on this work, 
highlighting that TMS targets for any given symptom may 
be identified based on the location of brain lesions that cause 
the same symptom (Cash et al., 2020; Davey & Riehl, 2005).

Complementing Dr. Siddiqi and his team’s research is a 
large body of work focused on machine learning-based target 
optimization of field distributions for transcranial magnetic 
and/or electric stimulation that factor in the biophysical 
properties of biological tissues or feedback from real-time 
fMRI. “The Automatic Neuroscientist” framework uses 
real-time fMRI in combination with Bayesian optimization 
“to automatically design the optimal experiment to evoke a 
desired target brain state.” (Lorenz et al., 2016). Machine 
learning techniques have been applied towards rt-fMRI neu-
rofeedback studies, where a neurofeedback signal can be 
derived using supervised learning methods such as linear 
models and support vector machines (LaConte et al., 2007).

In addition, both data driven and hypothesis driven analy-
ses of functional connectivity data have been used to predict 
clinical outcomes including treatment response in patients 
(Whitfield-Gabrieli et al., 2016) as well as to predict pedi-
atric vulnerability to psychiatric disorders including psy-
chosis (Collin et al., 2019, 2020), depression (Chai et al., 
2015), anxiety, and ADHD (Collin et al., 2020; Cui et al., 
2020). At the symposium, Dr. Susan Whitfield-Gabrieli 
presented on these approaches, sharing evidence that con-
nectivity between the medial prefrontal cortex (MPFC) and 
the dorsolateral prefrontal cortex (DLFPC) can be used as 
a biomarker to predict attentional problems in a normative 
pediatric population as assessed four years later, where 
greater baseline MPFC-DLPFC connectivity predicted 
worsening of attentional issues (Whitfield-Gabrieli et al., 
2020) while decreased baseline subgenual anterior cingulate 
(sgACC)—DLPFC connectivity predicted worsening of anx-
iety/depression. As psychiatric neuroimaging research has 
evolved from the description of patient cohorts using simple 
group comparisons towards a focus on individual differences 
and “predictive” analytics, preliminary studies suggest that 
intra-individual fluctuations of brain activity provide better 
prediction of symptoms than group-based studies. Machine 
learning integrated with experience-sampling can be used to 
produce novel brain-based predictive models of state fluctua-
tions (e.g., fluctuations of mind wandering) which general-
izes to both healthy and clinical populations (Kucyi et al., 
2021). Dr. Whitfield-Gabrieli also highlighted the use of 
mindfulness based rt-fMRI neurofeedback as a non-invasive, 
personalized circuit therapeutic to reduce symptom severity 
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in psychotic patients as well as for teens with major depres-
sive disorder and/or anxiety. (Bauer et al., 2020; Stoeckel 
et al., 2014) These pioneering studies provide strong motiva-
tion to pursue imaging based treatments.

Overall, machine learning based methods have potential 
to augment diagnostic and treatment workflows. As with all 
clinical interventions, the overarching goal is to improve 
patient outcomes, either within a specific decision point or 
longitudinally. While promising, more rigorous prospective 
and external validation studies in diverse clinical scenarios 
and populations are needed before these methods can be 
deployed for widespread use.

Section VI: Additional Considerations 
for Clinical Deployment

Regulatory Framework

To deploy any of the advances highlighted in the symposium 
that use machine learning algorithms in clinical practice, 
proposals must first clear the regulatory process as set by 
the Center for Devices and Radiological Health within the 
FDA that handles medical devices. Most machine learn-
ing methods in healthcare are categorized as software as a 
medical device (SaMD) which is a subcategory under soft-
ware related to medical devices under the medical device 
umbrella. The pathway to market depends on the risk asso-
ciated with the software, which in turn depends primarily 
on 1) significance of information provided by SaMD to a 
healthcare decision and 2) state of healthcare situation or 
condition; a more critical situation yields a higher risk rat-
ing. Traditionally, SaMD algorithms need to be locked, i.e., 
give the same output for the same input, after they are sub-
mitted to the FDA for premarket approval. This is impracti-
cal for machine learning software in situations where it is 
often desirable to continuously update the machine learning 
models based on user data (e.g. to accommodate updates in 
scanner hardware and software). The FDA has proposed a 
new regulatory framework based on a total product life cycle 
approach, wherein the initial premarket submission outlines 
the modifications that might take place in the future. The 
manufacturer can then continuously update their machine 
learning models based on new user data without having to 
go through a new premarket submission provided that the 
update is within the SaMD Pre-Specifications and algo-
rithm change protocol (Digital Health Center of Excellence, 
2021, https:// www. fda. gov/ medic al- devic es/ digit al- health- 
center- excel lence/ softw are- medic al- device- samd). These 
guidelines are under active discussion, development, and 
refinement in collaboration with industry, academic, and 
clinical leaders.

Machine intelligence in medical imaging is one of the 
most vibrant fields within the application of machine learn-
ing in healthcare, and one of its biggest subfields is quanti-
tative imaging (QI). QI refers to extraction of quantifiable 
features from medical images that serve as biomarkers for 
specific physiological conditions, such as features relating 
to aspects of brain health which have been discussed above. 
A premarket submission for a QI function requires a func-
tion description including the level of automation (manual, 
semi-automatic or fully automatic), a brief description of 
the training algorithm, quantitative performance specifica-
tions, and instructions used for semi-automatic labeling of 
the training set. The biggest part of the premarket submis-
sion is the technical performance assessment which should 
include a definition of the QI function, its relationship to 
the measurand, and the use conditions. For example, this 
could be a “brain age” assessment from MRI data applica-
ble to images of a specific resolution collected on a specific 
MRI system. It should also specify the performance metrics 
and characterize the performance of the QI function under 
the predefined conditions. In the mentioned example, per-
formance metrics could include accuracy as measured in 
deviation between actual age and estimated age in a nor-
mative cohort as well as bias or precision as measured in 
reproducibility or repeatability. A priori acceptance criteria 
regarding these performance metrics should also be set along 
with restrictions and limitations on usage, and the results of 
a study presented where the outcomes are compared to the 
predefined acceptance criteria.

Ethical Considerations During Machine Learning 
Model Development

As the machine learning applications in this report mature in 
their development, there are a number of vital ethical issues 
to be taken into consideration. While not the primary focus 
of the symposium, both the organizer, Dr. Randy Gollub 
and keynote speaker, Dr. Simon Eickhoff emphasized the 
importance of these aspects, pointing out a few examples of 
how, where, and why they are relevant. Some of these ethical 
considerations have established guidelines or technical best 
practices that need to be more widely used; others are ongoing 
discussions for which there is not yet a clear-cut solution (see 
for example the Fair ML for Health Workshop that was held 
during the NeurIPS 2019 Workshop (Fair ML for Health—
Accepted Papers, 2021, https:// www. fairm lforh ealth. com/ 
accep ted- papers). It is crucial that scientists and researchers 
participate actively in these discussions at each stage of 
development of these methods. We note that this section of 
our report is by no means comprehensive; for more in-depth 
discussions of these issues, see (Beauvais et al., 2021) and 
(Chen et al., 2020).

https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
https://www.fairmlforhealth.com/accepted-papers
https://www.fairmlforhealth.com/accepted-papers
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Data Sharing

Data sharing across institutions may eventually become nec-
essary to create large enough datasets to train sophisticated 
machine learning algorithms. To mitigate the risks of breach 
of privacy, security, and confidentiality, robust de-identification 
algorithms that retain all necessary imaging data elements are 
essential, and all modalities of data must be scrutinized to ensure 
that there are not additional unintended sources of protected 
information amongst them (e.g. private DICOM metadata tags). 
Secure cloud servers and backup protocols, expert curation and 
maintenance, and strict guidelines and training for researchers 
on how to securely access, store, and dispose of data are all addi-
tional tools to minimize the chances of confidentiality breaches 
or loss of data. Federated learning methods which allow data to 
be stored only at the location where it was collected while allow-
ing for multisite analysis are another means to support robust, 
yet protected, data sharing (K. Chang, Balachandar, et al., 2018; 
Chang, Grinband, et al., 2018). For all these approaches, fre-
quent communication between all institutions involved will 
also ensure that everyone is kept apprised of possible issues in 
a timely manner and that any changes are implemented in an 
organized and efficient manner.

Informed Consent for Expanded or Later Use of Data

It is becoming increasingly common for large datasets to be used 
and reused in multiple studies and towards different machine 
learning algorithms once they have been collected. This is 
mainly due to the cost in time, money, and resources to amass 
an entirely new dataset for each research question. Repurposing 
existing datasets across many studies is overall a very efficient 
and effective option; however, the wishes of those from whom 
the data is collected must be respected. Most current informed 
consent paradigms are based on data being collected for a sin-
gle study and therefore obtain informed consent from a patient 
for that single study alone. However, this system needs to be 
modified to reflect that it is likely a patient’s data could be used 
for many studies even decades into the future, most of which 
cannot even be fathomed at the time of data collection. Patients 
should, at minimum, have the ability to ‘opt out’ of having their 
data used in future studies without their explicit consent. Many 
current guidelines state that if the data is de-identified, it can 
be shared and used for new studies without re-obtaining con-
sent, often after obtaining a waiver of consent from the local 
Institutional Review Board. However, current trends warrant re-
examination of these guidelines with a goal of securing patient 
consent for wider, protected data use at the time of enrollment.

Intellectual Property and Commercialization

Clearer intellectual property guidelines are needed regarding 
models or algorithms developed from patient data collected for 

research use. With the increasing use of large datasets for multi-
ple studies and across long periods of time, it is difficult to track 
all of the downstream uses of a single person’s data. After data 
collection, development and validation of new methods, these 
methods may eventually be commercialized. However, inherent 
to any trained machine learning model or algorithm is the data 
that was used for such training. The data is inextricably tied to 
any intellectual property or commercial potential that results 
from the development process. Is it fair to allow patenting of 
trained models or algorithms on data collected from people who 
did not consent to its possible use for commercial profit? Should 
those people be included in any such profit? These questions 
must be answered as machine learning models become inte-
grated into clinical pipelines.

Bias in Datasets

In machine learning, the phrase “garbage in, garbage out” 
reflects the fact that bias, noise, or flaws in the underlying 
data used to train a model will undoubtedly affect the qual-
ity, accuracy, and validity of the results. Therefore, ensuring 
high quality data that is highly representative of the popula-
tions under study is paramount to the ethical and effective 
development of these methods. One key component of this 
for assessments of brain health is ensuring adequate repre-
sentation of traditionally underrepresented subpopulations 
in research, including underrepresented minorities, women, 
low and middle income nationals, transgender and gender 
non-conforming individuals, undocumented immigrants, 
and pregnant women, especially from an intersectional lens. 
This is especially important because of the specific men-
tal and behavioral health issues which impact brain health 
in many of these subpopulations. It also includes consid-
erations in the study design itself to ensure these popula-
tions are not excluded inadvertently by data acquisition 
methods, for example by failing to include more than the 
traditional binary options when documenting gender. Even 
if the intentions of researchers are to include all popula-
tions, other aspects of the study design can inadvertently 
be biased towards certain populations. For example, studies 
that require mobile phone downloads of certain apps or track 
social media use exclude populations who do not have access 
to smartphones or social media.

Even once a study is underway, oversight and periodic 
assessments of study recruitment practices should be done 
to check for inadvertent exclusion of certain populations. For 
example, the inclusion and exclusion criteria of many stud-
ies, especially randomized controlled trials, are often writ-
ten with purely scientific or clinical considerations in mind 
relating to the treatment or diagnostic in question. However, 
they can result in a study population that is too restricted 
and not reflective of the actual population of interest. Stud-
ies that involve multiple study visits at different times may 
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discourage participation of those who do not have the access 
or flexibility to come to the research site several times. Any 
researcher using existing datasets should hold to these same 
standards when checking the subject profile of the already 
collected data and include this information, including limita-
tions of the dataset, in any resulting publications.

Technical approaches have been suggested as tools for 
handling disproportionate representation of certain sub-
groups within large datasets. For example, some approaches 
force neural networks to learn intermediate representations 
which cannot be used to predict a protected attribute of inter-
est, e.g. gender or race (Dinsdale et al., 2021).

Quantifying/understanding Uncertainty

Whenever possible, researchers and scientists should attempt 
to quantify the uncertainty of their model predictions using 
statistical tools such as the confidence interval. Before such 
algorithms are implemented, clinicians should receive 
training on how to interpret the results given the limita-
tions of any model, including uncertainty. There is much 
attention being focused on these issues, including annual 
workshops that have been held since 2019 at the MICCAI 
meetings- “UNSURE Uncertainty for Safe Utilization of 
Machine Learning in Medical Imaging” with presentations 
and awards for work in areas such as risk management of 
machine learning systems in clinical pipelines, measurement 
errors, methods for modeling noise in data, validation of 
uncertainty estimates, calibration of uncertainty measures 
and more (Greenspan et al., 2019).

Ethical Considerations at the Stage of Deploying 
a Machine Learning Model

Privacy and Confidentiality of Information

As machine learning tools for brain health emerge, an 
important question to answer is: who should have access 
to the outputs of these methods? Should the patient have 
unfettered access to their own ‘brain health’ information? 
Should all clinicians who might interact with that patient 
have access? If it will be integrated into the medical record, 
how do we prevent it from affecting billing or insurance 
practices? How might the information bias someone’s inter-
action with a patient, especially without accurate reporting 
(with uncertainty)? These are all considerations that cannot 
be taken lightly and will have to be addressed to develop 
clinical best practices.

Incidental Findings

As with genetic information and testing, the probabilities of 
incidental findings in large datasets such as neuroimaging 

are non-trivial. How should such findings be handled? Do 
clinicians have an obligation to inform patients? What about 
for measures such as one of the indices of ‘brain age’ for 
which the implications are still under study? Clear clinical 
practice guidelines for the handling of sensitive informa-
tion relating to brain health must be developed prior to the 
deployment of any such algorithm.

While many of these ethical considerations are gray areas 
for which we can only postulate guidelines and not clear 
answers, ongoing discussion will hopefully lead to new 
best practices that adhere to the highest ethical standards 
on each of the issues discussed, to safeguard patients and 
their anatomic and physiological datasets. For researchers, 
it is important to keep in mind that the misinterpretation or 
generalization of one poorly designed high-profile study or 
one breach in confidentiality can be enough for an entire 
field to lose credibility.

Conclusion

The MGH McCance Center for Brain Health and Harvard-
MIT Health Sciences and Technology Neuroimaging Training 
Program co-hosted virtual symposium, “Neuroimaging 
Indicators of Brain Structure and Function—Closing the Gap 
Between Research and Clinical Application,” explored the 
recent explosion of machine learning approaches augmenting 
the clinical and scientific neuroimaging pipeline. Researchers 
presented cutting-edge techniques for acquiring more informative 
imaging data, more effectively analyzing this acquired data, 
and more precisely acting on the insights from this analysis 
to guide and individualize treatment decisions. The work 
presented at this symposium highlighted several open research 
directions which must be explored in order to implement these 
techniques in practice. For example, progress in this field will 
require techniques for robust generalization of machine learning 
techniques to more realistic, heterogeneous datasets as well 
as methods for identifying the uncertainty present in machine 
learning-based predictions and presenting this information to 
end users within a clinical workflow. Toward these ends, our 
field will need to ensure the availability of sufficiently large, 
curated data sets; the ability to share valuable data sets thus 
engaging a diverse, committed scientific community (Eickhoff 
et al., 2016); and responsible stewardship of brain imaging data 
to ensure appropriate protections for individual privacy as well 
as intellectual property and proper handling of bias in these data. 
With a firm commitment in these directions, machine learning 
promises to dramatically improve the early detection, prediction, 
and treatment of diseases that threaten brain health.

Note: Interested readers may view recorded videos 
of all symposium presentations and discussions at this 
link https:// www. youtu be. com/ playl ist? list= PL0A- NKHLV 
rNF82 vdjey yaBRo iXg77 lCeW.

https://www.youtube.com/playlist?list=PL0A-NKHLVrNF82vdjeyyaBRoiXg77lCeW
https://www.youtube.com/playlist?list=PL0A-NKHLVrNF82vdjeyyaBRoiXg77lCeW
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