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Abstract

State-of-the-art NLP systems represent inputs
with word embeddings, but these are brittle
when faced with Out-of-Vocabulary (OOV)
words. To address this issue, we follow
the principle of mimick-like models to gen-
erate vectors for unseen words, by learning
the behavior of pre-trained embeddings us-
ing only the surface form of words. We
present a simple contrastive learning frame-
work, LOVE, which extends the word repre-
sentation of an existing pre-trained language
model (such as BERT), and makes it ro-
bust to OOV with few additional parameters.
Extensive evaluations demonstrate that our
lightweight model achieves similar or even bet-
ter performances than prior competitors, both
on original datasets and on corrupted variants.
Moreover, it can be used in a plug-and-play
fashion with FastText and BERT, where it sig-
nificantly improves their robustness.

1 Introduction

Word embeddings represent words as vec-
tors (Mikolov et al., 2013a,b; Pennington et al.,
2014). They have been instrumental in neural net-
work approaches that brought impressive perfor-
mance gains to many natural language processing
(NLP) tasks. These approaches use a fixed-size vo-
cabulary. Thus they can deal only with words that
have been seen during training. While this works
well on many benchmark datasets, real-word cor-
pora are typically much noisier and contain Out-of-
Vocabulary (OOV) words, i.e., rare words, domain-
specific words, slang words, and words with typos,
which have not been seen during training. Model
performance deteriorates a lot with unseen words,
and minor character perturbations can flip the pre-
diction of a model (Liang et al., 2018; Belinkov
and Bisk, 2018; Sun et al., 2020; Jin et al., 2020).
Simple experiments (Figure 1) show that the addi-
tion of typos to datasets degrades the performance
for text classification models considerably.
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Figure 1: Performances of existing word embeddings
as we gradually add typos to the datasets. Using
our model, LOVE, to produce vectors for OOV words
makes the models more robust.

To alleviate this problem, pioneering work pre-
trained word embeddings with morphological fea-
tures (sub-word tokens) on large-scale datasets (Wi-
eting et al., 2016; Bojanowski et al., 2017; Heinz-
erling and Strube, 2017; Zhang et al., 2019). One
of the most prominent works in this direction is
FastText (Bojanowski et al., 2017), which incorpo-
rates character n-grams into the skip-gram model.
With FastText, vectors of unseen words can be im-
puted by summing up the n-gram vectors. How-
ever, these subword-level models come with great
costs: the requirements of pre-training from scratch
and high memory footprint. Hence, several sim-
pler approaches have been developed, e.g., MIM-
ICK (Pinter et al., 2017), BoS (Zhao et al., 2018)
and KVQ-FH (Sasaki et al., 2019). These use only
the surface form of words to generate vectors for
unseen words, through learning from pre-trained
embeddings.

Although MIMICK-like models can efficiently
reduce the parameters of pre-trained representa-
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Figure 2: Our lightweight OOV model, LOVE, learns
the behavior of pre-trained embeddings (e.g., FastText
and BERT), and is then able to impute vectors for un-
seen words. LOVE can enhance the robustness of exist-
ing word representations in a plug-and-play fashion.

tions and alleviate the OOV problem, two main
challenges remain. First, the models remain bound
in the trade-off between complexity and perfor-
mance: The original MIMICK is lightweight but
does not produce high-quality word vectors con-
sistently. BoS and KVQ-FH obtain better word
representations but need more parameters. Sec-
ond, these models cannot be used with existing
pre-trained language models such as BERT. It is
these models, however, to which we owe so much
progress in the domain (Peters et al., 2018; Devlin
et al., 2019; Yang et al., 2019; Liu et al., 2020). To
date, these high-performant models are still fragile
when dealing with rare words (Schick and Schütze,
2020), misspellings (Sun et al., 2020) and domain-
specific words (El Boukkouri et al., 2020).

We address these two challenges head-on: we de-
sign a new contrastive learning framework to learn
the behavior of pre-trained embeddings, dubbed
LOVE, Learning Out-of-Vocabulary Embeddings.
Our model builds upon a memory-saving mixed
input of character and subwords instead of n-gram
characters. It encodes this input by a lightweight
Positional Attention Module. During training,
LOVE uses novel types of data augmentation and
hard negative generation. The model is then able to
produce high-quality word representations that are
robust to character perturbations, while consum-
ing only a fraction of the cost of existing models.
For instance, LOVE with 6.5M parameters can ob-
tain similar representations as the original FastText
model with more than 900M parameters. What is
more, our model can be used in a plug-and-play

fashion to robustify existing language models. We
find that using LOVE to produce vectors for unseen
words improves the performance of FastText and
BERT by around 1.4-6.8 percentage points on noisy
text – without hampering their original capabilities
(As shown in Figure 2).

In the following, Section 2 discusses related
work, Section 3 introduces preliminaries, Sec-
tion 4 presents our approach, Section 5 shows our
experiments, and Section 6 concludes. The ap-
pendix contains additional experiments and anal-
yses. Our code and data is available at https:
//github.com/tigerchen52/LOVE

2 Related Work

2.1 Character-level Embeddings

To address OOV problems, some approaches in-
ject character-level features into word embeddings
during the pre-training (Wieting et al., 2016; Cao
and Rei, 2016; Bojanowski et al., 2017; Heinzer-
ling and Strube, 2017; Kim et al., 2018; Li et al.,
2018; Üstün et al., 2018; Piktus et al., 2019; Zhu
et al., 2019; Zhang et al., 2019; Hu et al., 2019).
One drawback of these methods is that they need
to pre-train on a large-scale corpus from scratch.
Therefore, simpler models have been developed,
which directly mimic the well-trained word embed-
dings to impute vectors for OOV words. Some of
these methods use only the surface form of words
to generate embeddings for unseen words (Pinter
et al., 2017; Zhao et al., 2018; Sasaki et al., 2019;
Fukuda et al., 2020; Jinman et al., 2020), while
others use both surface and contextual informa-
tion to create OOV vectors (Schick and Schütze,
2019a,b). In both cases, the models need an ex-
cessive number of parameters. FastText, e.g., uses
~2 million n-gram characters to impute vectors for
unseen words.

2.2 Pre-trained Language Models

Currently, the state-of-the-art word representa-
tions are pre-trained language models, such as
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019) and XLnet (Yang et al., 2019), which adopt
subwords to avoid OOV problems. However,
BERT is brittle when faced with rare words (Schick
and Schütze, 2020) and misspellings (Sun et al.,
2020). To make BERT more robust, Charac-
terBERT (El Boukkouri et al., 2020) and Char-
BERT (Ma et al., 2020) infuse character-level fea-
tures into BERT and pre-train the variant from

https://github.com/tigerchen52/LOVE
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scratch. This method can significantly improve
the performance and robustness of BERT, but re-
quires pre-training an adapted transformer on a
large amount of data. Another work on combat-
ing spelling mistakes recommends placing a word
corrector before downstream models (Pruthi et al.,
2019), which is effective and reusable. The main
weakness of this method is that an error generated
by the word corrector propagates to downstream
tasks. For example, converting “aleph” to “alpha”
may break the meaning of a mathematical state-
ment. And indeed, using the word corrector consis-
tently leads to a drop (0.5-2.0 percentage points) in
BERT’s performance on the SST dataset (Socher
et al., 2013).

2.3 Contrastive Learning

The origin of contrastive learning can be traced
back to the work by Becker and Hinton (1992)
and Bromley et al. (1993). This method has
achieved outstanding success in self-supervised
representation learning for images (Oord et al.,
2018; Hjelm et al., 2018; He et al., 2020; Chen
et al., 2020; Grill et al., 2020). The contrastive
learning framework learns representations from un-
labeled data by pulling positive pairs together and
pushing negative pairs apart. For training, the pos-
itive pairs are often obtained by taking two ran-
domly augmented versions of the same sample and
treating the other augmented examples within a
mini-batch as negative examples (Chen et al., 2017,
2020). The most widely used loss is the infoNCE
loss (or contrastive loss) (Hjelm et al., 2018; Lo-
geswaran and Lee, 2018; Chen et al., 2020; He
et al., 2020). Although many approaches adopt
contrastive learning to represent sentences (Giorgi
et al., 2020; Wu et al., 2020; Gao et al., 2021), it
has so far not been applied to word representations.

Input Encoder Loss

MIMICK
(2017)

character sequence
{s,p,e,l,l}

RNNs Ldis

BoS
(2018)

n-gram subword
{spe,pel,ell}

SUM Ldis

KVQ-FH
(2019)

adapted n-gram subword
{spe,pel,ell}

Attention Ldis

Table 1: Details of different mimick-like models, with
the word spell as an example.

3 Preliminaries

3.1 Mimick-like Model
Given pre-trained word embeddings, and given an
OOV word, the core idea of MIMICK (Pinter et al.,
2017) is to impute an embedding for the OOV word
using the surface form of the word, so as to mimic
the behavior of the known embeddings. BoS (Zhao
et al., 2018), KVQ-FH (Sasaki et al., 2019), Robust
Backed-off Estimation (Fukuda et al., 2020), and
PBoS (Jinman et al., 2020) work similarly, and we
refer to them as mimick-like models.

Formally, we have a fixed-size vocabulary set V ,
with an embedding matrix W ∈ R|V|×m, in which
each row is a word vector uw ∈ Rm for the wordw.
A mimick-like model aims to impute a vector vw
for an arbitrary wordw 6∈ V . The training objective
of mimick-like models is to minimize the expected
distance between uw and vw pairs:

Ldis =
1

|V|
∑
w∈V

ψ(uw,vw) (1)

Here, ψ(·) is a distance function, e.g., the Eu-
clidean distance ψ = ‖uw − vw‖22 or the cosine
distance ψ = 1 − cos(uw,vw). The vector vw is
generated by the following equation:

vw = φ(ζ(w)), for w ∈ V or w /∈ V (2)

Here, ζ(·) is a function that maps w to a list of sub-
units based on the surface form of the word (e.g., a
character or subword sequence). After that, the se-
quence is fed into the function φ(·) to produce vec-
tors, and the inside structure can be CNNs, RNNs,
or a simple summation function. After training,
the model can impute vectors for arbitrary words.
Table 1 shows some features of three mimick-like
models.

3.2 Contrastive Learning
Contrastive learning methods have achieved signif-
icant success for image representation (Oord et al.,
2018; Chen et al., 2020). The core idea of these
methods is to encourage learned representations
for positive pairs to be close, while pushing repre-
sentations from sampled negative pairs apart. The
widely used contrastive loss (Hjelm et al., 2018;
Logeswaran and Lee, 2018; Chen et al., 2020; He
et al., 2020) is defined as:

`cl = − log
esim(uT

i u
+)/τ

esim(uT
i u

+)/τ +
∑
esim(uT

i u
−)/τ

(3)



Here, τ is a temperature parameter, sim(·) is a
similarity function such as cosine similarity, and
(ui, u

+), (ui, u−) are positive pairs and negative
pairs, respectively (assuming that all vectors are
normalized). During training, positive pairs are usu-
ally obtained by augmentation for the same sample,
and negative examples are the other samples in the
mini-batch. This process learns representations that
are invariant against noisy factors to some extent.

4 Our Approach: LOVE

LOVE (Learning Out-of-Vocabulary Embeddings)
draws on the principles of contrastive learning to
maximize the similarity between target and gener-
ated vectors, and to push apart negative pairs. An
overview of our framework is shown in Figure 3. It
is inspired by work in visual representation learn-
ing (Chen et al., 2020), but differs in that one of the
positive pairs is obtained from pre-trained embed-
dings instead of using two augmented versions. We
adopt five novel types of word-level augmentations
and a lightweight Positional Attention Module in
this framework. Moreover, we find that adding
hard negatives during training can effectively yield
better representations. We removed the nonlinear
projection head after the encoder layer, because
its improvements are specific to the representation
quality in the visual field. Furthermore, our ap-
proach is not an unsupervised contrastive learning
framework, but a supervised learning approach.

Our framework takes a word from the orig-
inal vocabulary and uses data augmentation
to produce a corruption of it. For example,
"misspelling" becomes "mispelling" af-
ter dropping one letter "s". Next, we obtain a
target vector from the pre-trained embeddings for
the original word, and we generate a vector for the
corrupted word. These two vectors are a pair of
positive samples, and we maximize the similarity
between them while making the distance of nega-
tive pairs (other samples in the same mini-batch)
as large as possible. As mentioned before, we use
the contrastive loss as an objective function (Eq 3).
There are five key ingredients in the framework
that we will detail in the following (similar to the
ones in Table 1): the Input Method, the Encoder,
the Loss Function, our Data Augmentation, and the
choice of Hard Negatives.

4.1 Input Method

Our goal is to use the surface form to impute vec-
tors for words. The question is thus how to de-
sign the function ζ(·) mentioned in Section 3.1
to represent each input word. MIMICK (Pinter
et al., 2017) straightforwardly uses the character
sequence (see Table 1). This, however, loses the
information of morphemes, i.e., sequences of char-
acters that together contribute a meaning. Hence,
FastText (Bojanowski et al., 2017) adopts character
n-grams. Such n-grams, however, are highly redun-
dant. For example, if we use substrings of length
3 to 5 to represent the word misspelling, we
obtain a list with 24 n-gram characters – while only
the substrings {mis, spell, ing} are the
three crucial units to understand the word. Hence,
like BERT, we use WordPiece (Wu et al., 2016)
with a vocabulary size of around 30000 to obtain
meaningful subwords of the input word. For the
word misspelling, this yields {miss, ##pel,
##ling }. However, if we just swap two letters
(as by a typo), then the sequence becomes com-
pletely different: {mi, ##sp, ##sell, ##ing }.
Therefore, we use both the character sequence and
subwords (Figure A1).

We shrink our vocabulary by stemming all words
and keeping only the base form of each word, and
by removing words with numerals. This decreases
the size of vocabulary from 30 000 to 21 257 with-
out degrading performance too much (Section A.1).

4.2 Encoder

Let us now design the function φ(·) mentioned in
Section 3.1. We are looking for a function that
can encode both local features and global features.
Local features are character n-grams, which pro-
vide robustness against minor variations such as
character swaps or omissions. Global features
combine local features regardless of their distance.
For the word misspelling, a pattern of pre-
fix and suffix mis+ing can be obtained by com-
bining the local information at the beginning and
the end of the word. Conventional CNNs, RNNs,
and self-attention cannot extract such local and
global information at the same time. Therefore,
we design a new Positional Attention Module.
Suppose we have an aforementioned mixed input
sequence and a corresponding embedding matrix
V ∈ R|V|×d where d is the dimension of vectors.
Then the input can be represented by a list of vec-
tors: X = {x1,x2, ...,xn} ∈ Rn×d where n is the
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Figure 3: The framework of LOVE with an example of the word misspelling.

length of the input. To extract local information,
we first adopt positional attention to obtain n-gram
features, and then feed them into a conventional
self-attention layer to combine them in a global
way. This can be written as:

X̄ = SA(PA(X))WO (4)

Here, SA is a standard multi-head self-attention
and PA is a positional attention. WO ∈ RdV ×dO
is a trainable parameter matrix, where dV are the
dimensions of values in SA and PA, and dO is that
of X̄. As for the Positional Attention, we adopt
absolute sinusoidal embeddings (Vaswani et al.,
2017) to compute positional correlations:

PA(X) = Softmax

(
PPT

√
d

)
(X WV ) (5)

Here, P ∈ Rn×d are the position embeddings,
and WV ∈ Rd×dV are the corresponding param-
eters. More details about the encoder are in Ap-
pendix C.4.

4.3 Loss Function

In this section, we focus on the loss function L(·).
Mimick-like models often adopt the mean squared
error (MSE), which tries to give words with the
same surface forms similar embeddings. However,
the MSE only pulls positive word pairs closer, and
does not push negative word pairs apart. Therefore,
we use the contrastive loss instead (Equation 3).
Wang and Isola (2020) found that the contrastive
loss optimizes two key properties: Alignment and
Uniformity. The Alignment describes the expected

distance (closeness) between positive pairs:

`align , E
(x,y)∼ppos

ψ(ux,uy) (6)

Here, ppos is the distribution of positive pairs. The
Uniformity measures whether the learned represen-
tations are uniformly distributed in the hypersphere:

`uniform , log E
(x,y)

i.i.d.∼ pdata

e−t·ψ(ux,uy) (7)

Here, pdata is the data distribution and t > 0 is a
parameter. The two properties are consistent with
our expected word representations: positive word
pairs should be kept close and negative word pairs
should be far from each other, finally scattered over
the hypersphere.

4.4 Data Augmentation and Hard Negatives
Our positive word pairs are generated by data aug-
mentation, which can increase the amount of train-
ing samples by using existing data. We use various
strategies (Figure 4) to increase the diversity of our
training samples: (1) Swap two adjacent charac-
ters, (2) Drop a character, (3) Insert a new charac-
ter, (4) Replace a character according to keyboard
distance, (5) Replace the original word by a syn-
onymous word. The first four augmentations are
originally designed to protect against adversarial
attacks (Pruthi et al., 2019). We add the synonym
replacement strategy to keep semantically similar
words close in the embedding space – something
that cannot be achieved by the surface form alone.
Specifically, a set of synonyms is obtained by re-
trieving the nearest neighbors from pre-trained em-
beddings like FastText.



Swap misspelling -> misspleling

Drop misspelling -> mispelling

Keyboard misspelling -> mosspelling

Insert misspelling -> misspellling

Synonym misspelling -> heterography

Figure 4: Illustrations of different augmentations for
the word misspelling.

Negative word pairs are usually chosen randomly
from the mini-batch. However, we train our model
to be specifically resilient to hard negatives (or
difficult negatives), i.e., words with similar surface
forms but different meanings (e.g., misspelling and
dispelling). To this end, we add a certain number
of hard negative samples (currently 3 of them) to
the mini-batch, by selecting word pairs that are not
synonyms and have a small edit distance.

4.5 Mimicking Dynamical Embeddings

Pre-trained Language Models (e.g., ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019)) dy-
namically generate word representations based on
specific contexts, which cannot be mimicked di-
rectly. To this end, we have two options: We can
either learn the behavior of the input embeddings
in BERT before the multi-layer attentions or mimic
the static distilled embeddings (Bommasani et al.,
2020; Gupta and Jaggi, 2021).

We use the BERT as an example to explain these
two methods. Suppose we have a subword se-
quence after applying WordPiece to a sentence:
W = {w1, w2, ..., wn}. For the subword sequence
W , BERT first represents it as a list of subword em-
beddings: Ein = {esub1 , esub2 , ..., esubn }. We refer
to this static representation as the Input Embedding
of BERT, and we can use our model to mimic the
behavior of this part. We call this method mimick-
ing input embeddings. For ease of implementation,
we learn only from the words that are not separated
into pieces. After that step, BERT applies a multi-
layer multi-head attention to the input embeddings
Ein, which yields a contextual representation for

each subword: Eout = {eout1 , eout2 , ..., eoutn }. How-
ever, these contextual representations vary accord-
ing to the input sentence and we cannot learn from
them directly. Instead, we choose to mimic the dis-
tilled static embeddings from BERT, which are ob-
tained by pooling (max or average) the contextual
embeddings of the word in different sentences. We
call this method mimicking distilled embeddings.
The latter allows for better word representations,
while the former does not require training on a
large-scale corpus. Our empirical studies show
that mimicking distilled embeddings performs only
marginally better. Therefore, we decided to rather
learn the input embeddings of BERT, which is sim-
ple yet effective

4.6 Plug and Play

One of the key advantages of our model is that it
can be used as a plug-in for other models. For mod-
els with static word embeddings like FastText, one
can simply use our model to generate vectors for
unseen words. For models with dynamic word em-
beddings like BERT, if a single word is tokenized
into several parts, e.g. misspelling = {miss,
##pel, ##ling }, we regard it as an OOV word.
Then, we replace the embeddings of the subwords
by a single embedding produced by our model be-
fore the attention layer. Our final enhanced BERT
model has 768 dimensions and 16M parameters.
Note that the BERT-base model has ~110M param-
eters and its distilled one has ~550M parameters.

5 Experiments

5.1 Evaluation Datasets

There are two main methods to evaluate word rep-
resentations: Intrinsic and Extrinsic. Intrinsic eval-
uations measure syntactic or semantic relationships
between words directly, e.g., word similarity in
word clusters. Extrinsic evaluations measure the
performance of word embeddings as input features
to a downstream task, e.g., named entity recogni-
tion (NER) and text classification. Several studies
have shown that there is no consistent correlation
between intrinsic and extrinsic evaluation results
(Chiu et al., 2016; Faruqui et al., 2016; Wang et al.,
2019). Hence, we evaluate our representation by
both intrinsic and extrinsic metrics. Specifically,
we use 8 intrinsic datasets (6 word similarity and 2
word cluster tasks): RareWord (Luong et al., 2013),
SimLex (Hill et al., 2015), MTurk (Halawi et al.,
2012), MEN (Bruni et al., 2014), WordSim (Agirre



parameters Word Similarity Word Cluster Avg
embedding others RareWord SimLex MTurk MEN WordSim SimVerb AP BLESS

FastText (2017) 969M - 48.1 30.4 66.9 78.1 68.2 25.7 58.0 71.5 55.9

MIMICK (2017) 9M 517K 27.1 15.9 32.5 36.5 15.0 7.5 59.3 72.0 33.2
BoS (2018) 500M - 44.2 27.4 55.8 65.5 53.8 22.1 41.8 39.0 43.7

KVQ-FH (2019) 12M - 42.4 20.4 55.2 63.4 53.1 16.4 39.1 42.5 41.6
LOVE 6.3M 200K 42.2 35.0 62.0 68.8 55.1 29.4 53.2 51.5 49.7

Table 2: Performance on the intrinsic tasks, measured as Spearman’s ρ and purity for word similarity and
clustering. Best performance among the mimick-like models in bold, second-best underlined.

parameters SST2 MR CoNLL-03 BC2GM Avg
embedding others original +typo original +typo original +typo original +typo

FastText (2017) 969M - 82.3 60.5 73.3 62.2 86.4 66.3 71.8 53.4 69.5
Edit Distance 969M - - 67.4 - 68.3 - 76.2 - 66.6 -

MIMICK (2018) 9M 517K 69.7 62.3 73.6 61.4 68.0 65.2 56.6 56.7 64.2
BoS (2018) 500M - 79.7 72.6 73.6 69.5 79.5 68.6 66.4 61.5 71.5

KVQ-FH (2019) 12M - 77.8 71.4 72.9 66.5 73.1 70.4 46.2 53.5 66.5
LOVE 6.3M 200K 81.4 73.2 74.4 66.7 78.6 69.7 64.7 63.8 71.6

Table 3: Performance on the extrinsic tasks, measured as accuracy and F1 (five runs of different
learning rates) for text classification and NER, respectively. Typos are generated by simulated errors
of an OCR engine (Ma, 2019). The speed of producing word vectors with Edit Distance and LOVE is
380s/10K words and 0.9s/10K words, respectively.

et al., 2009), Simverb (Agirre et al., 2009), AP (Al-
muhareb, 2006) and BLESS (Baroni and Lenci,
2011). We use four extrinsic datasets (2 text clas-
sification and 2 NER tasks): SST2 (Socher et al.,
2013), MR (Pang and Lee, 2005), CoNLL-03 (Sang
and De Meulder, 2003) and BC2GM (Smith et al.,
2008). It is worth noting that the RareWord dataset
contains many long-tail words and the BC2GM is
a domain-specific NER dataset. All data augmen-
tations and typo simulations are implemented by
NLPAUG1. Appendix B provides more details on
our datasets and experimental settings.

5.2 Results on Intrinsic Tasks
Table 2 shows the experimental results on 8 intrin-
sic tasks. Compared to other mimick-like models,
our model achieves the best average score across
8 datasets while using the least number of param-
eters. Specifically, our model performs best on 5
word similarity tasks, and second-best on the word
cluster tasks. Although there is a gap between our
model and the original FastText, we find our per-
formance acceptable, given that our model is 100x
times smaller.

5.3 Results on Extrinsic Tasks
Table 3 shows the results on four downstream
datasets and their corrupted version. In this exper-
iment, we introduce another non-trivial baseline:
Edit Distance. For each corrupted word, we find

1https://github.com/makcedward/nlpaug

the most similar word from a vocabulary using edit
distance and then use the pre-trained vectors of the
retrieved word. Considering the time cost, we only
use the first 20K words appearing in FastText (2M
words) as reference vocabulary.

The typo words are generated by simulating post-
OCR errors. For the original datasets, our model
obtains the best results across 2 datasets and the
second-best on NER datasets compared to other
mimick-like models. For the corrupted datasets, the
performance of the FastText model decreases a lot
and our model is the second best but has very close
scores with BoS consistently. Compared to other
mimick-like models, our model with 6.5M achieves
the best average score. Although Edit Distance can
effectively restore the original meaning of word,
it is 400x times more time-consuming than our
model.

5.4 Robustness Evaluation

In this experiment, we evaluate the robustness of
our model by gradually adding simulated post-
OCR typos (Ma, 2019). Table 4 shows the per-
formances on SST2 and CoNLL-03 datasets. We
observe that our model can improve the robust-
ness of the original embeddings without degrading
their performance. Moreover, we find our model
can make FastText more robust compared to other
commonly used methods against unseen words: a
generic UNK token or character-level representa-
tion of neural networks. Figure 5 shows the robust-

https://github.com/makcedward/nlpaug


SST2 CoNLL-03
Typo Probability original 10% 30% 50% 70% 90% original 10% 30% 50% 70% 90% Avg

Static Embeddings

FastText 82.3 68.2 59.8 56.7 57.8 60.3 86.4 81.6 78.9 73.9 70.2 63.4 70.0
FastText + LOVE 82.1 79.8 74.9 74.2 68.8 67.2 86.3 84.7 81.8 77.5 73.1 71.3 76.8

Dynamical Embeddings

BERT 91.5 88.2 78.9 74.7 69.0 60.1 91.2 89.8 86.2 83.4 79.9 76.5 80.7
BERT + LOVE 91.5 88.3 83.7 77.4 72.7 63.3 89.9 88.3 86.1 84.3 80.8 78.3 82.1

Table 4: Robust evaluation (five runs of different learning rates) on text classification and NER under
simulated post-OCR typos. We use uncased and cased BERT-base model for SST2 and CoNLL-03,
respectively.
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Figure 5: Evaluation of different methods based on
FastText under typos.

ness check of different strategies. FastText+LOVE
has a consistent improvement on both SST2 and
CoNLL-03 datasets. At the same time, LOVE de-
grades the performance on the original datasets
only marginally if at all.

5.5 Ablation Study
We now vary the components in our architec-
ture (input method, encoder and loss function) to
demonstrate the effectiveness of our architecture.

Input Method. To validate the effect of our
Mixed Input strategy, we compare it with two other
methods: using only the character sequence or
only the subword sequence. Table 5 shows that
the Mixed method achieves better representations,
and any removal of char or subword information
can decrease the performance.

Encoder. To encode the input sequence, we de-
veloped the Positional Attention Module (PAM),
which first extracts ngram-like local features and
then uses self-attention combine them without dis-
tance restrictions. Table 5 shows that PAM per-
forms the best, which validates our strategy of in-
corporating both local and global parts inside a
word. At the same time, the number of parameters

parameters RareWord SST2
embedding others

The original LOVE 6.3M 200K 42.2 81.4

Varying the input method

only use Char 299K 200K 17.7 71.5
only use Subword 6.0M 200K 25.3 76.0

Varying the encoder

replace PAM with CNN 6.3M 270K 28.4 61.1
replace PAM with RNN 6.3M 517K 27.2 67.2
replace PAM with SA 6.3M - 36.9 78.7

Varying the loss function

use MSE 6.3M 200K 34.5 76.0
use `au(λ = 1.0) 6.3M 200K 40.8 80.8

Ablation of data augmentation and hard negatives

w/out hard negatives 6.3M 200K 37.7 78.6
w/out hard negatives

and augmentation 6.3M 200K 37.8 78.2

Table 5: Ablation studies for the architecture of
LOVE, measured as Spearman’s ρ and accuracy, re-
spectively.

of PAM is acceptable in comparison. We visualize
the attention weights of PAM in Appendix C.4, to
show how the encoder extracts local and global
morphological features of a word.

Loss Function. LOVE uses the contrastive loss,
which increases alignment and uniformity. Wang
and Isola (2020) proves that optimizing directly
these two metrics leads to comparable or better per-
formance than the original contrastive loss. Such a
loss function can be written as:

`au = `align + λ · `uniform (8)

Here, λ is a hyperparameter that controls the im-
pact of `uniform. We set this value to 1.0 because it
achieves the best average score on RareWord and
SST2. An alternative is to use the Mean Squared
Error (MSE), as in mimick-like models. Table 5
compares the performances of these different loss
functions. The contrastive loss significantly outper-
forms the MSE, and there is no obvious improve-



SST2
typos per sentence typo-0 typo-1 typo-2 typo-3

BERT 91.5 77.2 73.2 69.4

Mimicking Input Embeddings

BERT + Add 91.3 77.2 73.5 70.7
BERT + Linear (2020) 91.4 79.6 77.2 72.8
BERT + Replacement 91.5 81.4 78.7 73.6

Mimicking Distilled Embeddings

BERT + Add 91.3 78.8 75.6 72.3
BERT + Linear (2020) 91.3 81.4 78.7 73.6
BERT + Replacement 91.4 81.5 78.9 73.8

Table 6: Performances of different strategies that work
with BERT together, measured as the accuracy among
five different learning rates.

ment by directly using alignment and uniformity.
We also tried various temperatures τ for the con-
trastive loss, and the results are shown in Table A3
in the appendix. In the end, a value of τ = 0.07
provides a good performance.

Data Augmentation and Hard Negatives. In
Table 5, we observe that the removal of our hard
negatives decreases the performance, which demon-
strates the importance of semantically different
words with similar surface forms.

LOVE uses five types of word augmentation.
We find that removing this augmentation does not
deteriorate performance too much on the word sim-
ilarity task, while it causes a 0.4 point drop in the
text classification task (the last row in Table 5),
where data augmentations prove helpful in dealing
with misspellings. We further analyze the perfor-
mance of single and composite augmentations on
RareWord and SST2 in the appendix in Figure A3
and Figure A4. We find that a combination of all
five types yields the best results.

5.6 The performance of mimicking BERT

As described in Section 4.5, we can mimic the input
or distilled embeddings of BERT. After learning
from BERT, we use the vectors generated by LOVE
to replace the embeddings of OOV subwords. Fi-
nally, these new representations are fed into the
multi-layer attentions. We call this method the Re-
placement strategy. To valid its effectiveness, we
compare it with two other baselines: (1) Linear
Combination (Fukuda et al., 2020). For each sub-
word esub, the generated vectors of word eword

containing the subwords are added to the subword

vectors of BERT:

enew = (1− α) esub + α eword (9)

α = sigmoid (W · esub)

where esub ∈ Rd is a subword vector of BERT,
and eword ∈ Rd is a generated vector of our model.
W ∈ Rd are trainable parameters.
(2) Add. A generated word vector is directly added
to a corresponding subword vector of BERT:

enew = esub + eword (10)

Table 6 shows the result of these strategies. All
of them can bring a certain degree of robustness to
BERT without decreasing the original capability,
which demonstrates the effectiveness of our frame-
work. Second, the replacement strategy consis-
tently performs best. We conjecture that BERT can-
not restore a reasonable meaning for those rare and
misspelling words that are tokenized into subwords,
and our generated vectors can be located nearby the
original word in the space. Third, we find mimick-
ing distilled embeddings performs the best while
mimicking input embeddings comes close. Con-
sidering that the first method needs training on
large-scale data, mimicking the input embeddings
is our method of choice.

6 Conclusion

We have presented a lightweight contrastive-
learning framework, LOVE, to learn word repre-
sentations that are robust even in the face of out-of-
vocabulary words. Through a series of empirical
studies, we have shown that our model (with only
6.5M parameters) can achieve similar or even bet-
ter word embeddings on both intrinsic and extrinsic
evaluations compared to other mimick-like models.
Moreover, our model can be added to models with
static embeddings (such as FastText) or dynami-
cal embeddings (such as BERT) in a plug-and-play
fashion, and bring significant improvements there.
For future work, we aim to extend our model to
languages other than English.
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Figure A1: An illustration of our Mixed input for the
word misspell.

A Details of Our Approach

A.1 Shrinking Our Model
We consider the following four methods to reduce
the total parameters of our model:
(1) Matrix Decomposition. The original matrix
can be decomposed into two smaller matrices V =
U ×M,U ∈ R|V|×h,M ∈ Rh×m and h < m.
Here, we set m = 300 and h = 200 respectively.
(2) Top Subword. We use only the top-k frequent
subwords, using the word frequencies from a cor-
pus. We set the parameter k = 20000.
(3) Hashing. We use a hashing strategy to share
memory for subwords aiming to reduce the param-
eters. We use a bucket size of 20000.
(4) Preprocessing. The original vocabulary con-
tains plurals and conjugations, therefore we stem
all complete words and remove words with numer-
als, obtaining a new vocabulary of 21257 words.

Table A1 shows that the preprocessing method
can reduce parameters very effectively while ob-
taining a very competitive performance.

parameters RareWord SST2
embedding non-embedding

Original 9M 200K 43.5 80.7

Decomposition 5.6M 200K 38.1 80.3
Top-K 6M 200K 39.2 80.1

Hashing 6M 200K 40.5 80.4
Preprocessing 6.3M 200K 42.4 80.7

Table A1: Performance of different shrinkage
strategies, measured as Spearman’s ρ and accu-
racy, respectively. The target vectors are from
fasttext-crawl-300d-2M.

B Details of Our Experiments

B.1 Training of Mimick-like Models
Our target pre-trained embeddings are those
from FastText fasttext-crawl-300d-2M,
because they provide a strong baseline. They sum
up subword-level information to produce vectors
for arbitrary words. We also compare to MIMICK,
BoS, and KVQ-FH, which do not train on contex-
tual words. We do not compare to Robust Backed-
off Estimation (Fukuda et al., 2020) and PBoS (Jin-

Hyperparam SST2 MR CONLL-03 BC2GM

model CNN CNN BiLSTM+CRF BiLSTM+CRF
layer 1 1 1 1
kernel [3,4,5] [3,4,5] - -
filter 100 100 - -

hidden size 300 300 300 300
optimizer Adam Adam SGD SGD
dropout 0.5 0.5 0.5 0.5

batch size 50 50 768 768
epoch 5 5 100 100

Table A2: Hyperparameters for extrinsic datasets.

man et al., 2020), because they need larger and
more complex models. Robust Backed-off Estima-
tion uses string matching to find the top-k similar
words from the entire vocabulary when imputing,
and the code is not open-source. Using the same
target vectors, the number of parameter of BoS
and PBoS are 163M and 316M, respectively. We
re-train MIMICK, BoS, and KVQ-FH as baselines
according to the published settings. In order to
compare at the same parameter level, we use sub-
words for MIMICK instead of pure characters and
adjust the hashing size H = 40K for KVQ-FH.

B.2 Robustness Evaluations

As for our model, we first lower-case and tokenize
each word by using WordPiece (Wu et al., 2016)
with a vocabulary of 30K subwords and prepro-
cess them by stemming and removing subwords
with numerals. This yields a vocabulary of 21257
words. Each subword is represented by correspond-
ing vectors from our model and we adopt a mod-
ified attention model to encode the subword se-
quence. Specifically, the layer number of this en-
coder is just 1 for efficiency and the hidden di-
mension is 300. In each block, the number of
attention heads is 1 and we use fixed sinusoidal
position embeddings (Vaswani et al., 2017) for po-
sitional information. To train the contrastive learn-
ing framework, we use the open-source tool (Ma,
2019) to augment a word, and use the probabili-
ties {0.07, 0.07, 0.07, 0.07, 0.36, 0.36} for six aug-
mentations: swap, drop, insert, keyboard, synonym,
no-operation. Hard negatives are generated by edit
distance. For each target word, we store the top-100
similar words and insert 3 of them into a mini-batch
as hard negatives. The loss function is a standard
contrastive loss with temperature τ = 0.07. The
optimizer is Adam and the learning rate is 0.002.
The dropout rate is 0.2 and we train the model for
20 epochs in total.
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Figure A2: PCA visualizations of word vectors generated by LOVE, BoS, and KVQ-FH. Different colors mean
different clusters, as predicted by K-means. There are three OOV words: oxgen, archiitect and leukamia.
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Figure A3: Performances of different augmentations
on RareWord, measured as Spearman’s ρ. Diagonal
entries correspond to individual augmentation and off-
diagonal entries correspond to composite augmenta-
tion.

B.3 Intrinsic and Extrinsic Evaluations

We choose the setting discussed in Section 4 to
train our model for 20 epochs, and evaluate each
intrinsic task based on the vectors that the mod-
els produce. As for the extrinsic tasks, we feed
word vectors into each neural network and fix them
during training. We use CNNs for text classifica-
tion (Zhang and Wallace, 2015) and BiLSTM+CRF
for NER (Huang et al., 2015). We compare dif-
ferent embeddings on both intrinsic and extrinsic
datasets by using generated vectors. For the word
cluster tasks, the produced vectors are clustered
by K-Means and then measured by Purity. The
hyper-parameters of the extrinsic tasks are shown
in Table A2. For each dataset, our model is trained
with five learning rates {5e−3, 3e−3, 1e−3, 8e−
4, 5e− 4}. We select the best one on the develop-
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Figure A4: Performances of different augmentations
on SST2, measured as accuracy. Diagonal entries corre-
spond to individual augmentation and off-diagonal en-
tries correspond to composite augmentation.

ment set to report its score on the test set.
To generate a corrupted dataset, we simulate

post-OCR errors. We adopt the augmentation tool
developed by Ma (2019) to corrupt 70% of the orig-
inal words. To check the robustness of BERT, we
directly finetune a BERT-base model using Hug-
gingface (Wolf et al., 2020). During finetuning,
the batch size is 16 and we train 5 epochs. We
select the best model among five learning rates
{9e − 5, 7e − 5, 5e − 5, 3e − 5, 1e − 5} on the
development set and report the score of the model
on the test set.

B.4 Datasets

Intrinsic Datasets. We use six word similarity
datasets: (1) RareWord (Luong et al., 2013) (2)
SimLex (Hill et al., 2015) (3) MTurk (Halawi et al.,
2012) (4) MEN (Bruni et al., 2014) (5) Word-
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[SEP]
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[SEP]

Figure A5: Visualization of positional weights for the
post-OCR word bec0me (the correct one is become).

Sim (Agirre et al., 2009), and (6) Simverb (Agirre
et al., 2009). The task is scored by Spearman’s
ρ, which computes the correlation between gold
similarity and the similarity obtained from gener-
ated vectors. For the word cluster task, we use (1)
AP (Almuhareb, 2006) and (2) BLESS (Baroni and
Lenci, 2011). The generated word vectors are first
clustered by K-means (MacQueen et al., 1967) and
then scored by the cluster purity.

Extrinsic Datasets. We use both sentence-level
and token-level downstream datasets to evaluate
the quality of word representations. For the sen-
tence level, we use SST2 (Socher et al., 2013) and
MR (Pang and Lee, 2005), and the metric is accu-
racy. For the token level, we use two NER datasets:
general CoNLL-03 (Sang and De Meulder, 2003)
and biomedical BC2GM (Smith et al., 2008). The
metric is the entity-level F1 score. As before, we
select the best model among five different learning
rates {5e−3, 3e−3, 1e−3, 8e−4, 5e−4} on the
development set and then report the model score
on the test set.

C Additional Analyses

C.1 Qualitative Analysis

To better understand the clusterings produced by
LOVE, we chose 15 words from the AP dataset (Al-
muhareb, 2006), covering three topics (Chemical
Substance, Illness, and Occupation). We added
3 corrupted words, oxgen, archiitect and
leukamia. Figure A2 shows how LOVE, BoS,
and KVQ-FH cluster these words (using a PCA
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[SEP]
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Figure A6: Visualization of self-attention weights for
the post-OCR word bec0me.

projection and K-means). All approaches space
out the clusters to some degree. In particular, BoS
and KVQ-FH have trouble separating professions
and chemical substances. For the corrupted words,
only LOVE is able to embed them close enough
to their original form, so that they appear in the
correct cluster.

C.2 Effect of Augmentation for Text
Classification

Figure A4 shows the performance of five augmen-
tation strategies on the text classification task SST2.
We observe that synonym is the most effective
methods. The first four methods have a weaker
effect, but the keyboard replacement can bring a
certain degree of improvement. The results on
RareWord are similar (Figure A3).

C.3 Effect of τ in Contrastive Loss

As discussed in Chen et al. (2020), a proper temper-
ature can yield better representation in the visual
area because τ is able to weigh the negatives by
their relative hardness. As shown in Table A3, we
attempt different values of temperature and find
that there is no consistent τ that makes a model
work well both on intrinsic and extrinsic datasets.
Hence, we choose the best performer on average,
i.e., τ = 0.07.

C.4 Visualization of Encoder

As mentioned before, we combine two types of
attention heads (self-attention and positional atten-
tion) to encode a subword sequence. Here, we vi-



parameters RareWord SST2
embedding non-embedding

`cl (τ = 0.03) 9M 200K 35.0 81.6
`cl (τ = 0.07) 9M 200K 39.8 81.3
`cl (τ = 0.12) 9M 200K 39.9 81.1
`cl (τ = 0.20) 9M 200K 37.6 81.5
`cl (τ = 0.50) 9M 200K 38.3 80.6

Table A3: Performances of contrastive loss with
various temperature τ , measured as Spearman’s ρ
and accuracy respectively.

sualize the attention weights on each side and show
how they work. Figure A5 shows the position-
dependent weights. We use sinusoidal functions to
generate positional embeddings, and the weights
are the dot product between these embeddings. We
observe the positional weights tend to the left and
right subwords in addition to themselves, which
yields trigram representations.

Figure A6 shows the self-attention weights
which are computed from the trigram subwords
of positional attention. Hence, each subword in
this figure is a trigram representation instead of
a single subword representation. As we see, self-
attention can capture global features regardless of
distance. We take the first token [CLS] as an ex-
ample, and this self-attention assigns high weights
for the token e and [SEP], which constructs a
representation like this: [CLS]b + me[SUB] +
##me[SEP]. This segment tells us this word starts
with b and ends with me.


