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Abstract

Little is known about what makes cross-
lingual transfer hard, since factors like tok-
enization, morphology, and syntax all change
at once between languages. To disentangle
the impact of these factors, we propose a set
of controlled transfer studies: we systemat-
ically transform GLUE tasks to alter differ-
ent factors one at a time, then measure the
resulting drops in a pretrained model’s down-
stream performance. In contrast to prior work
suggesting little effect from syntax on knowl-
edge transfer, we find significant impacts from
syntactic shifts (3-6% drop), though models
quickly adapt with continued pretraining on
a small dataset. However, we find that by
far the most impactful factor for crosslingual
transfer is the challenge of aligning the new
embeddings with the existing transformer lay-
ers (18% drop), with little additional effect
from switching tokenizers (<2% drop) or word
morphologies (<2% drop). Moreover, con-
tinued pretraining with a small dataset is not
very effective at closing this gap—suggesting
that new directions are needed for solving this
problem.

1 Introduction

What makes it hard for neural networks to learn
new languages? Despite their strengths, large-scale
pretrained language models (LLMs) require very
large datasets for pretraining, making it challeng-
ing to train LLMs from scratch for low-resource
languages (Devlin et al., 2018; Liu et al., 2019;
Lacoste et al., 2019; Clark et al., 2020). For
such languages, an appealing approach is to trans-
fer knowledge from an LLM trained for a high-
resource language, since such models may trans-
fer knowledge even under extreme conditions (Pa-
padimitriou and Jurafsky, 2020; Tamkin et al.,

In Chinese, “Oolong” can refer to an unexpected change
or development. ∗Equal contribution. †Corresponding author.
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Figure 1: Controlled transfer studies paradigm. We
systematically transform GLUE tasks (t-GLUE) to tar-
get one linguistic factor, then finetune a pretrained
RoBERTa model on that dataset. The resulting drop
in performance indicates the importance of that factor
to crosslingual transfer. See Table 1 for the list of trans-
formations.

2020). A range of training strategies and model
architectures have been explored to enable such
crosslingual transfer of English LLMs, leveraging
different techniques including adaptive pretrain-
ing (Reimers and Gurevych, 2020), and embed-
ding re-training (Artetxe et al., 2020; Tran, 2020).
However, progress is challenging as it is hard to
distinguish factors that effect such transfer.

In this paper, we present a set of controlled
transfer studies for determining what makes cross-
lingual transfer hard. We focus on three factors
salient to crosslingual transfer: the embedding
layer, the tokenizer, and syntactic shifts. We con-
struct a set of systematically transformed versions
of GLUE (t-GLUEs) targeting each of these factors,
and observe how the finetuning performance of a
pre-trained English RoBERTa (Liu et al., 2019)
model degrades as a result of each of these trans-
formations. Crucially, our method allows us to
disentangle the effects of correlated factors: while
all factors would change at once if we transfer be-
tween natural languages, our transformations allow
us to pinpoint what causes difficulties for transfer.

First, we focus on vocabulary effects: what is
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it that makes the embeddings important in cross-
lingual transfer? We separately test the effects of
having a consistent word embeddings layer, the
morphological consistency of the tokenizer, and
the all-around quality of tokenization. Surpris-
ingly, we find that the effect of word embedding
alignment overshadows any aspect of tokenizer
quality that we test. Second, we test how all of
these vocabulary-level factors compare to the ef-
fects of structural syntactic perturbations, and find
that structural perturbations have a significantly
smaller effect on transfer ability than vocabulary
effects.

2 Related Work

Cross-lingual transfer studies on multi-lingual mod-
els such as Multilingual BERT (Devlin et al., 2018)
demonstrate the utility of multilingual training for
producing models with parallel representations that
ease zero-shot transfer (Pires et al., 2019). How-
ever, it is unlikely that a unified model can cover
the more than 6,900 languages in the world (Feng
et al., 2020; Wang et al., 2020). Enabling cross-
lingual transfer from one language to another re-
mains an important tool for expanding large-scale
models to more languages, and we aim to exam-
ine such cross-lingual transfer with well-defined
experiments covering distinct linguistic factors.

Our experiments build off previous efforts that
try to enable crosslingual transfer from pretrained
monolingual LLMs to new languages (Artetxe
et al., 2018, 2020; Tran, 2020; Reimers and
Gurevych, 2020; Gogoulou et al., 2021). For ex-
ample, BERT shows effective but limited transfer
when attached to multi-lingual tokenizers (Reimers
and Gurevych, 2020). Recent work further im-
proves this approach through continued multi-
stage pretraining on foreign languages, which
helps the English LLMs acquire new word embed-
dings (Tran, 2020). In this work, we aim to provide
quantitative insights into how these factors, such
as static embeddings similarity, affect crosslingual
transfer through controlled studies.

3 Transformed English (t-Englishes)

Figure 1 shows our main experimental paradigm.
We study cross-lingual knowledge transfer from
English to t-Englishes: versions of English that
are systematically altered through different types
of transformations. Here we explain and motivate
each t-English variant that we study, organized by

the main component they consider in crosslingual
transfer: the embedding layer, the tokenizer, and
syntactic shifts. A full list with examples can be
found in Table 1.

3.1 Embedding Layer

Previous works have consistently found that good
embeddings are crucial for enabling effective cross-
lingual transfer (Tran, 2020; Artetxe et al., 2020).
However, these gains could be due to several fac-
tors, including better initialization statistics (Raghu
et al., 2019), or to a learned alignment between the
learned embeddings and the pretraiend transformer
layers (Wu et al., 2021). We consider a baseline
setting, where we reinitalize the embedding layer
such that the optimization during fine-tuning has to
fully reconstruct the semantic space, and compare
it against two other perturbations which preserve
the statistics of the embedding weights: 1) a token
swap scenario, where we scramble the identities of
tokens so that the meaning of each token is not rep-
resented by its row in the word embeddings matrix,
and 2) a more challenging word swap scenario
where the identities of whole words are scrambled
before tokenization. In the word swap scenario,
the morphological and sub-word consistency of the
tokenizer is lost: if the word “cat” gets swapped
to “audible”, and the word “bravery” gets swapped
to “visible”, then after tokenization the “-ible” sub-
word does not represent a consistent morpheme.

3.2 Tokenizer

Tokenizers have been shown to play an important
role in crosslingual transfer for multi-lingual mod-
els (Rust et al., 2020). In this section, we inves-
tigate how changes in tokenization between the
source and target languages impacts downstream
performance, holding all other factors constant. To
do so, we substitute the Byte-Pair Encoding (BPE)
(Sennrich et al., 2015) of the RoBERTamodel with
the WordPiece tokenizer (Wu et al., 2016) used by
BERT (Devlin et al., 2018) and the SentencePiece
tokenizer (Kudo and Richardson, 2018) used by
Albert (Lan et al., 2019). We also experiment
with two non-English tokenizers, which produce
lower-quality tokenizations for English: (see Ap-
pendix A.1): the French FlauBERT (Le et al.,
2020) and the Dutch DutchBERT (de Vries et al.,
2019). Examples of each tokenization scheme are
presented in Table 1. For new tokenizers, word
embedding weights are reinitialized accordingly.



Transformation Type Sentence / Sequence

Original English “the film unfolds with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”
♠RoBERTa Tokenizer “the film unfolds with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”
♠BERT Tokenizer “the film un fold s with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”
♠Albert Tokenizer “the film unfold s with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”
♠FlauBERT Tokenizer “the film un fol ds with all the mou n ting tension of an expert thriller , un til the tr age dy bene ath it all gradu ally re ve als

it self .”
♠DutchBERT Tokenizer “the film u n f old s with all the mo unt ing te n sion of a n expert thriller , u n til the trage d y ben e ath i t all gra d u ally

rev e als i t sel f .”
♠Token Swap “intimacy Turbo unction Prime discredited sometimes pora extraordinarily UD Adventure stall arger humming illy

sometimes distinction brook gruesome discredited atel Flag Stones wait Also”
Word Swap “objectivist 13th robespierre inchmickery tang objectivist ramu bobadilla legione plaaf injures excavation kianja 461

objectivist cyanophilous gringotts clangers tang cautleyi peddie coromandel patria”

{Nfr,Vfr} “the film with all the of an expert , until the beneath all gradually . itself reveals it tragedy thriller tension mounting unfolds”
{Nja,Vja} “the film unfolds with all the tension of an thriller , until the tragedy beneath it all gradually itself . reveals expert mounting”
{Nfr,Vja} “the film unfolds with all the of an expert , until the beneath all gradually . itself reveals it tragedy thriller tension mounting”

Random Order “an all all gradually beneath thriller with reveals . until tension tragedy mounting the it of the the expert , unfolds itself film”
Reverse Order “. itself reveals gradually all it beneath tragedy the until , thriller expert an of tension mounting the all with unfolds film the”

Table 1: An example from the SST-2 dataset and its transformed variants. ♠ Instead of the original English
sentence, we show the tokenized sequence. Special pre-fixes and post-fixes such as Ġ, ##, _ and 〈/w〉 are
ignored in a tokenized sequence for simplicity.

3.3 Syntactic Shifts
While syntax is an crucial aspect of language,
studies have also shown syntactic typology to
be surprisingly non-predictive of transfer qual-
ity (Pham et al., 2021), and other studies have
shown LLMs to be largely word-order invari-
ant (Sinha et al., 2021). We investigate a set
of syntactic transformations that isolate syntac-
tic word-order shifts from the other factors that
can vary between languages such as tokeniza-
tion, static embeddings, and morphological rep-
resentation. We use the open-source package
Galactic-Dependencies (Wang and Eisner,
2016) to transform the word order of our English
training corpora to match the noun-phrase order
and the verb-phrase order of French and Japanese
({Nfr,Vfr} and {Nja,Vja} in Table 1) and also per-
form a mixed transformation with French noun or-
der and Japanese verb order ({Nfr,Vja} in Table 1).
We use the open-source package Stanza (Qi et al.,
2020) for sentence segmentation and parsing be-
fore scrambling word orders. We also test the the
stronger transformation of completely reversing the
word order, as well as randomly shuffling the word
order to produce a lower bound on the amount of
useful syntactic information.

4 When Does Continued Pretraining
Help?

Instead of finetuning LLMs directly on target lan-
guage tasks, continued pretraining on a target
language corpus may help with model adapta-
tion (Artetxe et al., 2020; Tran, 2020). Here, we

examine how continued pretraining fares as a po-
tential solution to the different shifts we consider
in Section 3; this corresponds to the setting where
there might exist a moderate amount of unlabeled
data available for a low-resource language. For-
mally, we continued pretraining RoBERTa using
the masked language modeling objective on a t-
English corpus before evaluating its finetuning per-
formance with downstream tasks. We use a subset
of WikiText-103M corpus (Merity et al., 2016) con-
taining approximately 15% of examples for mid-
tuning.1 For each t-English variant, we ensure the
number of steps for continued pretraining are kept
constant.

5 Results

We use the GLUE benchmark (Wang et al., 2018)
to evaluate model performance, which consists of
nine different NLP tasks. We produce t-GLUEs by
transforming both the training and validation sets,
and report scores on the transformed validation
sets after finetuning our pre-trained or continued
pretrained models. Each experiment is run three
times with different random seeds. We include
details in Appendix A.2.

5.1 Good Embeddings Are Most of What You
Need

As expected, we find a very large drop in GLUE
performance (-40%) from reinitializing the em-

1For comparison, the pretraining data for BERTBASE con-
tains 3.3B tokens (Devlin et al., 2018). Here, we have about
15M tokens which is about 0.45% of its pretraining data.



Figure 2: Averaged GLUE scores for t-Englishes with
scrambled word identities. The scores with original En-
glish sentences are included for comparison. Error bar
shows standard deviation across 3 distinct runs with dif-
ferent random seeds.

Figure 3: Averaged GLUE scores for t-Englishes with
tokenizer substitutions. The scores with original En-
glish sentences are included for comparison. Error bar
shows standard deviation across 3 distinct runs with dif-
ferent random seeds.

beddings layer (Figure 2), indicating the impor-
tance of good embeddings to crosslingual trans-
fer. However, the token swapping results reveal
that only half of that drop (-21%) is attributable to
the token-specific information stored in each em-
bedding, with the remainder due to merely having
embeddings that lie within a plausible “language
space” for the model. Surprisingly, scrambling
the whole words rather than tokens and breaking
the morphological consistency of the resulting to-
kenization does not have a larger effect than the
one-to-one token swap, suggesting minimal addi-
tional contribution of subword information in this
regime.

Interestingly, we find that continued pretrain-
ing closes the gap between the reinitialized and
swapped conditions. While this eliminates over
half of the performance drop of for the reinitial-
ized t-English (-40% to -18%) the gain is much
smaller for the swapped varaints (-21% to -18%).
This suggests that other solutions to the word align-
ment problem besides continued pretraining will
be needed in resource-scarce settings.

Figure 4: Averaged GLUE scores for t-Englishes with
syntactic shifts. The scores with original English sen-
tences are included for comparison. Error bar shows
standard deviation across 3 distinct runs with different
random seeds.

5.2 Bad Embeddings Can Ruin A Good
Tokenizer

Surprisingly, we see virtually no effect of using
different different tokenizers (Figure 3), despite
some of the tokenizers being very different from
the original BPE tokenizer. Similarly, continued
pretraining also fails to reveal differences when dif-
ferent tokenizers are used. These findings suggest
that performance drops seen during crosslingual
transfer are mostly due to the information loss of re-
initializing the embedding weights, rather than the
quality of tokenization. Tokenization may thus be
a “lower-order bit” for crosslingual transfer, which
has little impact until good word embeddings are
learned.

5.3 Syntax Matters, But Not Too Much

As shown in Figure 4, a RoBERTamodel finetuned
on randomly ordered GLUE sentences experiences
a performance drop of 13%. This is a markedly
smaller drop than the word-shuffling experiments (-
19%), indicating that a bag-of-words classifier with
good embeddings performs better than a model
which experiences no syntactic shifts but that lacks
good word embeddings.

This performance gap closes appreciably as we
perform more structured syntactic shifts such as
reversing the sentence (a drop of 10%), or system-
atically permuting word orders using the depen-
dency tree (a drop of between 7% and 9%). Rather
than being invariant to word orders across natural
language understanding tasks (Sinha et al., 2021;
Pham et al., 2021), we instead find that BERT-
based models are in fact sensitive to word order,
at least for the tasks in the GLUE benchmark. In
addition, we find that continued pretraining can
close the performance gap to all but a few percent-



age points for tree-based structural shifts. These
results suggest that syntactic shifts have real but
limited impact on crosslingual transfer, compared
to embedding layer effects.

6 Conclusions

In this paper, we propose a novel paradigm to
study cross-lingual transfer through transforma-
tions which simulate the linguistic changes across
languages. In contrast to what prior work implies,
we find significant effects from syntactic shifts and
no effect from tokenizer shifts on cross-lingual
transfer. However, our results suggest that solv-
ing the embedding alignment problem is the "high-
order bit" for crosslingual transfer: it has the largest
impact on finetuning performance and is the least
improved by continued pretraining. Thus, future
progress on solving this problem in large-scale
transformers may have outsized impact.
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A Appendix

A.1 Sequence Length Distribution

As described in Section 3.2, we try four differ-
ent tokenizers to substitute for our RoBERTa (Liu
et al., 2019) model that uses the Byte-Pair En-
coding (BPE) (Sennrich et al., 2015) tokenizer.
Specifically, we substitue with the WordPiece to-
kenizer (Wu et al., 2016) used by BERT (Devlin
et al., 2018) (i.e., BERT Tokenizer in Table 1) and
the SentencePiece tokenizer (Kudo and Richard-
son, 2018) used by Albert (Lan et al., 2019) (i.e.,
Albert Tokenizer in Table 1). Additionally, we
substitute with two new non-English tokenizers in-
cluding the French FlauBERT (Le et al., 2020)
(FlauBERT Tokenizer in Table 1) and the Dutch
DutchBERT (de Vries et al., 2019) (DutchBERT
Tokenizer in Table 1). As shown in Figure 5, we
plot the distributions of sequence lengths as a mea-
sure of the heterogeneity introduced by new to-
kenizers to ensure variences across tokenized se-
quence lengths. Specifically, we see there are infe-
rior tokenizers such as FlauBERT Tokenizer with
a 22.15% increase in sequence length. Our re-
sults are consistent with previous findings (Rust
et al., 2020) where sequence length distributions
are closer

A.2 Training Set-up

Downstream Task. We use the GLUE bench-
mark (Wang et al., 2018) to evaluate model perfor-
mance, which covers nine different NLP tasks. We
report scores on the development sets for each task
by fine-tuning our pre-trained or mid-tuned models.
We fine-tune for 5 epochs for the smaller datasets
(WNLI and MRPC) and 3 epochs for the others.
For the performance metrics, we use Matthew’s
Correlation for CoLA, Pearson correlation for STS-
B, and accuracy for all the other datasets.

Hyperparameter and Infrastructure. For each
of the mid-tuning and fine-tuning experiments, we
collect averaged results from 3 runs with distinct
random seeds. We tune our models with two learn-
ing rates {2e−5, 4e−5}, and report the best results
from these two learning rates. Fine-tuning with
9 GLUE tasks takes about 8 hours on 4 NVIDIA
Titan 12G GPUs. Mid-tuning with our subset of

https://doi.org/10.18653/v1/2020.findings-emnlp.125
https://doi.org/10.18653/v1/2020.findings-emnlp.125


Figure 5: Distributions of sequence lengths by different
tokenizers.

WikiText-103M corpus takes about 18 hours with
the same infrastructure.

A.3 GLUE Task Performance
Table 2 shows performance break-down for indi-
vidual GLUE task under different transformations
as described in Section 3.



Original Token Swap Word Swap Reinit(Emb) Bert Albert FlauBERT DutchBERT Random Reverse {Nfr,Vfr} {Nja,Vja} {Nfr,Vja}

CoLA .58(.01) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .04(.05) .01(.01) .16(.01) .21(.01) .12(.01)
CoLAc.p. .59(.01) .05(.07) .02(.02) .06(.05) .00(.00) .00(.00) .01(.01) .00(.00) .22(.04) .35(.01) .45(.03) .47(.01) .44(.01)
MNLI .88(.00) .34(.01) .50(.08) .53(.03) .54(.01) .53(.01) .67(.01) .68(.00) .82(.00) .85(.00) .86(.00) .86(.00) .85(.00)
MNLIc.p. .88(.00) .72(.01) .72(.01) .73(.00) .73(.01) .71(.00) .71(.01) .69(.00) .82(.00) .86(.00) .86(.00) .86(.00) .86(.00)
MRPC .88(.01) .68(.00) .68(.00) .68(.00) .68(.00) .68(.00) .76(.01) .77(.01) .77(.01) .85(.02) .85(.01) .86(.01) .83(.00)
MRPCc.p. .87(.00) .83(.00) .80(.04) .79(.01) .82(.01) .80(.01) .83(.01) .78(.01) .81(.01) .87(.01) .87(.01) .87(.01) .86(.00)
QNLI .93(.00) .60(.01) .54(.02) .54(.04) .55(.03) .52(.01) .79(.01) .79(.00) .88(.00) .89(.00) .90(.00) .91(.00) .90(.00)
QNLIc.p. .93(.00) .83(.01) .82(.01) .82(.00) .83(.00) .82(.00) .82(.00) .81(.00) .88(.00) .91(.00) .91(.00) .92(.00) .91(.00)
QQP .91(.00) .77(.00) .77(.00) .77(.00) .76(.00) .75(.00) .85(.00) .86(.00) .90(.00) .91(.00) .90(.00) .91(.00) .90(.00)
QQPc.p. .91(.00) .87(.00) .87(.00) .87(.00) .87(.00) .87(.00) .86(.00) .87(.00) .90(.00) .91(.00) .91(.00) .91(.00) .91(.00)
RTE .65(.02) .51(.03) .51(.03) .53(.00) .53(.00) .53(.01) .54(.02) .56(.02) .57(.01) .60(.02) .60(.00) .61(.01) .59(.05)
RTEc.p. .67(.01) .56(.01) .53(.01) .54(.03) .57(.01) .59(.02) .57(.03) .57(.02) .59(.02) .58(.02) .69(.01) .64(.05) .65(.03)
SST-2 .94(.00) .79(.01) .75(.02) .79(.03) .73(.04) .68(.05) .77(.01) .78(.00) .86(.01) .91(.00) .92(.00) .92(.00) .92(.00)
SST-2c.p. .94(.00) .83(.01) .85(.01) .85(.01) .83(.00) .82(.00) .82(.01) .81(.01) .88(.00) .93(.00) .93(.00) .93(.00) .92(.00)
STS-B .89(.00) .06(.01) .06(.00) .06(.02) .09(.02) .08(.02) .74(.01) .77(.00) .87(.00) .87(.00) .88(.00) .88(.00) .88(.00)
STS-Bc.p. .89(.00) .76(.01) .73(.03) .77(.01) .79(.01) .78(.00) .77(.00) .79(.00) .88(.00) .87(.00) .89(.00) .89(.00) .89(.00)
WNLI .56(.00) .56(.00) .56(.00) .56(.00) .56(.00) .58(.03) .56(.00) .56(.01) .55(.01) .56(.01) .56(.00) .56(.00) .56(.01)
WNLIc.p. .56(.01) .52(.06) .53(.05) .53(.03) .55(.02) .51(.07) .56(.00) .56(.00) .55(.01) .51(.07) .56(.01) .56(.00) .53(.05)

Table 2: GLUE scores for t-English with different types of interventions including scrambled word identities,
syntactic shifts, and tokenizer substitutions with standard deviation (SD) for all tasks across 3 distinct runs with
different random seeds. The scores with original English sentences are included for comparison. c.p. indicates
finetuning results with continued pretrained models.


