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Assessing the potential for deep 
learning and computer vision 
to identify bumble bee species 
from images
Brian J. Spiesman1*, Claudio Gratton2, Richard G. Hatfield3, William H. Hsu4, Sarina Jepsen3, 
Brian McCornack1, Krushi Patel5 & Guanghui Wang5,6 

Pollinators are undergoing a global decline. Although vital to pollinator conservation and ecological 
research, species-level identification is expensive, time consuming, and requires specialized 
taxonomic training. However, deep learning and computer vision are providing ways to open this 
methodological bottleneck through automated identification from images. Focusing on bumble bees, 
we compare four convolutional neural network classification models to evaluate prediction speed, 
accuracy, and the potential of this technology for automated bee identification. We gathered over 
89,000 images of bumble bees, representing 36 species in North America, to train the ResNet, Wide 
ResNet, InceptionV3, and MnasNet models. Among these models, InceptionV3 presented a good 
balance of accuracy (91.6%) and average speed (3.34 ms). Species-level error rates were generally 
smaller for species represented by more training images. However, error rates also depended on the 
level of morphological variability among individuals within a species and similarity to other species. 
Continued development of this technology for automatic species identification and monitoring has 
the potential to be transformative for the fields of ecology and conservation. To this end, we present 
BeeMachine, a web application that allows anyone to use our classification model to identify bumble 
bees in their own images.

Bees (Hymenoptera: Anthophila) serve a critical role in most terrestrial ecosystems as pollinators of crops 
and natural plant communities e.g.,1–3. With mounting evidence for the global decline of many bee species4–7, 
considerable effort has been focused on understanding the causes of bee decline, monitoring programs, and 
developing conservation strategies to preserve their biodiversity and ensure the continued provision of pollina-
tion services8. One essential yet challenging step in bee research is to accurately identify individuals so that the 
number of species and population sizes in an area can be assessed. Focusing on bumble bees (Bombus) in the 
United States and Canada, we address this challenge in bee research by assessing the potential for automatic 
species-level identification from images using deep learning classification models.

Species-level bee identification is challenging because experts often rely on subtle morphological features to 
differentiate many of the more than 20,000 species worldwide9. Bumble bees, for example, can often be identi-
fied by experts in the field or from images based on distinctive color patterns. However, similarities between 
some species require comparing very fine-scale differences in e.g., coloration, facial features, or genitalia10,11. As 
a result, many species cannot be identified in the field or from photos by human observers if important features 
are obscured or not sufficiently resolved. Instead, individuals are usually collected, cleaned, pinned, and labeled, 
before being identified by experts under a microscope. This process is expensive, time consuming, and greatly 
slows the pace of pollinator research. The challenge will only become more limiting with the declining number 
of taxonomic experts12. The remaining experts are underfunded and have limited time, which can be consumed 
by identifying numerous samples of common species13. Moreover, this sampling process requires lethal collec-
tion methods, which are increasingly disparaged or restricted, especially when projects involve sensitive species, 
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such as the endangered rusty patched bumble bee (Bombus affinis). Methods for automated and reliable bee 
identification from photos are thus greatly needed14.

In addition to the benefits for basic research, tools for automated identification would also benefit community 
(or citizen) science programs, which provide important monitoring data and engage the public in science and 
conservation efforts. With programs such as BeeSpotter (beespotter.org), Bumble Bee Watch (BBW; bumblebee-
watch.org), iNaturalist (inaturalist.org), and the Wisconsin Bumble Bee Brigade (WBBB; wiatri.net/inventory/
bbb), users can contribute to national and regional databases by uploading georeferenced images of bumble 
bees and providing preliminary identifications, which are then verified by experts or community sourced. This 
verification step is important because user-submitted identifications to WBBB and BBW agree with experts only 
73 and 53 percent of the time, respectively15,16. If not properly verified, such erroneous data could have serious 
negative consequences for pollinator conservation. Moreover, automated identification methods would reduce 
the substantial number of submissions that remain unverified because experts cannot keep up, while providing 
high quality data for pollinator conservation science.

There has been a longstanding recognition that we need tools for automated insect identification17–19, however 
we have been limited by effective methods and computational power. But, with the use of powerful graphics pro-
cessing units and ongoing advances in computer vision, it is now possible to efficiently and accurately detect and 
identify objects, including insects, from images. Applying state-of-the-art deep learning methods to the problem 
of species-level bee identification would help reduce this research bottleneck and put an expert-level identification 
tool in the hands of everyone from bee enthusiasts to students, educators, land managers, and scientists14. Deep 
learning technology has a realistic potential to be transformative, not only for pollinator research, but for address-
ing a wide range of problems in agriculture20 and surveillance of arthropods that transmit human pathogens21.

Deep learning techniques such as convolutional neural networks (CNNs) are at the forefront of computer 
vision. More commonly applied in the fields of self-driving cars22 and healthcare diagnostics23, researchers are 
beginning to apply CNNs to insect detection and identification21,24–26. Mobile apps such as Seek (inaturalist.org/
pages/seek_app) and Google Lens (lens.google.com) can be used to identify some taxa but species-level accuracy 
for bees in these apps is not sufficient for research purposes.

One key benefit of CNNs that makes them ideal for bee identification is that they do not rely on inputs of 
known feature sets, such as the morphological characteristics that taxonomists rely on. Instead, training a CNN 
only requires a set of labeled images that the model can learn from, developing its own feature set that it uses for 
identification. CNNs are robust to images with subjects (e.g., bees) that are oriented differently, partially obscured, 
or set in different environmental contexts, such as in different lighting conditions or visiting different flower 
species. This ability to self-learn discriminating feature sets is ideal for a species-level bee classifier because key 
features that experts require to make identifications are often not visible in images.

In this paper we assess the performance of four convolutional neural network models trained to classify 36 
North American bumble bee species, comparing tradeoffs between speed and accuracy. We then assess the poten-
tial for deep learning to automate the identification of bumble bee species from images and discuss the outlook 
for applying this technology in ecological research and large scale monitoring programs. Lastly, we introduce 
BeeMachine, a web app based on our model that allows users to identify bumble bees from their own images.

Methods
Image data set.  We focused our analysis on bumble bees in the United States and Canada, as described in 
Williams et al.27. To train and validate classification models, bumble bee images were gathered from Bumble Bee 
Watch, iNaturalist, and BugGuide. Only images categorized as "verified" (identified by an expert) or "research 
grade" (identity agreed upon by at least two of three users) from Bumble Bee Watch and iNaturalist, respectively, 
were included in our analyses. Images from BugGuide were identified by expert naturalists. Our initial dataset 
comprised over 120,000 images belonging to 42 species.

Original images were cropped tightly to each bee using an object detection algorithm trained to detect bumble 
bees (Fig. 1). This allowed us to automate some of the preprocessing of the image data set. Each cropped image 
was encoded to the JPG format and then manually inspected for errors. Detection algorithm errors included 
false positives, such as other bee taxa that happened to be included in an image, which were discarded. Rarely, 
misidentified bumble bees were encountered, which we relabeled and included in our training set. Cropped 
images less than 200 × 200 pixels were discarded. We did not distinguish between workers, queens, and males 
within species so our classification models generalize across bumble bee castes that often vary in morphology 
and color pattern.

We required a minimum of 150 images for a species to be included in the analysis. The sample sizes of 6 spe-
cies in our original dataset were thus insufficient to be included in the model. After quality control we retained 
89,776 images belonging to 36 species (Fig. 2, Table S1) out of the 46 bumble bee species in the US and Canada 
recognized by Williams et al.27. Some species are more frequently photographed than others because they are 
common and/or live near population centers, while others are rarely photographed. Six of the North American 
species not included (B. balteus, B. distinguendus, B. hyperboreus, B. jonellus, B. neoboreus, and B. polaris) are 
high-latitude and/or high-elevation species that are infrequently encountered. Three species (B. bohemicus, B. 
suckleyi, and B. variabilis) are historically uncommon and/or in decline. One species, B. franklini, has a very 
restricted range and has not been encountered since 2006 despite a concerted search. As a result of this range 
in commonness, our image dataset was highly imbalanced among species. We therefore limited the number of 
images per species to a maximum of 10,000 to help limit the classification bias associated with imbalanced data 
sets.
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Classification models.  Many classification models based on convolutional neural networks (CNN) have 
been proposed in the field of computer vision. We compared the performance of four widely used models that 
vary in complexity of architecture to evaluate tradeoffs in accuracy and speed for bumble bee species classifica-
tion. One of the main limitations of deep neural networks is the vanishing gradient problem, which prevents the 
adjustment of model weights during the training process, making it hard to improve model performance before 

Figure 1.   Example test images showing coarse scale intraspecific variability in appearance. Bombus 
melanopygus are (A) without orange coloration in the southern part of their range but (B) with orange on the 
northern end. (C) A B. affinis worker displaying its characteristic rusty-colored patch on T2 of its abdomen, 
however (D) the patch is usually absent or reduced on queens. B. fervidus has (E) extensive yellow coloration 
in the eastern part of its range, but (F) is more extensively black in the western end. Photo credits: (A) Andrea 
Kreuzhage, (B) Scott Ramos, (C, D) Heather Holm, (E) Sue Gregoire, (F) Asa B. Spade.
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information passes through the end of the network. (1) ResNet-10128 was proposed to address this problem by 
using skip connections that allow useful layer output to pass over groups of layers (or residual blocks) and thus 
penetrate much further into deep networks. (2) Wide-ResNet-10129, on the other hand, is wider but shallower 
than ResNet-101. This difference in architecture allows information to more easily pass through the network 
while providing a greater number of channels to maintain performance. (3) InceptionV330 has fewer layers but 
achieves greater computational efficiency by, for example, using factorized convolution, which breaks down 
channels into simpler linear sequences while maintaining spatial context within the image. (4) MnasNet-A131 
was designed to be faster for mobile devices and thus has the fewest layers of the models compared here. The 
MnasNet architecture was obtained by a mobile neural architecture search mechanism that is designed to find 
an optimal trade-off between accuracy and latency.

Model training.  To speed up the training process, we used models pre-trained on the ImagNet database32 
and then retrained them for bumble bee species classification using our image data set. We divided our full data 
set into training (80%) and test (20%) groups. After randomly shuffling images in each class (species) we split 
the images within species along the 80:20 ratio to maintain their proportional representations in the training 
and test groups. For each model, cropped images were resampled to a standard size for model input. Following 
the original implementation of these models, we used images of 224 × 224 pixels for ResNet, Wide-Resnet, and 
MnasNet, and 299 × 299 pixels for InceptionV3. We used an image augmentation strategy that included random 
rotation (≤ 100°), crop (≤ 10%), sheer (≤ 30%) and horizontal flip to help reduce overfitting and improve the 
generality of our models33. To help account for the class imbalance in our data set, predictions were weighted 
by class sample size. We used the SGD (stochastic gradient descent) optimizer with an initial learning rate of 
0.01 for all models except MansNet, which was initially set at 0.1. The learning rate was reduced by a factor of 
10 after steps of 30 epochs. We used batch normalization and models were trained for 150 epochs using Nvidia 
Tesla K80 or P100 GPUs.

At the species level, we calculated two metrics of model performance: precision (true positives / (true posi-
tives + false positives)) and recall (or sensitivity: true positives / (true positives + false negatives)). Precision is a 
useful metric when using the model to predict the identity of an unknown specimen. That is, given a prediction, 
precision tells you how likely it is that the prediction is correct. Recall, on the other hand, lets a user assess, given 
a specimen with a known label or identification, how likely it is that the model will make the correct prediction. 
Species-specific error rates were defined as 1 – precision or the false positive rate.

For each model, we compared overall (top-1) accuracy, or the accuracy of the most likely prediction. We 
compared top-N test accuracy (i.e., accuracy assuming the correct identity is within the top-N predictions), 
macro precision (i.e., the mean of species-level recall scores), and macro recall (i.e., mean of species-level preci-
sion scores). We also examined the tradeoff in overall test accuracy and speed to determine the most appropriate 
model to focus on for this study. Model speed was quantified as the mean time necessary to make predictions 
on images in the test data set. All speed tests were run on the same system using a Tesla P100 GPU. We then 
examined species-level precision, recall and error rates in relation to the number of training and test images. 
We visualized model-based trait separation among species using T-distributed Stochastic Neighbor Embed-
ding (t-SNE) by examining model weights from the final fully connected layer of the network before softmax 
predictions were made.

Figure 2.   Visualization of trait separation among species based on t-SNE. Black points (A–F) show the location 
in trait space of images in Fig. 1 panels.
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Results
Three of the CNN models used for species-level identification of bumble bees all provided similar accuracy rates 
(Table 1). Wide-ResNet had the highest test accuracy of 91.7% followed closely by InceptionV3 (91.6%) and 
ResNet100 (91.3%). MnasNet, however, had relatively low test accuracy of 85.8%. There was a substantial increase 
of 5.4 percentage points on average, between top-1 and top-2 accuracy. Top-5 accuracy was greater than 98.1% for 
all models. There was a tradeoff between speed and accuracy for the best and fastest models with Wide-ResNet 
being slightly more accurate but relatively slow and MnasNet being slightly faster but relatively inaccurate.

Of the four models tested, InceptionV3 presents a good balance between performance and speed. InceptionV3 
had the highest precision and nearly matched Wide-ResNet’s accuracy and recall while being 39% (2.1 ms) faster 
(Table 1). Likewise, InceptionV3 was 5.8 percentage points more accurate than MnasNet while only 0.06 ms 
slower. The speed and accuracy of InceptionV3 makes it useful for web-based and mobile applications that rely 
on both speed and reliable predictions. We therefore focus on our InceptionV3 results for the remainder of this 
paper.

The InceptionV3 model nicely separated species into distinct groupings based on traits extracted from the 
model (Fig. 2). There was little overlap in two-dimensional trait space, which corresponds with the high degree 
of accuracy in the classification results.

The classification results for each test image are displayed in a confusion matrix (Table. 2, see also Table S2), 
which shows how predicted species (columns) correspond to the actual species (rows). Values along the diago-
nal indicate the number of correct predictions, whereas off-diagonal values indicate misclassifications. Bombus 
affinis, for example, was correctly classified, based on the match to taxonomic expert classification, in 250 of 258 
test images (96.9%) indicating high recall. Similarly, only B. borealis, B. fervidus, B. perplexus, and B. rufocinctus 
were mistaken for B. affinis in 1, 1, 1 and 3 of their respective test images, indicating that B. affinis has high 
precision (97.7%).

Table 1.   Comparison of model size, speed, and performance, ordered by top-1 accuracy. Text in bold indicates 
the best value in each category. Wide-ResNet101 has the highest top-1 accuracy and macro precision but 
was substantially slower than the other models. MnasNet-A1 was the fastest model but had relatively poor 
performance. InceptionV3 was relatively fast while maintaining good model performance with the highest 
precision and second highest accuracy and recall.

Model
#Params 
(million)

Model speed 
(ms) Top-1 accuracy Top-2 accuracy Top-3 accuracy Top-4 accuracy Top-5 accuracy Macro recall

Macro 
precision

Wide-ResNet101 124.9 5.46 0.9171 0.9627 0.9782 0.9850 0.9897 0.8552 0.8831

InceptionV3 24.0 3.34 0.9162 0.9610 0.9767 0.9834 0.9882 0.8519 0.8881

ResNet101 42.6 3.33 0.9133 0.9633 0.9787 0.9852 0.9892 0.8499 0.8740

MnasNet-A1 1.0 3.28 0.8579 0.9335 0.9609 0.9730 0.9814 0.7689 0.8250

Table 2.   InceptionV3 confusion matrix showing the number of test images for each prediction.
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Figure 3.   Relationship between error rate and the number of test images.

Figure 4.   Examples of misclassified images. (A) B. affinis misclassified as B. citrinus. (B) B. occidentalis 
misclassified as B. terricola. (C) B. bimaculatus misclassified as B. impatiens. (D) B. griseocollis misclassified as B. 
impatiens. Photo credits: (A) Heather Holm, (B) Bernard Yurke, (C) Sarah Litterick, (D) Ansel Oommen.
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Bombus affinis had high recall and precision, with few instances of other species being mistaken for B. affinis 
and mistaking B. affinis for few other species. Bombus vosnesenskii, B. griseocollis, B. fraternus, B. pensylvanicus, 
and B. impatiens also performed well on both metrics. On the other hand, B. sandersoni, B. caliginosus, B. sitken-
sis, B. sylvicola, and B. frigidus performed the most poorly on these two metrics. Bombus caliginosus is very similar 
in appearance to B. vosnesenskii (Fig. 2) and was therefore frequently misclassified as such (Table 2). Likewise, 
B. sandersoni is similar in appearance to B. vagans (Fig. 2), with which it was most often confused (Table 2).

Species that were trained on more images tended to have lower test error rates (Fig. 3). However, there 
was substantial variation in error rates for species with low sample sizes, which was likely due to the degree of 
intraspecific variation and/or distinctiveness from other species. Regardless of species, images were more likely 
to be misclassified if bees were in poor focus or obscured. Examples of misclassified images are shown in Fig. 4.

To assess how model results were affected by the particular random subsets of training and test images, we 
trained each model two additional times with different random train/test splits. These subsequent model runs 
provided very similar results compared to those reported above, with on average less than one percentage point 
difference in top-1 accuracy, macro precision, and macro recall.

Discussion
Using computer vision to identify bees or other taxa in images will be important for advancing research on pol-
linator ecology and conservation. We have shown that a deep learning image classification approach can accu-
rately (> 91% for our best models) and rapidly identify North American bumble bee species from heterogeneous 
digital images. It is not known what the true range of expert accuracy is, but as with our model, it likely varies by 
species and with the quality of images available to make a prediction. Anecdotally, our model correctly classified 
a test image that we later discovered was mislabeled by an expert; a small degree of mislabeling is unavoidable 
in large image datasets. This observation is consistent with research showing that CNN models are robust to a 
small level of mislabeling34. It also suggests that with refinement, deep CNN models will have the potential to 
perform at least on par with experts at image classification tasks.

The four CNN models we tested performed similarly. However, InceptionV3, with its relatively small size 
and complex architecture, presented a good blend of speed and accuracy. Although smaller models, such as 
MnasNet-A1, can be slightly faster, they can suffer from lower accuracy, recall, and precision, compared to 
InceptionV3. Potential end users of this classification model, i.e., those interested in characterizing bee com-
munities and monitoring population trends, would likely favor reliability over model speed and latency issues. 
However, speed is a factor in user satisfaction and will be important for future video-based applications of our 
model. Nevertheless, minimizing classification error is especially important when using crowdsourced data with 
inexperienced observers to monitor endangered species. For example, using error-prone data can over- or under-
estimate spatial distributions depending on whether misclassifications are false positives or false negatives35,36, 
which can significantly affect conservation management decisions.

At the species level, InceptionV3 classification error rates decreased with a greater number of training and 
test samples. But error rates also depended on a species’ degree of variability in appearance. For example, B. 
fraternus is easily identified by experts because of its relatively distinctive appearance that varies little among 
castes or across its North American range. Thus, B. fraternus had a relatively low error rate (4.0%) despite being 
trained on few images (n = 304). On the other hand, Bombus sylvicola has a similar training sample size (n = 248) 
but a much higher error rate (20.4%). This is likely because B. sylvicola is more variable in appearance and can 
resemble many other species, such as B. huntii, B. melanopygus, B. rufocinctus, and B. ternarius. Similarly, Bombus 
rufocinctus is highly variable in appearance across its broad North American range27 and was confused with 25 
other species, the most in our study. However, the larger number of training images of B. rufocinctus (n = 3,104) 
appeared to help reduce its error rate (14.4%). Bombus caliginosus also had a small training sample size (n = 108) 
and relatively high error rate (15.4%). But instead of having a variable appearance, it is remarkably similar to B. 
vosnesenskii, with which it was frequently confused in our model. Indeed, experts can struggle to differentiate 
these two species based on photos alone.

Even species with many samples may sometimes be confused within a smaller group of similar species with 
similar morphology. For example, Bombus bimaculatus, B. impatiens, and B. griseocollis share similar features 
and are thus grouped together in feature space (Fig. 2). Figure 4D shows an example of B. griseocollis that was 
misclassified as B. impatiens. Bombus griseocollis, however, was the second most likely choice. Bombus pensyl-
vanicus and B. auricomus are similarly grouped in feature space. There can be a relatively small difference in 
prediction probability scores among species in these small groups of similar yet highly sampled species, which 
is one of the reasons for the large 5.4 percentage point increase from top-1 to top-2 model accuracy. That is, if 
the top prediction is not correct, the top two predictions are very likely to include another species within the 
multispecies grouping and thus contain the correct class.

Gathering more images, especially of species with higher error rates, would likely improve the classification 
accuracy of our model and reduce species-specific error rates. This would allow us to capture a greater range 
of the heterogeneity in each species as well as reduce the imbalance among classes. For example, species with 
at least 4,500 images (3,600 train + 900 test) all had error rates lower than 10% (Fig. 3, Table S1). This suggests 
that, for species with error rates greater than 10%, obtaining at least 4,500 images would be an important goal 
for improving model performance. A challenge, however, is that the species with low training sample sizes are 
generally rarer in nature and/or have a restricted range. This rarity reduces their occurrence in databases such 
as Bumble Bee Watch because these species are not frequently encountered by volunteers. Some images can be 
gathered from preserved specimens in collections, but it will also be necessary to mount sampling expeditions 
specifically aimed at capturing images of these rare species in the field. Our classification model could also make 
use of images already in hand that have not yet been validated. Bumble Bee Watch, for example, has a backlog 
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of thousands of images that have not been verified by experts, most of which are common species. Passing these 
images through our model could flag potential high-value images for priority validation by experts. Once vali-
dated, the images could be incorporated into subsequent versions of the classification model.

Maximizing confidence in model predictions.  Given the current model, a number of steps can be 
taken to increase one’s confidence in the model predictions. For example, users can increase accuracy by input-
ting higher-quality images. Misclassified images are often low-resolution because the bee is small in the original 
image and therefore not represented by a sufficient number of pixels to capture important features. A bee may 
also be in poor focus or partially obscured (Fig. 4 A-C). An automated image quality score, based on the number 
of pixels and focus of the input image, could potentially be provided to users as a screening tool to help them 
assess their confidence in class predictions.

Users may increase their confidence in a prediction by assessing the results of a series of images of the same 
individual taken from different points of view. Experts often use an ensemble approach in which they examine 
multiple images that may each capture different diagnostic features and then assign an identification to all images, 
even if an identification couldn’t be made based on any single image. The same approach could be taken with 
our model by assessing the top 3–5 prediction probabilities on a series of photos or frames from a short video 
clip. We examined a subset of misclassified test images and found that other images of the same individual were 
often classified correctly.

Model improvement.  Further development of our training data set should enhance generalization and 
model accuracy, especially by prioritizing images of poorly sampled species with higher error rates. However, 
exploring new ways of learning and data generation may further enhance the model. For example, metric learn-
ing could be used to learn similar features between a pair of images, thus enhancing the discriminative power of 
deep CNNs37. Alternatively, generative adversarial networks38 may help improve error rates for poorly sampled 
species and low accuracy due to class imbalance by generating synthetic image data when new images are dif-
ficult to acquire.

Knowledge of the spatial location of an observation may improve model performance as bumble bees vary in 
appearance across their geographic range. For example, the local phenotype of B. melanopygus may more closely 
resemble B. bifarius than its own phenotype from a different portion of its range. Associating learned features 
with geographic locations may therefore help to improve classification accuracy when observation coordinates 
are available. Similarly, location data could weight or narrow the prediction field. For example, the individual 
shown in Fig. 4F was (wrongly) classified as B. ternarius, even though it was observed out of the typical range of 
B. ternarius. Removing or downweighting out-of-range predictions would have resulted in the correct prediction, 
B. huntii, which was second most likely.

BeeMachine web application.  We created a web application called BeeMachine to let users identify bum-
ble bees in their own images using our classification model, which can be found at https://​beema​chine.​ai. Users 
can upload images of bumble bees and receive the top three predictions along with associated probabilities. 
BeeMachine is in the early stages of development and will be frequently updated to enhance usability and accu-
racy as well as including more species from other regions of the world in the classification model. BeeMachine 
can currently be accessed and used on both desktop and mobile browsers but a dedicated mobile application is 
in development which will allow for a more streamlined user experience in the field, more educational content, 
and integration into video-based sampling strategies.

Conclusions
Computer vision will soon play an integral role in bee research. Now common in other fields, classification and 
object detection models will be used in the lab and deployed on devices in the field to capture data in realtime 
and over large spatial scales39. Further development of this technology and data sets for training models will be 
critical to our ability to efficiently assess trends in bumble bees and other bee taxa. For example, large scale and 
ambitious bee monitoring programs, such as proposed by Woodard et al.40 could benefit from machine-aided 
observation and identification technology. Beyond bees, this technology is easily scalable and can be generalized 
to other taxa. With mounting evidence of a global decline in insect biodiversity41,42, we need these AI-based 
tools to efficiently monitor insect populations. Object detection can be coupled with still or video cameras for 
automated sampling of insects visiting flowers43, captured in traps44, or visiting non-lethal camera traps as com-
monly used in studies of larger wildlife45. For example, cameras could be mounted to blue vane or pan traps 
that have been modified to allow insect visitors to pass through unharmed after triggering an AI-based imaging 
system. By aiding with hard-to-identify taxa, such as insects, in combination with high throughput systems, 
applied computer vision can provide a more nuanced picture of global insect biodiversity trends compared to 
trends in relatively simple measures of biomass e.g.,46.

Presently, our model can reliably identify many of the common species of North American bumble bees. 
Thus, computer vision can already help reduce the workload on overburdened experts, freeing them to focus on 
more challenging identifications and the science of taxonomy. Continued refinement and taxonomic expansion 
of machine algorithms, such as ours, will only increase their utility and expand their use to other taxa. But given 
the fluid nature of taxonomic classification, this tool will remain a work-in-progress, requiring input from a com-
munity of taxonomic experts to, among other things, define species. The recent separation of Bombus bifarius into 
two species, B. vancouverensis and B. bifarius47, is but one example of the vital work of taxonomic and genomic 
experts that will be incorporated into updated versions of our classification model.

https://beemachine.ai
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