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ABSTRACT

How do neural network image classifiers respond to simpler and simpler inputs? And what
do such responses reveal about the learning process? To answer these questions, we need a
clear measure of input simplicity (or inversely, complexity), an optimization objective that
correlates with simplification, and a framework to incorporate such objective into training
and inference. Lastly we need a variety of testbeds to experiment and evaluate the impact of
such simplification on learning. In this work, we measure simplicity with the encoding bit
size given by a pretrained generative model, and minimize the bit size to simplify inputs in
training and inference. We investigate the effect of such simplification in several scenarios:
conventional training, dataset condensation and post-hoc explanations. In all settings, inputs
are simplified along with the original classification task, and we investigate the trade-off
between input simplicity and task performance. For images with injected distractors, such
simplification naturally removes superfluous information. For dataset condensation, we find
that inputs can be simplified with almost no accuracy degradation. When used in post-hoc
explanation, our learning-based simplification approach offers a valuable new tool to explore
the basis of network decisions.

1 Introduction

A better understanding of the information deep neural networks use to learn can lead to new scientific
discoveries (Raghu & Schmidt, 2020), highlight differences between human and model behaviors (Makino
et al., 2020) and serve as powerful auditing tools (Geirhos et al., 2020; D’souza et al., 2021; Bastings et al.,
2021; Agarwal et al., 2021).

Removing information from the input deliberately is one way to illuminate what information content is
relevant for learning. For example, occluding specific regions, or removing certain frequency ranges from the
input gives insight into which input regions and frequency ranges are relevant for the network’s prediction
(Zintgraf et al., 2017; Makino et al., 2020; Banerjee et al., 2021a). These ablation techniques use simple
heuristics such as random removal (Hooker et al., 2019; Madsen et al., 2021), or exploit domain knowledge
about interpretable aspects of the input to create simpler versions of the input on which the network’s
prediction is analyzed (Banerjee et al., 2021b).
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What if, instead of using heuristics, one learns to synthesize simpler inputs that retrain prediction-relevant
information? This way, we could gain intuition into the model behavior without relying on prior or domain
knowledge about what input content may be relevant for the network’s learning target. To achieve this, one
needs to define the precise meaning of “simplifying an input”, including direct metrics for such simplification
and retention of task-relevant information.

In this work, we propose SimpleBits, an information-reduction method that learns to synthesize simplified
inputs which contain less information while remaining informative for the task. To measure simplicity, we
use a finding initially reported as a problem for density-based anomaly detection—that generative image
models tend to assign higher probability densities and hence lower bits to visually simpler inputs (Kirichenko
et al., 2020; Schirrmeister et al., 2020). However, we use this to our advantage and minimize the encoding bit
size given by a generative network trained on a general image distribution to simplify inputs. At the same
time, we optimize for the original task so that the simplified inputs still preserve task-relevant information.

Per-Instance Simplification Dataset Simplification Simplification for auditing
during Training with Condensation post training
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Figure 1: We apply SimpleBits to a variety of tasks to aid neural network understanding. Left: SimpleBits acts
as a per-instance simplifier during training, where each image is simplified but the total number of images
remain the same. Center: SimpleBits is combined with data condensation techniques, to reduce both the size
of the dataset and the complexity of individual images in the condensed dataset. Right: SimpleBits is used
as a post-hoc analysis tool of any trained classifier, illuminating features of images that are crucial to the
network’s decision.

We apply SimpleBits both in a per-instance setting, where each image is processed to be a simplified version
of itself, and the size of training set remains unchanged, as well as in a condensation setting, where the
dataset is compressed to only a few samples per class, with the condensed samples simplified at the same
time. Applied during training, SimpleBits can be used to investigate the trade-off between the information
content and the task performance. Post training, SimpleBits can act as an analysis tool to understand what
information a trained model uses for its decision making. Figure 1 summarizes the tasks covered in this paper.

Our evaluation provides the following insights in the investigated scenarios:

1. Per-instance simplification during training. SimpleBits successfully removes superfluous infor-
mation for tasks with injected distractors. On natural image datasets, SimpleBits highlights plausible
task-relevant information (shape, color, texture). Increasing simplification leads to accuracy de-
creases, as expected, and we report the trade-off between input simplification and task performance
for different datasets and problems.
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2. Dataset simplification with condensation. We evaluate SimpleBits applied to a condensation setting
where the training data are converted into a much smaller set of synthetic images. SimpleBits further
simplifies these images to drastically reduce the encoding size without substantial task performance
decrease. On a chest radiograph dataset (Johnson et al., 2019a,b), SimpleBits can uncover known
radiologic features for pleural effusion and gender.

3. Simplification for auditing post-training. Given a trained classifier on regular datasets, we explore
the use of SimpleBits as an interpretability tool for auditing processes. Our exploration of Sim-
pleBits guided audits suggests it can provide intuition into model behavior on individual examples,
including finding features that may contribute to misclassifications.
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Figure 2: Visualization of the bits-per-dimension (bpd) measure for image complexity, sorted from low
to high. Image samples are taken from MNIST, Fashion-MNIST, CIFAR10 and CIFAR100, in addition
to a completely black image sample. bpd is calculated from the density produced by a Glow (Kingma &
Dhariwal, 2018) model pretrained on 80 Million Tiny Images. Switching to other types of generative models
including PixelCNN and diffusion models trained on other datasets produces consistent observations; see
Figure S1 in Supplementary Information for more details.

2 Measuring and Reducing Instance Complexity

How to define simplicity? We use the fact that generative image models tend to assign lower encoding bit sizes
to visually simpler inputs (Kirichenko et al., 2020; Schirrmeister et al., 2020). Concretely, the complexity of
an image x can be quantified as the negative log probability mass given by a pretrained generative model
with tractable likelihood, G, i.e. —log pc(x). — log pe(x) can be interpreted as the image encoding size in
bits per dimension (bpd) via Shannon’s theorem (Shannon, 1948): bpd(x) = — logs pi(x)/d where d is the
dimension of the flattened x.

The simplification loss for an input &, given a pre-trained generative model G, is as follows:
Lsim (CL’) = - lngg(:B) (1

Figure 2 visualizes images and their corresponding bits-per-dimension (bpd) values given by a Glow network
(Kingma & Dhariwal, 2018) trained on 80 Million Tiny Images (Torralba et al., 2008) (see Supplementary
Section S1 for other models). This is the generative network used across all our experiments. A visual
inspection of Figure 2 suggests that lower bpd corresponds with simpler inputs, as also noted in prior
work (Serra et al., 2020). The goal of our approach, SimpleBits, is to minimize bpd of input images while
preserving task-relevant information.

We now explore how SimpleBits affects network behavior in a variety of scenarios. In each scenario, we
explain the method to optimize L, and the retention of task-relevant information, the experimental setup,
and results. All code is at https://tinyurl.com/simple-bits.

3 Per-instance simplification during training

When plugged into the training of a classifier f, SimpleBits simplifies each image such that f can still learn
the original classification task from the simplified batches. We apply backpropagation through training steps:
given a batch of input images Xz, before updating the classifier f, an image-to-image simplifier network
generates a corresponding batch of images Xy, such that: (a) images in Xy, have low bpd as measured
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per Lgin, in Equation (1), and (b) training on the simplified images leads to a reduction of the classification
loss on the original images.

We optimize (b) by unrolling one training step of the classifier. So for a single batch Xig, y, we first
compute an updated classifier f’ as follows:

Xisim = simplifier(Xorig) 2)
f' = train_step(f, 1(f(Xsim), ¥)) 3)

where simplifier is an image-to-image network, [ is the classification loss function, i.e., the cross-entropy

loss, and [’ is the classifier f after one optimization step using the classification loss I( f (Xgim), y) on the
simplified data.

To train the simplifier network, we optimize for both (a) (Equation (1)) and for the classification loss on
the batch of original images with the updated classifier after the unrolled training step I( f'(Xorig ), y) using
backpropagation through training (Maclaurin et al., 2015; Finn et al., 2017). Note that one could not instead
directly optimize performance on the simplified images as the simplifier could then collapse all simplified
images of one class to one representative example.

Results for Instance Simplification on CIFAR10
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Figure 3: Selection of SimpleBits applied to CIFAR10 training images. Simplified images from settings with
varying simplification loss weight Agi,. We observe that at lower bits per dimension color is retained only for
some images such as green color for frog or blue sky for the plane. In this low bit regime, texture remains
discernable for the cat and frog images. More simplified images are in Section S8.

Adding the classification losses on the simplified data both before and after the unrolled training step ensures
the training is not influenced by predictions on the simplified data that are very different from the classification
target and we found that to improve training stability, leading to:

Lcls = l(f,(Xorig)a y) + l(f(Xsim)a y) + l(f/(Xsim)7 y) (4)
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Further details to stabilize the training are described in Supplementary S3. The total loss for the simplifier is
L= Asim : Lsim + Lclm (5)

where Agn, is a hyperparameter for the trade-off between simplification and task performance. In subsequent
experiments, we vary Agip, to control the extent of simplification.

Implementation Our training architecture is a normalizer-free classifier architecture to avoid interpretation
difficulties that may arise from normalization layers, such as image values being downscaled by the simplifier
and then renormalized again. We use Wide Residual Networks as described by Brock et al. (2021) for
the classifier. The normalizer-free architecture reaches 94.0% on CIFAR10 in our experiments, however
we opt for a smaller variant for faster experiments that reaches 91.2%; additional details are included in
the Supplementary Section S2.1. For the simplifier network, we use a UNet architecture (Ronneberger
et al., 2015) that we modify to be residual, more details included in Supplementary Section S2.2. For both
simplifier and classifier networks, we use AdamW (Loshchilov & Hutter, 2019) with Ir = 5 - 10~ and
weight_decay = 107°.

3.1 SimpleBits Removes Injected Distractors

Side-by-Side MNISTs (ground truth: MNIST) MNIST with Uniform Noise (ground truth: MNIST)

Original

SimpleBits
output

Original

SimpleBits
output

Figure 4: Evaluation of SimpleBits as a distractor removal on four composite datasets. Shown are the
composite original images and the corresponding simplified images produced by SimpleBits trained alongside
the classifier. SimpleBits is able to almost entirely remove task-irrelevant image parts, namely FashionMNIST
(top left), random noise (top right), CIFAR10 (bottom left as well as bottom right).

We first evaluate whether our per-instance simplification during training successfully removes superfluous
information for tasks with injected distractors. To that end, we construct datasets to contain both useful
(ground truth) and redundant (distractor) information for task learning. We create four composite datasets
derived from three conventional datasets: MNIST (LeCun & Cortes, 2010), FashionMNIST (Xiao et al.,
2017) and CIFAR10 (Krizhevsky, 2009). Sample images, both constructed (input to the whole model) and
simplified (output of simplifier and input to classifier), are shown in Figure 4.

Side-by-Side MNIST constructs each image by horizontally concatenating one image from Fashion-MNIST
and one from MNIST. Each image is rescaled to 16x32, so the concatenated image size remains 32x32; the
order of concatenation is random. The ground truth target is MNIST labels, and therefore FashionMNIST is
an irrelevant distractor for the classification task. As seen in Figure 4, the simplifier effectively removes the
clothes side of the image.

MNIST with Uniform Noise adds uniform noise to the MNIST digits, preserving the MNIST digit as the
classification target. Hence the noise is the distractor and is expected to be removed. And indeed the noise is
no longer visible in the simplified outputs shown in Figure 4.
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Figure 5: Results for training image simplifications on real datasets. Dots show results for training with
different loss weights for the simplification loss. Images with less bits per dimension lead to reduced
accuracies, and such reduction is more pronounced for complex datasets like CIFAR10.

Interpolated MNIST and CIFAR10 is constructed by interpolating between MNIST and CIFAR10 images.
MNIST digits are the classification target. The expectation is that the simplified images should no longer
contain any of the CIFAR10 image information. The result shows that most of the CIFAR10 background is
removed, leaving only slight traces of colors.

CIFAR10 with Stripes overlays either horizontal or vertical stripes onto CIFAR10 images, with the binary
classification label O for horizontal and 1 for vertical stripes. With this dataset we observe the most drastic
and effective information removal, where only the tip of vertical strips is retained, which by itself is sufficient
to solve this binary classification task.

3.2 Trade-off Curves on Conventional Datasets

We verified that SimpleBits is able to discern information relevance in inputs, and effectively removes
redundant content to better serve the classification task. In real-world datasets, however, the type, as well as
the amount of information redundancy in inputs is often unclear.

With the same framework, by varying the simplification weight A, we can study the trade-off between task
performance and level of simplification to better understand a given dataset. On one end, with Agy, = O it
should faithfully restores to conventional training. On the other end, when A, is sufficiently high (resulting
in an all-black input image), the training is expected to fail.

We experimented with MNIST, Fashion-MNIST, SVHN (Netzer et al., 2011) and CIFAR10, producing a
trade-off curve for each by setting the strength of the simplification loss to various values during training,
including \si,, = 0. For each setting, we report the classification accuracy as a result of joint training of
simplification and classification, retraining from scratch with only simplified images, and finetuning after
joint training with simplified images, respectively, as shown in Figure 5.

As expected, higher strengths of simplification lead to decreased task performance. Interestingly, such decay
is observed to be more pronounced for more complex datasets such as CIFAR10. This suggests either the
presence of a relatively small amount of information redundancy, or that naturally occurring noise in data
helps with generalization, analogous to how injected noise from data augmentation helps learning features
invariant to translations and viewpoints, even though the augmentation itself does not contain additional
discriminative information.

We run three baselines to validate the efficacy of our simplification framework, as described in Supplementary
Section S7 and shown in Figure S4. Section S5 shows that our simplification has practical savings in image
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storage. More analyses including training curves and potential spurious features revealed by SimpleBits can
be seen in Supplementary Section S6 and S9, respectively.

4 Dataset simplification with Condensation

Now we investigate how SimpleBits affects training on a small synthetic condensed dataset. Multiple methods
have been developed for dataset condensation (Zhao et al., 2021; Zhao & Bilen, 2021; Wang et al., 2018;
Maclaurin et al., 2015), via backpropagation through training (Wang et al., 2018; Maclaurin et al., 2015),
gradient matching (Zhao & Bilen, 2021), or kernel based meta-learning (Nguyen et al., 2021). Due to its
small size, one can visualize the full condensed dataset to understand what information is preserved for
learning. Our aim here is to combine SimpleBits with dataset condensation to see if we could obtain a both
smaller and simpler training dataset than the original.

In this setting, we jointly condense our training dataset to a smaller number of synthetic training inputs
and simplify the synthetic inputs according to our simplification loss (Eq. 1). Concretely, we add the
simplification loss Lgiy, to the gradient matching loss proposed by Zhao & Bilen (2021). The gradient
matching loss computes the layerwise cosine distance between the gradient of the classification loss wrt. to
the classifier parameters 6 produced by a batch of original images X i, and a batch of synthetic images
Xeyn:

Limatch (Xorig’ Xsyn) =

(0)
D(VGZ(f(Xorig)a y), VQZ(f(XSyn)a y))
where D is the layerwise cosine distance. The matching loss is computed separately per class.
Overall, with our simplification loss, we get:
Lsyn(Xorig7 Xsyn) = Lmatch(Xorig7 Xsyn)
+ Z - 1ngG(wsyn) %)

Lsyn EXsyn

We perform dataset condensation on MNIST, Fashion-MNIST, SVHN and CIFAR10 with varying Agp, for
the simplification loss. We also apply dataset condensation to the chest radiograph dataset MIMIC-CXR-JPG
(Johnson et al., 2019a,b) for predicting pleural effusion and gender. We use the networks from (Zhao et al.,
2021), but use Adam (Kingma & Ba, 2015) for optimization.

4.1 SimpleBits retains condensation performance while greatly simplifying data

In Figure 6, we examine the accuracy for each condensed-and-simplified dataset. We observe that for the
natural image datasets, accuracies are mostly retained when decreasing the number of bits per image. Note
that the setting with highest bpd is a reimplementation of Zhao et al. (2021) and therefore a baseline without
simplification loss. We visualize examples in Figure 6 and observe that the jointly condensed and simplified
images look visually smoother, indicating that higher frequency patterns visible in the original images are not
needed to reach the same accuracy. These visualizations are also noticeably more smooth than the results for
per-instance simplification Figure 4, which suggests that data condensation may already favor features that
are less complex. Further condensed sets are in Section S10 and a continual learning evaluation in S11.

Evaluation of a medical chest radiograph dataset We also evaluate jointly condensing and simplifying for
a dataset of chest radiograph images (Johnson et al., 2019a,b). This dataset has known radiologic features for
the presence of pleural effusion (Jany & Welte, 2019; Raasch et al., 1982) and difference in gender (Bellemare
et al., 2003). In Figure 7, we visualize both the condensed (top row) and the jointly condensed and simplified
dataset (bottom row). The overlayed shows that a visible difference between presence of feature. For pleural
effusion, a larger white region on the bottom of the lung occurs in the simplified pathological image, while
for gender, lungs appear slightly smaller for the simplified female image.



WHEN LESS IS MORE: SIMPLIFYING INPUTS AIDS NEURAL NETWORK UNDERSTANDING

1 Images per Class 100 10 Images per Class
—_ *——O
x —e— FashionMNIST
e oo oo 75 0 B B CIFAR10
8 \ \ T
£ 5o —e— SVHN
3 50 —e— MNIST
< see— oo
N 8 6 Ng 10 8 6 4 2
Bits per dimension Bits per dimension
Ship Truck
28.2%
8.94 bpd
28.5%
4.45 bpd

T-shirt Trouser  Pullover Dress Sandal Shirt Sneaker a Ankleboot

Coat
69.8%
ﬂ 1) l TPy
68.6% :
3.19 bpd 258 | e . _‘

Figure 6: Dataset condensation accuracies (when retraining with the condensed dataset) vs. data simplicity.
Top: Each dot represents a data condensation experiment run with a particular weight for the simplification
loss, which results in more or less complex datasets. Accuracies can be retained even with substantially
reduced bits per dimension. In the 1-image-per-class case (top left figure), arrows highlight the settings that
are visualized in the bottom figure. Bottom: Condensed datasets with varying simplification loss weight.
Each row represents the whole condensed dataset (1 image per class), with high (top row) or low (bottom
row) bits per dimension. Lower bits per dimension datasets are visually simpler and smoother while retaining
the accuracy.
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Figure 7: Condensed dataset for pleural effusion and gender prediction from chest radiographs in MIMIC-
CXR. Condensed images for the classes look very similar. Color-coded mixed rightmost images reveal the
differences between the classes. Green highlighted region at the lower end of the lung consistent with typical
radiologic features for pleural effusion (white region indicating fluid on lungs), red highlighted around lung
for gender indicate smaller lung volume for the female class.



WHEN LESS IS MORE: SIMPLIFYING INPUTS AIDS NEURAL NETWORK UNDERSTANDING

5 Post-training simplification

Algorithm 1 Simplification loss function after training

given generative network G, input X.rig, simplified input @im, classifier f, parameter scaling factors s < 1
Scale classifier parameters down by s to simulate "forgetting"
fsca  ScaleParameters(f, s)

Predict original and simplified with unscaled classifier

horig - f(morig)y hsim - f(msim)

Predict original and simplified with scaled classifier

horig,scd - fscd (morig)a hsim,scd - fscd (msim)

Compute gradients of prediction divergence wrt. scaling factors
gTadorig = VsDxkL (horithorig,scd)

gradsim = VSDKL(horithsim,scd)

Compute layerwise cosine distance between gradients

Lgrad = Dcos (gradoriga gradsim)

Compute prediction differences of original and simplified

Lprcd = DKL(h”hslm) + DKL(hscdHhsim,scd)

Compute needed bits for simplified input

Lgim = — IngG (mSim))

return Lgrad + Lpred + >\sim - Lgim

Can SimpleBits be used to interpret trained classifiers after training? We explore simplifying images post-
training as a basis for gaining intuition about model behavior. We will do so by using SimpleBits to visualize
some of the information that would help the classifier remember what it has learned for a specific prediction.

For synthesizing the prediction-relevant information, we simulate that the classifier forgets knowledge and
then synthesize a simplified input that allows the classifier to relearn the relevant knowledge for the prediction
of the original input. To simulate forgetting, we scale down all parameters of the trained classifier f by
multiplying them with a gating value ¢gcated;; = @; - 5,5 < 1. This scaling removes information from the
model by bringing the learned parameter values closer to zero, is identical to weight decay and also makes
the network simpler in terms of model encoding size (Hinton & van Camp, 1993). To synthesize a simplified
input that helps learning to restore the parameter values that are important for a specific input, we compare
gradients between the original and simplified input.

Given an input, we can compute the gradients of the KL-divergence between the rescaled network’s prediction
fsca(z) and the original network’s prediction f(x). At each iteration, the layerwise cosine distance between
these two sets of gradients (one for original datapoint and the other for the simplified) is the basis of the
loss used in SimpleBits. We compute this distance only considering the gradients that are negative for the
original input. Combined with the simplification loss Eq. 1, this amounts to asking what input information
is needed to recover parts of the original network to restore the original prediction? To ensure that the
network is trained towards minimizing the same prediction difference on the simplified and original data, we
also add a prediction difference loss Lyeq. Further details about the implementation are included in Alg. 1
and Supplementary Section S4. We use the loss computed in Alg. 1 to optimize the latent encoding of the
simplified image with Adam.

In Figure 8, we visualize both the misclassified images according to the original network f and produce the
corresponding simplified versions. We observe that simplified images may provide some intuition into the
reason for the network’s misclassification, highlighting a variety of different features for different images.
We imagine a possible practitioner workflow, where the practitioner derives a set of possible hypotheses for
the misclassification from SimpleBits and tests them on the real data. We show further post-hoc simplified
examples and a comparison to saliency-based methods in supplementary Section S12.

6 Related Work

Our approach simplifying individual training images builds on Raghu et al. (2021), where they learn to
inject information into the classifier training. Per-instance simplification during training can be seen as a
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Figure 8: Post-hoc simplifications of misclassified CIFAR-10 examples. For each example, the simplified
image reveals plausible causes for the misclassification. We subsequently made alterations to compensate
for the cause (from left to right: removing black dots, removing tree top, removing color, removing high
frequency texture, removing circle, and removing color), and are able to revert the predictions to the true
class.

instance of their framework combined with the idea of input simplification. In difference to their methods,
SimpleBits explicitly aims for interpretability through input simplification.

Other interpretability approaches that synthesize inputs include generating counterfactual inputs (Hvilshgj
et al., 2021; Dombrowski et al., 2021; Goyal et al., 2019) or inputs with exaggerated features (Singla et al.,
2020). SimpleBits differs in explicitly optimizing the inputs to be simpler.

Generative models have often been used in various ways for interpretability such as generating realistic-
looking inputs (Montavon et al., 2018) and by directly training generative classifiers (Hvilshgj et al., 2021;
Dombrowski et al., 2021), but we are not aware of any work except (Dubois et al., 2021) (discussed above) to
explicitly generate simpler inputs. A different approach to reduce input bits while retaining classification
performance is to train a compressor that only keeps information that is invariant to predefined label-preserving
augmentations. Dubois et al. (2021) implement this elegant approach in two ways. In their first variant,
by training a VAE to reconstruct an unaugmented input from augmented (e.g. rotated, translated, sheared)
versions. In their second variant, building on the CLIP (Radford et al., 2021) model, they view images with
the same associated text captions as augmented versions of each other. This allows the use of compressed
CLIP encodings for classification and achieves up to 1000x compression on Imagenet without decreasing
classification accuracy. Their approach focuses on achieving maximum compression while our approach is
focused on interpretability. Their approach requires access to predefined label-preserving augmentations and
has reduced classification performance in input space compared to latent/encoding space.

7 Conclusion

We propose SimpleBits, an information-based method to synthesize simplified inputs. Crucially, Sim-
pleBits does not require any domain-specific knowledge to constrain or dictate which input components
should be removed; instead SimpleBits itself learns to remove the components of inputs which are least
relevant for a given task.

As an interpretability tool, we show that SimpleBits is able to remove injected distractors, suggest plausible
reasons for misclassification, and recover known radiologic features from condensed datasets. When combined

10
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with data condensation, SimpleBits retains accuracy while greatly reducing the complexity of condensed
images.

Our simplification approach sheds light on the amount of information required for a deep network classifier
to learn its task. We find that the tradeoff between task performance and input simplification varies by dataset
and setting — it is more pronounced for more complex datasets.
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Supplementary Information for:
When less is more: Simplifying inputs aids neural network
understanding

Supplementary outline

This document completes the presentation of the main paper with the following:

Supplementary Type of Relevant section TL:DR
Section content in main text ’
S1 Additional experiments Section 2 Example images with bpd values produced
by other generative models
S2, 83 Implementation details Section 3 Architecture and optimization details for
simplification during training
S4 Implementation details Section 5 Optimization details post-hoc simplifica-
tion
S5,86,S7 | Additional experiments |  Section3.2 | Baselines, training curves, file size analysis
S8 More figures Figure 3 Uncurated sets of simplified images at end
of joint training
S9 Additional findings Section 3.2 Potential spurious features revealed by Sim-
pleBits
S10 | More figures | Section 4 | More simplified condensed dataset images
S11 Additional experiments Section 4 Simplified condensed datasets evaluated in
a continual learning setting
S12 Additional findings Section 5 More use cases of post-training auditing,
with comparison to saliency-based methods

S1 BPDs of other generative models

Figure S1 shows that the bits per dimension produced by other generative models than Glow also correlate
well with visual complexity, validating our measure. This is consistent with prior work that found bpds
of generative models trained on natural image datasets are strongly influenced by general natural image
characteristics independent of any specific dataset (Kirichenko et al., 2020; Schirrmeister et al., 2020; Havtorn

etal., 2021).

S2 Architecture details for per-instance simplification during training

S2.1 Classifier network

Our classification network is based on the Wide ResNet architecture (Zagoruyko & Komodakis, 2016). We
used a version with relatively few parameters with depth = 16 and widen_factor = 2 to allow for fast
iteration on experimentation. We used ELU instead of ReL.U nonlinearities.
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Figure S1: Visualization of the bits-per-dimension (bpd) measure for image complexity, sorted from low
to high. Image samples are taken from MNIST, Fashion-MNIST, CIFAR10 and CIFAR100, in addition
to a completely black image sample. bpd is calculated from the density produced by a Glow (Kingma &
Dhariwal, 2018) model pretrained on 80 Million Tiny Images, a PixelCNN model trained on CIFAR10, and a
diffusion model trained on CIFARI10.

Additionally, we removed batch normalization to avoid interference of normalization layers with the simplifi-
cation process. We followed the method from Brock et al. (2021) to create a normalizer-free Wide ResNet.
We reparameterize the convolutional layers using Scaled Weight Standardization:

Wij — i
VNo;

where p1; = (1/N) Y2, Wij, 07 = (1/N) 2 (Wij — pi)?, and N denotes the fan-in. Further as in Brock
et al. (2021), "activation functions are also scaled by a non-linearity specific scalar gain ~y, which ensures
that the combination of the y-scaled activation function and a Scaled Weight Standardized layer is variance
preserving." Finally, the output of the residual branch is downscaled by 0.2, so the function to compute the
output becomes h;1 = h; +0.2- f;(h;), where h; denotes the inputs to the ith residual block, and f; denotes
the function computed by the i** residual branch. Unlike Brock et al. (2021), we did not multiply scalars
B; with the input of the residual branch or learned zero-initialized scalars to multiply with the output of the
residual branch, as we did not find these two parts helpful in our setting. We also did not attempt to use
Stochastic Depth (Huang et al., 2016), which may further improve upon the accuracies reported here. Due to
our small batch sizes (32), we also did not use adaptive gradient clipping.

With this setup, the normalizer-free Wide ResNet with depth = 28 and widen_factor = 10 reached 94.0%
on CIFAR10. To enable faster experiments, we instead use a smaller architecture with depth = 16 and
widen_factor = 2 which reached 91.2% on CIFARI10.

Wij = (S1)

S2.2 Simplifier network

For the simplifier, we adapted a publicly available implementation of UNet '. We used num_down = 5
downsampling steps, ELU nonlinearities ngf = 64 filters in the last conv layer and a simple affine transfor-
mation layer instead of a normalization layer. Furthermore, we made the simplifier residual and ensured the
output is within [0, 1] by adding the output of the UNet to the inverse-sigmoid-transformed input and then
reapplying the sigmoid function.

'nttps://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Algorithm 2 Simplification loss function after training full algorithm

1: given generative invertible network G, input & and its latent code z (from G), simplified input’s latent code zsim, classification
network f, parameter scaling factors s < 1

2: Scale classifier parameters down by s to simulate "forgetting"

3: ficaled < ScaleParameters(f, s)

4: Sample interpolation factor uniformly between 0 and 1.

5: a~U(0,1)

6: Interpolate simple and original input in latent space

7 Zmixed = - Zsim + (1 —a) - 2

8: Invert zy;, using invertible network

9: @mix = invert(G, Zmix)

10: Predict original and mixed with unscaled classifier

11: b= f(x), hmix = f(Tmix)

12: Predict original and mixed with scaled classifier

13: hscaled - fscaled(m), hscaled,mix - fsculed (mmix)

14: Compute distance between gradients on scaling factors.

15: Lgrad = d(vsDKL (hHhscaled)y VSDKL(hHhmix,scaled))

16: Compute prediction differences

17: Lpred = DKL(h”hmix) + DKL(hscaled||h1nix,scaled)

18: Invert zgy, using invertible network

19: @sim = invert(G, Zsim)

20: Compute needed bits for simplified input

21: Lsimpliﬁcati()n - - long(msim))

22: Return overall loss

23: return Lgrad + Lpred + )\sim . Lsimpliﬁcatinn

S3 Optimization details for per-instance simplification during training

First, we note that the single train_step helps ensure a correspondence between simplified and original
images, and is a technique others have used in meta-learning settings (Pham et al., 2021).

For stabilizing the optimization of the per-instance simplification during training, we found two further steps
helpful. First, we modify:

Lcls = l(f/(Xorig)a y) + l(f(Xsim)v y) + l(fl(Xsim)7 y) (82)
to

Lgs =10- l(f,(Xorig)a y) + l(f(Xsim)a y) + l(f/(Xsim)7 y) (S3)

as (a) the gradient magnitudes are much smaller from the losses after unrolling and (b) we want to prioritize
the classification loss on the original data. Additionally, we dynamically turn off Lg;,, during training, for
any example x where [( f'(€orig), y) > 0.1, which we also found to further stabilize training.

S4 Optimization details for simplification for auditing post-training

We found it beneficial to optimize the simplified inputs in the latent space of the pre-trained Glow network
and to apply our loss functions to all interpolated inputs on the path between original and simple input in
latent space instead of only to the simplified input itself. The points on the path include information from
the original input and prevent that the optimization is unable to recover some relevant information from the
original input. Additionally, we also ensure that the predictions are the same for the original and interpolated
inputs for both the original and the scaled model. The complete loss function can be found in Alg. 2, during
training we called it with scaling factors sampled from s ~ U(0.8,0.95) as these values mostly led to similar
but more uniformly distributed predictions than the unperturbed network.

S5 PNG-compressed file sizes of simplified images

We want to validate that simplified images actually occupy less storage space. We save images in the PNG
file format and calculate the file size. Figure S2 shows the average PNG file size of the simplified images
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Figure S2: Simplified CIFAR10 images result in smaller storage space when converted into PNG files. Plotted
are the average PNG file sizes of the simplified images after joint simplification and classification training (see
Section 3), against bpd values produced by Glow, the generative model. Runs with different simplification
loss weight A lead to different average file sizes.
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Figure S3: Learning curves for retraining on simplified images on CIFAR10.

obtained from our simplification framework. Concretely, we PNG-compress the images at the end of the joint
simplification and classification training and then compute the average file size. Varying the simplification
loss weight Agn, leads to different average bpd values and also different file sizes, with larger \gy, resulting
in smaller file sizes.

S6 Learning Curves for Retraining

Figure S3 shows learning curves during retraining on the simplified images on CIFAR10. There are no
noticeable differences in training speed for more or less simplified images.

S7 Simplifier Baselines

We implemented three simpler baselines to check whether the losses used in SimpleBits during training help
retain task-relevant information. In the first baseline, we train the simplifier to simultaneously reduce bpd of
the simplified image and the mean squared error between the simplified and the original image. Afterwards
we train the classifier on the simplified images and evaluate on the original images the same way as during
retraining of SimpleBits. In the second baseline, we blur the original images with a gaussian kernel, which also
reduces their bpd. We vary the sigma/standard deviation for the gaussian kernel to trade off smoothness and
task-informativeness. In the third baseline, we use lossy JPEG compression with varying quality levels. As in
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Per-Instance Simplification During Training, Retraining Results
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Figure S4: Comparison between SimpleBits and two simpler baselines: In the first one, the simplifier network
is trained to simultaneously reduce bpd of the simplified image and the mean squared error between the
simplified and the original image. In the second one, gaussian blurring is applied to the input images, different
runs vary in the standard deviation used to create the gaussian blurring kernel. In the third one, we use JPEG
compression with varying quality levels. Tradeoff curves are worse for the baselines than for SimpleBits .

SimpleBits and the other baselines, we estimate the bits per dimension of the lossy-JPEG-compressed images
through our pretrained Glow network for a fair comparison. The gaussian blurring and JPEG compression
each replace the simplifier, so these are fixed simplifier baselines without training a simplifier. While these
three baselines also retain some task-relevant information allowing the classifier to retain above-chance
accuracies (see Figure S4), the tradeoff between bpd and accuracy is worse than for SimpleBits. This shows
the losses used in SimpleBits help retain more task-relevant information compared to these baselines.

S8 More Images Simplified During Training

We show a larger number of images that were simplified on CIFAR10 during training with the largest
simplification loss weight Ay, = 2.0 in Figures S5, S6 and S7.

S9 Potentially spurious features uncovered by SimpleBits

SimpleBits may have the potential to reveal spurious correlations present in the dataset. We show some
simplified images that reveal potentially spurious features in Figure S10. These observations can be used as a
starting point to further investigate whether these features also affect regularly trained classifiers.

S10 More condensed datasets

We also show condensed datasets for MNIST and SVHN (Figure S11), some interesting condensed datasets
that resulted when we varied the architecture (Figure S12) or the condensation loss (from gradient matching
to either negative gradient product or single-training-step unrolling, Figure S13).

S11 Evaluation of Condensed Datasets for Continual Learning

We also evaluate the simplified condensed datasets in a continual learning setting, following (Zhao & Bilen,
2021). In this task-incremental continual learning setting, the model is trained on different classification
datasets sequentially. When training on a new dataset, the model is additionally trained on the condensed
versions of the previous datasets.

The continual learning experiment reproduces the setting from (Zhao & Bilen, 2021) to first train on SVHN,
then on MNIST and finally on USPS (Hull, 1994), using the average accuracy across all three datasets of the
classifier at the end of training as the final accuracy (see (Zhao & Bilen, 2021) for details).
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Figure S5: Uncurated set of simplified images with Agi, = 2.0, 6 per class. Rows alternate between original
and simplified images.

Figure S6: Uncurated set of correctly predicted simplified images with Agy = 2.0, 6 per class. Rows
alternate between original and simplified images.
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Figure S7: Correctly predicted simplified images with strongest color with Ay, = 2.0, 6 per class.

Continual Learning Results
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Figure S8: Continual Learning Results without Condensed Dataset (regular sequential training). Conventions
as in Figure S9. Accuracies substantially worse without any condensed dataset.

We created a simpler and faster continual training pipeline that achieves comparable results to Zhao & Bilen
(2021). First, we train 3 times for 50 epochs on SVHN, with a cosine annealing learning rate schedule
(Loshchilov & Hutter, 2017) that is restarted at each time with [ = 0.1. Then for each MNIST and USPS,
we train one cosine annealing cycle of 50 epochs for [r = 0.1.

We first verified that we can reproduce the prior continual learning results with our simpler training pipeline
and find that our training pipeline indeed even slightly outperforms the reported final results (96.0% vs.
95.2% with, and 95.4% vs 93.0% without knowledge distillation) despite slightly inferior performance in the
first training stage (before any continual learning, 93.6% vs 94.1%), see following subsection. When using
different SVHN and MNIST condensed datasets, we find that we can retain the original continual learning
accuracies even with condensed datasets with substantially less (~9x less) bits per dimension (see Fig.S9).
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Figure S9: Continual Learning Results. Results for first training on SVHN, then MNIST and then USPS for
condensed datasets with varying bits per dimension. Solid lines are with and dashed lines without knowledge
distillation. Note that continual learning accuracies remain similar also for substantially reduced bits per
dimension. Ablations show that accuracies degrade without any condensed dataset, see supplementary.
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Figure S10: Selected simplified images that highlight potentially spurious features. Two leftmost images are
correctly predicted, two rightmost images are incorrectly predicted.

S11.1 Without Condensed Dataset

Our training pipeline still exhibits forgetting when not using any condensed datasets of previously trained-on
datasets. As Figure S8 shows, the accuracies are far lower than with just regular sequential training. We
performed this ablation to ensure forgetting still occurs in our training pipeline.

S12 More images Simplified After Training

We show further examples of post-hoc-simplified images for misclassified original images in Figure S14.
We also show the output of SimpleBits when applied to the control images of Figure 8 in Figure S15 and a
comparison to saliency-based methods in Figure S16. We also show an uncurated set of incorrectly predicted
and correctly predicted images in Figures S17 and S18.
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Figure S11: Dataset condensation results with varying simplification loss weight. Top: Individual dots
represent accuracies for setting with different simplification loss weights. Accuracies can be retained even
with substantially reduced bits per dimension. For 1 image per class, arrows highlight the settings that are
visualized below. Below: Condensed datasets with varying simplification loss weight. Per dataset, showing
condensed datasets with high (top row) and low (bottom row) bits per dimension. Lower bits per dimension
datasets are visually simpler and smoother while mostly retaining accuracies.

S24



WHEN LESS IS MORE: SIMPLIFYING INPUTS AIDS NEURAL NETWORK UNDERSTANDING

plane car bird cat deer dog frog horse  ship truck
ir:)i?lnce = o E - \ 28.7% Acc.
ReLU 4.35 BPD
g(‘)srtr?lnce 27.3% Acc.
ELU 4.35 BPD
™ —9 p———
I:(;)rm m :Eg :.. el -" - I.I.. e 22.5% Acc.
- > “de :
ReLU il g4 P ) "K!'!' TN 435 BPD
fg’m 22.7% Acc.
ELU 4.31 BPD
Figure S12: Dataset condensation on CIFAR10 with varying architecture.
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Figure S13: Dataset condensation on CIFAR10 with varying condensation loss and varying outer loop steps,
i.e. how many steps the classifier is trained at each training epoch (default 1 in the 1 image per class setting),
after each step the condensation loss is again optimized.
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Figure S14: Further examples of post-hoc simplifications of originally misclassified images.
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Figure S15: Post-hoc simplifications of control images.
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Figure S16: Post-hoc simplifications of misclassified CIFAR-10 examples and saliency maps. In this figure,
we also show color-coded saliency maps for expected gradients (Erion et al., 2021) and prediction difference
(Zintgraf et al., 2017) for comparison (red: evidence for and blue: evidence against the predicted class).
SimpleBits reveals more information than saliency methods.
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Figure S17: Uncurated post-hoc simplifications of incorrectly predicted images.
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Figure S18: Uncurated post-hoc simplifications of correctly predicted images.
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