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Abstract

Many subfields of machine learning share a common stumbling block: evaluation.1

Advances in machine learning often evaporate under closer scrutiny or turn out to2

be less widely applicable than originally hoped. We conduct a meta-review of 1073

survey papers from computer vision, natural language processing, recommender4

systems, reinforcement learning, graph processing, metric learning, and more,5

organizing a wide range of surprisingly consistent critique into a concrete taxonomy6

of observed failure modes. Inspired by measurement and evaluation theory, we7

divide failure modes into two categories: internal and external validity. Internal8

validity pertains to evaluation on a learning problem in isolation, such as improper9

comparisons to baselines or overfitting from test set re-use. External validity10

relies on relationships between different learning problems, for instance, whether11

progress on a learning problem translates to progress on seemingly related tasks.12

1 Introduction13

Most empirical papers in machine learning follow the benchmarking paradigm for evaluation. There14

is a myriad of datasets and tasks in the literature, and what it means for a machine to “learn” has in-15

terpretations from mirroring human-like intelligence to solving a specific practical task. Nevertheless,16

whether a new method has merit is usually determined by evaluating a trained model on a held-out17

test set and comparing its performance to prior work. If the new model improves over the relevant18

baselines, the method represents an algorithmic contribution. Since the benchmark itself is often only19

a challenge problem specifically constructed for research, the underlying assumption is that the new20

method will also yield performance improvements on real-world problems similar to the benchmark.21

Benchmarking was popularized in machine learning in the 1980s through the UCI dataset repository22

and challenges sponsored by DARPA and NIST [24, 35, 55, 81]. Since then, benchmark evaluations23

have become the core of most empirical machine learning papers. The impact of benchmarking is24

illustrated by the ImageNet competition [31, 130], which seeded much of the excitement in machine25

learning since 2010. Winning entries such as AlexNet [77] and ResNets [57] have become some of26

the most widely cited papers across all sciences.27

Evaluating algorithmic progress with benchmarks is a double-edged sword. On the one hand,28

benchmarks come with a clearly defined performance metric that enables objective assessments of29
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Figure 1: Our framework for benchmark-based evaluations of machine learning algorithms and
associated validity concerns. In the benchmark paradigm, papers which propose a new algorithmic
idea demonstrate its effectiveness by comparing to results of prior work on a specific learning problem
(the benchmark). The underlying assumption is that the benchmark is representative for a broader
task and hence the performance improvements will transfer to real-world applications. This chain of
reasoning relies on multiple steps with various potential validity issues.

different algorithms. On the other hand, summarizing a new algorithm with a single performance30

number creates an illusion of simplicity that ignores the many underlying assumptions in the learning31

problem posed as a benchmark. Indeed, an increasing number of machine learning papers take a32

critical perspective on recent algorithmic advancements and find important flaws in current evaluation33

practices. For instance, most claimed advances from the past few years of recommender systems34

research failed to improve over established baselines and evaporate under closer scrutiny [25, 124].35

Given the key role benchmarking plays in machine learning, such evaluation flaws threaten to36

undermine the perceived algorithmic gains in recent years.37

In this paper, we provide a systematic taxonomy of failures in the benchmarking paradigm in order38

to put current evaluation practices on solid foundations. Our taxonomy draws from 107 analysis39

papers which study specific machine learning evaluations; we describe further how we arrived at40

this taxonomy in Appendix 6. Despite the diversity of tasks and algorithms, we find that the same41

evaluation failures repeat across diverse areas such as computer vision, natural language processing,42

recommender systems, reinforcement learning, graph processing, metric learning, and more. Based43

on lessons from evaluation theory [92], we divide the failure modes into two categories:44

• Internal validity refers to issues that arise within the context of a single benchmark.4546

• External validity asks whether progress on a benchmark transfers to other problems.47

Figure 1 illustrates our taxonomy of evaluation failures in machine learning. Our taxonomy can serve48

as a resource for machine learning researchers and practitioners to check for evaluation issues in their49

own disciplines. Since many failure modes occur in several fields, insights from one field will transfer50

to others. Additionally, our paper contributes insights to the ongoing discussion around evaluation51

practices in machine learning. Finally, our taxonomy of external validity criteria offers a starting52

point for research in this area. The relationships between different datasets and learning problems are53

not yet well understood; more work is needed to understand the scope of current benchmarks.54

Next we introduce our framework for evaluation validity in machine learning, which organizes the55

common failures modes described in Sections 3 and 4. Section 5 then discusses limitations of the56

benchmarking paradigm itself before we conclude in Section 6. An overview of the papers that57

inform this survey can be found in Appendices D and E.58
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Figure 2: An example of a task hierarchy and associated learning problems. Tasks are abstract
problem statements formulated independently from datasets and exist at various levels of granularity,
giving rise to a hierarchy. In contrast, a learning problem combines a specific dataset and a particular
metric to instantiate one or more tasks. Many learning problems can attempt to instantiate the same
task, and the relationships between different learning problems is the focus of external validity.

2 A conceptual framework for machine learning evaluations59

Empirical machine learning evaluations are ultimately tied to datasets. A key question is to what60

extent the datasets used to measure algorithm performance (e.g., ImageNet [31, 130] or GLUE61

[157]) represent the problem a paper claims to address (e.g., image classification or natural language62

understanding). To make this distinction clear from the beginning, we define two different kinds63

of problem statements. These two notions for “learning from data” distinguish between concrete64

problems defined via datasets and abstract problems defined via formal or informal semantics.65

2.1 Two kinds of problem statements: learning problems vs. tasks66

Learning problems. A learning problem comprises a dataset of (input, output) pairs and an associated67

evaluation metric for scoring proposed solutions (functions from the input to the output space). A68

learning problem is fully defined by these two parts and requires no further reference to external69

semantics or data; e.g., the ILSVRC-2012 dataset (ImageNet) with top-1 accuracy as metric.70

Tasks. A task is a problem statement defined abstractly, either via natural language or in a formal71

way. A task does not necessarily have a single true definition and we do not aim to establish any72

task definitions. Tasks can exist at varying granularities, e.g., from “dog vs. cat classification” to73

“animal classification” to “image classification”, which naturally gives rise to a hierarchy (see Figure74

2). Tasks are omnipresent in the machine learning literature as a way to frame contributions. For the75

purpose of evaluation, tasks are usually instantiated by learning problems. As an example, MNIST,76

CIFAR-10, and ImageNet all instantiate the “image classification” task.77

Given these definitions, a benchmark is a learning problem framed as an indicator of progress on some78

task. Benchmarks usually come with a leaderboard, competition, or other context that establishes the79

current state of the art. For example, improving accuracy on ImageNet can be considered as making80

improvements on the image classification task in the context of the ILSVRC competition [130].81

2.2 Internal and external validity in machine learning evaluations82

The distinction between learning problems and tasks also separates validity issues in machine learning83

into internal issues, i.e., issues arising within the context of a single learning problem, and external84

issues, i.e., issues stemming from the relationship between a learning problem and broader tasks.85

Internal validity. In the evaluation literature, internal validity is about consistency within the specified86

context of the experimental setup [92]. In machine learning evaluations, we use internal validity87
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to refer to validity properties within a learning problem. If these properties are not satisfied, then88

the experimental measurement itself is invalid. Examples of internal validity problems in machine89

learning are comparisons to insufficient baselines or overfitting from test set re-use, both of which90

invalidate claimed improvements over the state-of-the-art on a given learning problem.91

External validity. External validity is about the ability to extrapolate – to make valid conclusions92

for contexts outside the experimental parameters [92]. In machine learning, we use external validity93

to refer to connections between specific learning problems and the broader tasks they are meant to94

represent. This goes beyond test set performance on an individual learning problem and is anchored to95

expectations for performance on one learning problem to transfer to other related learning problems.96

For instance, external validity issues can arise from limitations of the benchmark dataset or a mismatch97

in the evaluation metrics of interest.98

Internal validity criteria are well known in the field. But despite the seeming simplicity of these99

failure modes, their recurrence across different areas indicates that machine learning currently has not100

yet identified nor implemented mechanisms needed for rigorous evaluation. The in-depth study of101

external validity criteria has only begun recently as more research datasets and concrete applications102

have become available. Since many popular machine learning benchmarks do not represent real103

applications but instead are constructed solely for the purpose of comparing learning algorithms,104

investigating the external validity of these benchmarks is particularly important.105

3 Internal validity106

In this section, we provide examples of recurring internal validity issues that arise within the107

benchmarking paradigm. In particular, we discuss implementation variations, errors in test set108

construction, overfitting from test set reuse, and comparisons to inadequate baselines.109

3.1 Implementation variations110

Different implementations of the same algorithm or metric should behave as close to identical as111

possible. Variations in behaviour can cause variations in performance, making comparisons difficult112

if it is unclear which implementation is being referred to. This can result in situations where multiple113

implementations of ostensibly the same algorithm are effectively distinct methods. We describe114

specific cases of implementation variations leading to internal validity failures here, and continue115

with more examples in Appendix B.1.116

Algorithms. Ancillary details of an algorithm implementation, often dubbed “tricks”, can significantly117

affect performance. These details are often undocumented in the paper, so subsequent implementa-118

tions of the algorithm are coded differently. Consider the variation observed by [59] for algorithms119

in deep reinforcement learning (deep RL): across three implementations of Trusted Region Policy120

Optimization (TRPO), and three implementations of Deep Deterministic Policy Gradients (DDPG),121

the best codebase was several factors better than the next best. On OpenAI HalfCheetah-v1 [19], the122

best TRPO codebase achieved an average reward of nearly 2,000 versus 500, and the best DDPG123

implementation reached a best average reward of 4,500 versus 1,500 [59].124

Metrics. Unexpected differences in metric scores caused by implementation variations hinder125

proper comparisons. In machine translation, the widely-used BLEU score [111] depends on certain126

parameters which are often unspecified, such as the maximum n-gram length. Further, researchers127

can silently manipulate the score with changes like adding or removing tokenization, or lowercasing128

text [115]. Tweaking all these levers in unison results in BLEU score variations of as much as 1.8129

BLEU [115] (for context, the gap between the #1 and #2 for one MT dataset as tracked by Papers with130

Code is 0.14 BLEU [110]). The use of a standardized library such as SACREBLEU [115] to ensure131

reproducible parameters can help alleviate issues with metric implementations.132

Libraries. Research code relies on frameworks and libraries to implement common functions. If these133

libraries aren’t coded correctly, evaluation is undermined. Between the Python Image Library (PIL),134

PyTorch, OpenCV, and TensorFlow, only PIL correctly downsamples a circle without introducing135

aliasing artifacts [112]. Consequently, implementations of the Frechet Inception Distance (FID) [63],136

which is used to evaluate generative models, would report different scores for the same models [112].137
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3.2 Errors in test set construction138

Even if implementations of algorithms are reliable, flaws in a test set’s construction can distort the139

performance reported on a given learning problem in a few different ways.140

Label Errors. Several researchers have long articulated concern for the correctness of data labels as141

an indicator of internal validity [17, 105]. However, it remains unclear how much such errors impact142

performance measurement, if at all, especially for deep learning [138]. A subset of label errors are143

due to more conceptually consistent disagreements between annotators [27] or dataset bias [145];144

these types of errors are more appropriately construed as external validity issues, and are described145

further in Section 4.4.146

Label Leakage. At times, data features accidentally contain direct information about the target147

variable in a way that makes the learning problem redundant [70]. For instance, a bank account148

number could be included as a feature to predict the individual has an open account.149

Test set size. Evaluating a model on a finite-sized test set always leaves uncertainty about the actual150

performance on the underlying distribution the test set is sampled from. If a test set is too small to151

detect performance differences between two models, random variation in the test set scores can lead152

to misinterpreting one method as superior to another [16, 22]. In Appendix B.2 we provide more153

technical details about appropriate test set sizes.154

Contaminated Data. Flaws in the dataset construction process may lead to unintentional inclusions155

of examples that cause problems during evaluation. For example, [8] find that 10% of the images156

from the CIFAR-100 [76] test set have duplicates in the training set. After deduplication, model157

performance drops by as much as 14% (relative), demonstrating that the contaminated data leads158

to overestimation of model performance. Similarly, cross-validation or testing on time-series must159

be handled with care so as to not include future data in the training set [23]. Examples which are160

not drawn from the distribution of interest can also distort apparent model performance. Machine161

translation models perform worse on test sets with more translation artifacts [80]. Models perform162

up to twice as well on test sets that exclude certain kinds of poor translations as they do on test sets163

which don’t filter these examples out.164

3.3 Overfitting from test set reuse165

When evaluating a model on a test set, we are not interested in performance on the specific test166

examples, but more generally in performance on similar data. Formally, we hope that the model gen-167

eralizes to data from the same distribution. The connection between the test set and its corresponding168

data distribution is only guaranteed if the test set is not reused frequently. This is a core assumption169

in test set evaluations and is commonly recognized in lecture notes and textbooks [56, 100].170

Researchers routinely undermine this assumption by repeatedly reusing popular test sets for model171

selection, raising concerns about the validity of benchmark results. However, even decade-long172

test set reuse has surprisingly resulted in little-to-no overfitting on popular benchmarks such as173

MNIST, CIFAR-10, ImageNet, SQuAD, the Netflix Prize, and more than 100 Kaggle classification174

competitions [97, 122–124, 127, 162]. While these findings are good news for the benchmark175

paradigm, they also illustrate that our understanding of common evaluation practices is still limited.176

An active line of research investigates the question of overfitting from test set reuse, also known as177

adaptive overfitting [5, 9, 14, 37, 42, 91, 174]. Note that the cited experimental studies of overfitting178

mostly focus on classification. Regression benchmarks may be more affected by test set reuse.179

3.4 Comparison to inadequate baselines180

Finally, reliably tracking progress on a learning problem requires comparing new methods to existing181

baselines. In practice, many subtle considerations must be addressed to make proper comparisons.182

We highlight the biggest recurring themes here; Appendix B.4 contains additional discussion.183

3.4.1 Implementing and tuning simple methods184

Researchers in machine learning often employ newer, more complex methods, such as those using185

deep neural networks, to solve a given task, without leveraging simpler methods such as linear models186
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or random search. Attention to smaller details and thorough feature engineering can often make a187

huge difference for these simple baselines:188

• In graph learning, logistic regression combined with simple feature engineering provided compara-189

ble performance to neural networks while being orders of magnitude faster [67, 161].190

• In recommender systems, [25, 124] found that a well-tuned vanilla matrix factorization baseline191

with some feature engineering outperformed all newer methods, both neural and non-neural, on192

recommendation results and collaborative filtering tasks.193

• In reinforcement learning, where simple linear or RBF policies were able to solve an array of194

continuous control tasks [118].195

• In information retrieval, where a non-neural method from 2004 is superior to all neural approaches196

developed through 2019 [163].197

• In few-shot classification, where a linear layer on top of a supervised classifier’s features provides198

competitive performance on meta-learning benchmarks [150].199

• On tabular clinical prediction datasets, where standard logistic regression was found to be on par200

with deep recurrent models [10].201

• And in adversarial robustness, where early-stopping with standard projected gradient descent was202

found to give performance on par with newer alternatives [126].203

Random search is also frequently overlooked, even though it forms a strong, simple, baseline204

where applicable. One particularly prominent case is in deep RL, where simple random search,205

combined with a handful of minor modifications, outperforms many deep RL algorithms on a variety206

of MuJoCo continuous control tasks [90]. Similarly, for hyperparameter tuning, [79] found that207

random search combined with early stopping outperformed all existing approaches. And in neural208

architecture search, [78, 165] found that random search with early stopping and weight sharing found209

solutions comparable to leading strategies using deep learning. It should be noted that recent NeurIPS210

competitions found that Bayesian optimization is superior to random search in many settings [154].211

3.4.2 Controlling for algorithmic details212

Implementations of algorithms often contain details to improve performance which are not described213

in the text. For example, extensively tuning hyperparameters is often key to achieving optimal214

performance for a proposed method. Unfortunately, baselines are often not tuned as carefully, inflating215

apparent gains for the proposed method. Ignoring these consequential details leads to misattributions216

of why one algorithm is better than another, affecting future research directions. For instance, a217

series of recent papers have attempted to benchmark a variety of deep metric learning algorithms,218

controlling for aspects such as network architecture, optimizer, image augmentations, hyperparameter219

compute budget, etc. [41, 101, 128]. After controlling for these factors, the performance difference220

for the best methods were marginal at best, and the papers concluded that the majority of perceived221

gains could instead be attributed to newer methods using significantly better backbone architectures222

(e.g., ResNet50 instead of GoogleNet) and unequal hyperparameter compute budgets. These results223

very closely mirror results from a variety of other settings, such as deep semi-supervised learning224

algorithms [108], graph neural networks [36, 139], domain generalization [53], and generative225

adversarial networks [88]. Inconsistencies in backbone architectures and unequal tuning budgets was226

a common, recurring failure mode across these papers.227

4 External validity228

Developing tailored algorithms for specific learning problems is usually not the end goal of machine229

learning research; rather, the hope is that the ideas and contributions will apply to broader scenarios.230

How much one expects progress to transfer is a subjective judgment based on factors such as the231

learning problems involved, the domain knowledge required, and the details of the algorithm itself.232

We refer to this as external validity, as it involves relationships between two or more learning233

problems. In this section, we first discuss and define two sub-types of transfer that occur within234

external validity, then provide examples where evaluation issues have arisen.235
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Figure 3: Learning problem transfer can happen to varying extents. Progress on learning problem A
may transfer to learning problem B universally (left). However, progress may also plateau (middle)
or there may be no correlation between performance on the two learning problems (right).

4.1 Types of transfer236

Algorithm transfer. The claim that a certain algorithm “generalizes well to other problems” is a claim237

about algorithm transfer: the correlation between (i) the relative performance of an algorithm over238

one or more baselines on one learning problem to (ii) the relative performance of the same algorithm239

over a one or more baselines on another learning problem. Consider ResNets [57] when they were240

introduced: adding residual connections (allowing for a deeper net) lead to better performance on241

ImageNet than VGG [141], a baseline algorithm. On CIFAR-10, ResNets also outperform VGG, an242

appropriate baseline choice, so we say that ResNets transfer well from ImageNet to CIFAR-10.243

Learning problem transfer. Now we introduce learning problem transfer: the correlation of perfor-244

mance trends over all algorithms for one learning problem with performance trends over all algorithms245

for another learning problem. Whereas algorithm transfer is about the relative performance of a246

specific algorithm between learning problems, learning problem transfer asks about the relative247

progress of algorithms in general between learning problems. For example, as models have improved248

on the ImageNet benchmark, the same models are used on the CIFAR-10 benchmark, and show249

continued progress there also. If algorithms never transferred well between learning problems, then250

progress on one learning problem would never transfer to another. This is visualized in Figure 3251

(right), which illustrates low or no correlation between performance on two learning problems. If the252

correlation weakens over time, this is the “diminishing returns” scenario shown in the middle subplot.253

And if there is strong positive correlation, then the picture is similar to the first subplot.254

Achieving progress in machine learning requires progress on “friendly” learning problems which255

exhibit strong learning problem transfer; otherwise, researchers would have to start from scratch on256

every novel learning problem. How can we predict how performance will correlate between two257

learning problems? There are some common patterns in the literature that allow us to more concretely258

grapple with learning problem transfer. The community has developed specific out-of-distribution259

(OOD) test sets for certain problems, such as image corruptions in image classification [60], heuristics-260

based counterexamples within language inference [94], and a number of "in-the-wild" distribution261

shifts [6, 61, 62, 74, 123, 158]. Cast in terms of our framework, these OOD benchmarks alter the data262

distribution of the learning problem, but otherwise remain very close to the original learning problem263

in the task hierarchy. On the other hand, one may consider transfer of progress between learning264

problems that are further apart in the task hierarchy, such as from image classification on ImageNet265

to image segmentation on COCO. In general, as Figure 2 illustrates, the closer two learning problems266

are in one’s conception of the task hierarchy, the greater one may expect positive transfer of progress.267

Leaving a more fine-grained discussion of the various of categories of transfer to Appendix A.2, we268

now explore examples from the literature pointing out failures of learning problem transfer. Since269

a learning problem is defined as a dataset plus a metric, a failure in transfer can be attributed to270

either a misalignment in the datasets or a misalignment in the metrics. Such a misalignment reflects271

the inconsistencies that arise when boiling down an idealized task into concrete learning problems.272

Resolving these inconsistencies in either the dataset or the metric may require re-annotating the273

data or collecting new data; therefore, misalignments are usually baked into the benchmark once274
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the dataset has been constructed and the design choices locked in. All future modeling work on the275

benchmark inherits the same misalignment problems, underscoring the need for a better understanding276

of the external validity of commonly used benchmarks.277

4.2 Metrics misalignment278

We use metric to mean any algorithm or procedure which, given a model and a dataset, returns a279

number or score which is interpreted as the performance of the model on that dataset. This definition280

encompasses not only mathematically defined metrics like accuracy, precision, and recall, but also281

metrics parameterized by models (Frechet Inception Distance [63], BERT [111], BLEURT [136]),282

and metrics which involve humans in the loop, like human evaluations of machine translation (Direct283

Assessment [143], Relative Ranking [51]).284

A metric which fails to adequately distinguish between two algorithms that perform differently fails285

to capture what it means to do well on the learning problem. For example, a good representation286

learning algorithm should cluster items of the same class together tightly and separate clusters of287

different classes widely. Papers for representation learning usually report the F1, Recall@K, and288

Normalized Mutual Information (NMI) metrics. However, all three metrics fail to reward algorithms289

which have a greater separation between different classes [101]. Even more egregiously, NMI returns290

higher scores for datasets with more classes, regardless of the algorithm’s performance [101].291

Researchers may prefer to measure an idealized metric whose use is precluded by practical considera-292

tions like money or time, and therefore substitute another metric instead to form a proxy learning293

problem. For example, many have argued that human evaluation is the ‘gold standard’ for machine294

translation [50, 69, 87], but waiting for humans to evaluate translations takes much longer and is295

much more expensive than computing BLEU [111], an automatic metric. In certain cases, human296

rankings of translations contradict the BLEU ordering [38, 170].297

4.3 Comparisons to human performance298

Comparing algorithms to humans requires more nuance than any one given learning problem provides.299

Matching a human baseline on a specific learning problem does not automatically imply human-level300

performance on other similar similar problems without more evidence. For one, instantiating a301

task into some learning problem often strips out context which meaningfully affects evaluation. In302

translation, for example, the work of human translators tends to be evaluated as a complete text,303

whereas machine translation competitions compare hypothesis sentences to reference sentences,304

meaning that erroneous translations which are apparent only in context are missed [151].305

Further, claims to “super-human” performance on a given learning problem is related to but does not306

always translate to “human-like” reasoning or ability [44] – for instance, contemporaneous models307

suffer performance drops with only small changes of the learning problem that don’t affect humans308

as badly (e.g. models [64] on CIFAR-10 [76]). Claimed improvements by themselves are thus only309

applicable to the given learning problem, and aren’t sufficient to prove machine superiority on the310

broader task or application.311

4.4 Dataset misalignment312

Specific decisions made about data collection and curation are increasingly acknowledged as highly313

consequential to model outcomes [113, 131]. Any failure to transfer from one learning problem to314

another learning problem or broader task is often tied to the data choices involved. Because of the315

cost and effort involved in annotation and data collection, these decisions can have a broader impact316

than failures contained to a single modeling paper. In the next two subsections, we explore how317

specific choices in dataset curation can hinder an algorithm’s ability to transfer. Refer to Appendix318

B.5 for additional discussion and examples.319

4.4.1 Reliance on simple, inappropriate heuristics320

We found several examples where gaps in the data collection process lead to models performing well321

on a given learning problem by relying on data quirks which do not characterize the overall task. For322

instance, [107] discovered that sub-par clinical performance of X-ray image classification models323

was in part due to an unintended correlated variable in the training data: classifiers trained to predict324
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whether an X-ray image presented a collapsed lung were failing disproportionately on new positive325

diagnoses. It was discovered that a majority of the positive training images actually contained visible326

chest drains, a treatment for the condition. Thus, models achieved a high accuracy on the learning327

problem by identifying whether a chest drain was present, but completely sidestepped the original328

purpose of the task. After removing the spurious feature, by filtering out chest drain images, model329

performance dropped significantly, by over 20% on clinically relevant subsets of the data.330

More examples of models exploiting simple dataset-level heuristics abound. The authors of [49]331

found that on the Visual Question-Answering dataset [4], models could exploit strong label imbalance332

on certain questions. For example, for a question beginning with “Do you see a...”, a model always333

outputting “yes” – without considering the rest of the question or the actual image – can achieve an334

accuracy of 87%; correcting this imbalance in the test set led to accuracy drops of up to 12% among335

yes/no questions for these models. Similarly, models trained on part of a reading comprehension task336

(either questions only or passages only) achieve a surprisingly high accuracy [71].337

Landmark studies found that language models regularly exploit such “spurious patterns” across a338

wide range of NLP tasks [46, 72]. On the MNLI natural language inference benchmark, the presence339

of a negation operator (e.g. “not”, “no”, etc.) dictates the label probability to a greater degree than340

the actual input prompts [94]. Similarly, the authors of [104] find that BERT models trained on341

comprehension datasets (e.g. ARCT [54]) exploit the presence of negation operators, and removing342

such cues drops the model to random chance accuracy. These correlates were discovered by using343

humans to augment the training data to be consistent with counterfactual labels. When evaluated on344

these counterfactual subsets, model performance drops by as much as 30% in multiple cases.345

4.4.2 Sensitivity to real-world distribution shift346

There are also many cases where an algorithm is expected to perform in a broader variety of scenarios347

than it is trained on. In such cases, the inability to transfer is not caused by exploiting specific obvious348

heuristics as much as it is caused by a failure to extrapolate to different real-world data distributions.349

For example, most models trained on ImageNet were found to experience a considerable drop in350

accuracy when exposed to images that contained a larger amount of natural variation, such as changes351

in pose, lighting, object composition, etc. [147]. Similarly, models trained for the original SQuAD352

dataset performed poorly when evaluated on data collected from different source domains, such as353

Amazon crowd reviews and Reddit posts [97].354

In the medical domain, models developed in one institution for diagnosing pneumonia in radiographs355

or classifying pathology tissue slides may not translate to other hospitals for practical reasons such as356

differences in equipment and patient populations [74, 166]. Similarly, [73] find in a learning problem357

transfer analysis from ImageNet to chest X-ray classification on CheXpert [68] that, while ImageNet358

pre-training helps models achieve higher performance on CheXpert, models with higher ImageNet359

accuracy are not likely to provide higher CheXpert performance.360

4.4.3 Dataset Bias & Disagreement361

At times, the misalignment perceived between the learning problems is the result of various forms of362

data bias [145]. Some data sources can omit or under-represent certain sub-populations and as a result,363

evaluation measurements will disguise failures for these under-represented population subgroups364

[119]. For example, facial recognition benchmarks drastically under-represent darker and female365

faces [96], making it difficult to perceive when models fail to perform acceptably for this subgroup366

[7, 20]. Furthermore, inappropriate stereotyped associations can be perpetuated by the systematic use367

of offensive, incorrect or exclusionary labels for certain mistreated subgroups [116, 144]. At times,368

societal discrimination can also lead to false labels being more common in one group than another369

[99]. Discrepancies between learning problem datasets may also arise from inherent contextual370

differences - data sourced from differing geographies or cultural context [29, 137], in addition to371

annotators with inherently differing viewpoints regarding ground truth [27, 48].372

4.5 Evaluation quantification373

The aforementioned examples of metric and dataset mislignment suggest that reliably measuring374

progress in machine learning requires evaluating on multiple learning problems associated with a375
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Figure 4: A histogram of the number of datasets used for evaluation by each paper in our sample
pool (left), and a similar histogram for the number of metrics (right). Most of the papers (>65%)
evaluate on 3 datasets or fewer, and a similar fraction (>65%) evaluate on 2 or fewer metrics.

particular task. If a proposed method provides gains in a variety of different contexts, one can be376

more confident in the performance on future learning problems instantiating the task.377

To better understand community practices around benchmarking and provide some context around378

our analysis and framework, we annotated a random sample of machine learning benchmarking379

papers with the number of distinct datasets and the number of distinct metrics each paper used for380

evaluation. Concretely, we randomly sampled 140 papers from the past five years (2016–2021)381

of NeurIPS, ICML, EMNLP, and CVPR, and filtered out papers which were not applicable to the382

benchmarking paradigm (37 papers). The results of our analysis for the remaining 103 papers are383

presented in Figure 4. On average, papers evaluated on an average of 4.1 datasets and 2.2 metrics.384

Overall, most of the papers in our sample (>65%) evaluate on 3 datasets or fewer, and a similar385

fraction (>65%) evaluate on 2 metrics or fewer. Although we cannot recommend a “correct” number386

of learning problems to evaluate on, as this is a domain-specific consideration based on the task and387

specific learning problems, our data provides evidence that many papers evaluate on a small number388

of datasets and metrics, which indicates that studying alignment between these learning problems389

can be a helpful guide for future research. We provide more detail about our paper collection and390

annotation procedure, as well as confidence intervals for our mean estimates, in Appendix C.391

5 Broad critiques of benchmarks & competitive testing392

Researchers have described several limitations to the benchmarking paradigm in machine learning.393

Most obviously, the use of benchmarks to assess progress in the field creates a competitive testing394

dynamic that emphasizes outcomes rather than proper scientific inquiry [66]. The absence of395

community norms like reproducibility guidance [34, 114], documentation standards [98] or statistical396

significance testing [16] makes relying on outcomes-based approaches to evaluate progress even more397

questionable [13]. Behavior-based alternatives to the benchmarking paradigm, such as test suites398

[1, 125, 169], for example, can re-orient ML evaluation away from its current focus on the competitive399

determination of “state of the art”, and more towards an exploratory and descriptive probing of model400

capabilities [65, 106, 142, 160, 168]. Furthermore, the learning problems we embody as benchmarks401

go a long way in focusing community attention on a set of specific applications and tasks, not all402

of which are ideal or value-aligned. For instance, the lack of consideration for other aspects of403

performance in ML evaluation, such as model efficiency, privacy or fairness, plays a big role in404

disincentivizing researchers from paying attention to such issues [40, 135].405

6 Conclusion406

The benchmarking paradigm has served as a valuable guide for progress in the past. However, the407

next phase of machine learning innovation and deployment will require more sophisticated evaluation408

practices than comparing one-dimensional performance numbers on a single test set. We hope that409

our taxonomy offers a starting point for both experimental and theoretical research in this area, and410

that the field will invest in a more robust understanding of the evaluation practices that inform our411

shared perception of progress.412
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