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Inverse Design of Inflatable Soft Membranes Through 
Machine Learning

Antonio Elia Forte,* Paul Z. Hanakata, Lishuai Jin, Emilia Zari, Ahmad Zareei, 
Matheus C. Fernandes, Laura Sumner, Jonathan Alvarez, and Katia Bertoldi*

Across fields of science, researchers have increasingly focused on designing 
soft devices that can shape-morph to achieve functionality. However, identi-
fying a rest shape that leads to a target 3D shape upon actuation is a non-
trivial task that involves inverse design capabilities. In this study, a simple 
and efficient platform is presented to design pre-programmed 3D shapes 
starting from 2D planar composite membranes. By training neural networks 
with a small set of finite element simulations, the authors are able to obtain 
both the optimal design for a pixelated 2D elastomeric membrane and the 
inflation pressure required for it to morph into a target shape. The proposed 
method has potential to be employed at multiple scales and for different 
applications. As an example, it is shown how these inversely designed mem-
branes can be used for mechanotherapy applications, by stimulating certain 
areas while avoiding prescribed locations.
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elaborate shapes via folding;[7–9] morphable 
sheets have been realized by combining 
materials that can expand and contract by 
different amounts in response to external 
stimuli such as temperature, humidity, or 
pH;[4,10] inflating membranes reinforced 
with stiff components have shown promise 
for the realization of shape changing 
surfaces.[3,6,11–14] Focusing specifically on 
inflatable membranes, these are either 
made in a complex deflated shape and out 
of a single homogeneous material[3,11–15] or 
in a simple rest shape by optimizing the 
material locally to guide the deformation 
upon inflation.[6,16,17] However, irrespective 
of their fabrication method, programming 
2D sheets to obtain a target 3D shape is a 
non-trivial task that typically requires the 

use of optimization algorithms.[16,18–21] These include gradient-
free algorithms[16,22] as well as gradient-based methods.[18,21]

Here, we consider inflatable membranes comprising soft and 
stiff domains and show how machine learning tools can be used 
to design configurations of such domain that result in target 
shapes upon inflation. While machine learning methods have 
been classically employed for image recognition[23] and language 
processing,[24] they have also recently emerged as powerful tools 
to solve mechanics problems.[25–38] Building on these recent suc-
cesses, we demonstrate that these tools can be extended to study 
the nonlinear mechanics of inflatable systems. By using neural 
networks (NNs) trained on finite element (FE) simulations, we 
are able to solve the inverse design problem. This allows us 
to prescribe a target 3D shape in input and obtain a spatially 
defined 2D design for a soft membrane, comprising soft and 
stiff elastomeric pixels, as output. Such a designed membrane 
is then inflated to an optimal pressure—also instructed by 
the model—and morphs into the desired shape. The platform 
hereby introduced, despite being presented in a macroscale 
framework, is highly scalable and holds potential for many fields 
of science and engineering, enabling applications such as mor-
phable surfaces for architecture, soft sensors, ergonomic gar-
ments, and medical devices. As an example, we show how these 
membranes can be used in mechanotherapy for wound healing.

2. Our Platform

Our platform consists of a square sheet of elastomeric mate-
rial with edges of 10 cm mounted on an acrylic chamber which 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202111610.

1. Introduction

2D sheets that can morph from flat into 3D shapes have 
become a powerful and versatile platform to realize deploy-
able systems,[1–3], frequency shifting antennae,[4] active building 
facades,[5] as well as camouflage devices.[6] Several avenues have 
been successful in achieving shape changing capabilities. Ori-
gami principles have enabled transformation of flat sheets into 
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is pressurized (Figure 1a). As expected, when pressurized, the 
elastomeric membrane deforms out-of-plane achieving a dome-
like shape with a height that depends both on the stiffness 
of the material and the thickness of the sheet. For example, 
under a pressure p  = 1.7 KPa, a membrane made out of Eco-
flex (Ecoflex 00-30 with initial shear modulus μEco = 0.023 MPa) 
with thickness hEco  = 1 mm and initial flexural rigidity of 
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 Pa·m3 (where EEco = 2μEco(1 + νEco)  

and νEco  = 0.5 are the Young’s modulus and Poisson’s ratio 
of Ecoflex) reaches a height of about 9 cm (Figure  1b). 
Differently, a membrane with thickness hPDMS  = 7 mm made 
out of PDMS (SYLGARD 184 with initial shear modulus 
μPDMS  = 0.85 MPa), for which the initial flexural rigidity is 
DPDMS = 9.72 × 10−2 Pa·m3, reaches a height about 1 cm when 
subjected to p = 10 KPa (Figure 1c).

Whereas homogeneous membranes always lead to dome-like 
shapes, it has been shown that the range of achievable shapes 
for both elastomeric membranes and tubes can be enriched 
by incorporating stiffer components, such as fibers and 
sheets.[6,16,39–41] Therefore, to achieve more complex configura-
tions, we realize our membranes out of a combination of stiff 
and flexible pixels. To demonstrate the concept, we partition the 
membrane with a 10×10 array of squares (all with edges of 1 cm) 
and assign to each pixel either a 7 mm thick layer of PDMS or 
a 1 mm thick layer of Ecoflex (Figure 1d). Such membranes are 
manufactured using a multistep molding procedure. First, we 
create a mold (with depth of 7 mm) with the negative shape of 
the stiff pixels of the binary design and fill it with PDMS. Then,  

before the PDMS is completely cured (after 1.5 h), we remove 
1 mm acrylic sheet from the mold to leave behind a 1 mm 
deep pocket corresponding to the soft pixels that we fill with 
Ecoflex (see Video S1, Supporting Information). Note that after 
curing a continuous membrane is obtained, due to the fact that 
the two elastomeric networks bind upon contact while curing  
(Section S1, Supporting Information Appendix) . In Figure 1e, 
we show the fabricated membrane corresponding to the binary 
design reported in Figure1d. As shown in Figure  1f for p  = 5 
kPa, upon inflation, this membrane undergoes a complex trans-
formation, bulging out of plane in a nonintuitive fashion. The 
non-linear behaviour of such a membrane is strongly governed 
by the location of the soft and stiff pixels on the square grid and 
their interactions. As such, understanding the relation between 
binary design and the resultant 3D inflated shape is non-trivial 
and requires an efficient inverse design strategy.

3. Inverse Design via Neural Networks

Inspired by recent works that have successfully employed 
machine learning methods to inverse-design complex physical 
systems, including mechanical[26,42] and optical[43] metamate-
rials as well as chemical compounds,[44,45] we employ fully con-
nected NNs to identify binary design of pixelated membranes 
and associated pressure levels at which such membranes 
should be inflated to reach a target 3D shape.

To efficiently generate the large amounts of data for the NNs 
to be trained on, we conduct non-linear FE simulations within 

Figure 1. Bi-material membrane unlocks complex deformations. a) Inflation set up: the membrane (in cyan) is clamped between the acrylic chamber’s 
edge underneath and the square flange aligned on top, using bolt and nuts. b) A flat membrane made out of Ecoflex morphs in a simple spherical 
shape upon inflation. c) If the same membrane is made out of a stiffer material (i.e. PDMS), the deformation is simply scaled down. d) We use a 
regular grid to divide the membrane’s domain into subdomains named pixels, to which either material can be assigned, creating a binary design.  
e) The membrane can be fabricated as a continuous material. f) Upon inflation, the bi-material membrane assumes complex deformation, depending 
on the mutual position of stiff and soft pixels.
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ABAQUS 2019/Standard. In all our simulations, we discretize 
the PDMS and Ecoflex pixels with four-node general-purpose 
shell elements (S4R element type) and four-node membrane 
elements (M3D4 element type), respectively. Further, we i) 
model the response of both elastomers using an incompress-
ible Gent material, ii) fix all nodes located on the four edges 
of the models, iii) apply a pressure p (with p  ∈ [0, 3.5] kPa) 
directly on the bottom surface, and iv) solve for the deforma-
tion using the dynamic implicit solver, while monitoring the 
kinetic energy to ensure quasi-static conditions. We then export 
the deformed configurations of the membrane at p  =1.5, 2.5, 
and 3.5 kPa and use the method of voxelization[46] to represent 
them. Specifically, we start with a rectangular cube with dimen-
sions 15 × 15 × 15 cm, which contains all inflated membranes 
for the three pressure levels considered and split the domain 
into smaller cubes known as voxels (Figure 2a). We then assign 
a value of 1 if the voxel’s centroid falls below the inflated mem-
brane (Figure  2a, internal pixels), and 0 otherwise (Figure  2a, 
external pixels). Since the height of the majority of the inflated 
designs is lower than 8 cm, we use voxels with dimensions  
1 × 1 × 0.25 cm to cover the height up to z = 8 cm and 1 × 1 × 
1.5 cm for z > 8 cm (Figure 2a). Further, since the corners of 
the considered rectangular cube are never reached by the mem-
branes upon inflation, to reduce the size of our domain, we 
remove the corresponding voxels from the analysis, resulting 
in 9220 voxels.

Next, we flatten our 10 × 10 binary designs onto a 100-dimen-
sional vector X containing 0s and 1s in correspondence to the 
soft and stiff pixels, respectively, and the numerically obtained 
inflated shape at the three considered levels of pressure onto 
three 9220-dimensional vectors Ys containing 0s and 1s in 
correspondence to the internal and external voxels, respec-
tively (Figure  2b). We then train the NNs to perform a map-
ping YY XX→ ⊕p , where the overbar is used to represent the 
quantities predicted by the NNs and ⊕ denotes concatenation 
(Figure 2c). In this study, we use fully connected NNs with two 
hidden layers having identical number of neurons, Nneu, and 
iteratively update the neuron weights and biases to make the 
output conform to the true X and p by minimizing[26]

XX XX∑ λ= − + −
=
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| | | |
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where Ntrain is the number of training datapoints and λ is an 
adjustable hyperparameter that controls the relative weight 
between the mean squared distance in X and p. Note that, in 
order to obtain binary values for XX , we employ a sigmoid 
function as an output filter on the output layer. Additional 
details about the NNs’ hyperparameters (e.g., learning rate) are 
reported in Section S5, Supporting Information Appendix.

In order to obtain accurate predictions in the inverse design 
problem, the NNs need i) to have enough training data to cap-
ture the whole design space and ii) an optimized architecture 
(i.e., optimal Nneu and λ). The most common strategy to gen-
erate large training datasets is based on randomly generated 
data (in our case, this translates to generating pixelated mem-
brane designs where the locations for the soft and stiff pixels are 
randomly assigned).[25,28] However, this approach would require 
an extremely large number of simulations, since it would be 

Figure 2. Data voxelization, processing, and structuring. a) The inflated 
shape from each FEM simulation is mapped into a voxelated domain 
comprising a fine and a coarse region. The voxels whose centroid falls 
below the membrane are identified as internal and external otherwise.  
b) The membrane’s binary design and the voxel domain are flattened into 
two 1D binary arrays named X and Y, respectively, and concatenated with 
the corresponding pressure level (p1, p2 or p3), producing three arrays per 
simulation. The binary design can be rotated and mirrored augmenting 
the number of datapoints eightfold. c) The  Y  and p⊕X matrices are fed 
to the NNs in the input and output layers, respectively.
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rare to sample data points containing large clusters of soft/stiff 
pixels or lines of soft/stiff pixels that are known to have a pro-
found effect on the mechanical behavior of the membranes.[6] 
Therefore, guided by previous studies showing that the perfor-
mances of NNs improve when the model is trained with diverse 
(non-redundant) datasets,[47–52] we adopt three different strate-
gies to generate 2D pixelated binary designs whose inflated 
shapes predicted via FE are used to train the NNs. Specifically, 
we simulate via FE the behavior upon inflation of i) 2500 mem-
branes in which we randomly assign a value of 0 or 1 to each 
pixel (Figure 3a, left); ii) 2500 membranes in which a few (1–15) 
pixels (“seeds”) located at random positions are allowed to grow 

in all directions and convert the neighbor pixels from stiff to 
soft until a critical ratio of soft pixels to all pixels is reached,[38] 
effectively creating “islands” of soft pixels (Figure  3a, center); 
iii) 2500 membranes realized employing logical operators to 
combine row and column vectors of stiff pixels running from 
and to opposite edges, to create features resembling fibers 
(Figure 3a, right). We refer to these three datasets as i) random, 
ii) islands, and iii) fibers and report design examples for each 
dataset in Figure  3b. Note that, although for each dataset we 
simulate 2500 membranes, we are able to create a total of 
60  000 datapoints per dataset since i) each of these designs 
can be rotated and mirrored seven times (see Figure 3c) and ii) 
for each of them, we export the inflated configuration at three 
different levels of pressure. Additional details about the algo-
rithms used to generate the pixelated membranes are reported 
in Section S4, Supporting Information Appendix.

To optimize our NNs, we vary the number of neurons Nneu 
and the hyperparameter λ. We first merge the generated 180 000 
datapoints into a single dataset. We then use 80% of such 
dataset to run multiple training sessions, and for each session, 
we vary the number of neurons Nneu and the hyperparameter 
λ. To attest the performance of each trained model, we use 10% 
of the datapoints as validation set and the remaining as test set, 
and introduce two metrics: an accuracy on the predicted binary 
design, Abinary, and an accuracy on the predicted pressure level, 

2Rpressure . Specifically, Abinary is evaluated by counting the number 
of correctly identified pixels and therefore defined as

∑=
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where Ncorrect
i  is the total number of correctly predicted pixels 

for the i-th binary design, Npixels is the total number of pixels in 
the membrane (i.e., 100), and Ntest is the number of datapoints 
used for testing (i.e., 18 000). Differently, since the pressure is 
a continuous variable, we define the accuracy on the predicted 
pressure level p  as
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By systematically investigating the effect of λ and Nneu on the 
two metrics, we find that larger values for Nneu generally lead 
to a better test accuracy as the model capacity is increased 
(Figure 3d). Note that, since increasing the number of neurons 
often leads to overfitting,[53–55] we use early stopping rules[53] 
to determine how many iterations can be run before the NNs 
begin to over-fit. An increase in λ results in larger 2Rpressure , but 
lower Abinary (Figure  3d). Hence, we use the average accuracy 
between the two metrics, +( )/ 22A Rbinary pressure , to determine the 
optimized NN architecture, which we find to be characterized 
by Nneu  = 1000 and λ  = 50–values that are fixed for the next 
analyses. Additionally, it is worth noticing that the NNs trained 
on a combination of all datapoints outperform the same model 
trained on a single class of data, confirming that a diverse 
dataset leads to better performances (more information on 
NNs’ performances with different training are reported in Sec-
tion 5, Supporting Information Appendix).

Figure 3. Dataset classes and hyperparameter search. a) To train the 
NNs, we use three classes of designs: random, islands, and fibers.  
b) Examples from the three classes are reported to appreciate their topo-
logical characteristics. c) Each design can be rotated and mirrored to 
generate eight different datapoints. d) Effect of the number of neurons in 
the NNs layers, Nneu, and the hyperparameter λ on Abinary, 

2Rpressure , and 
+( )/22A Rbinary pressure . The red marker indicates the combination of these 

two parameters that gives the best average accuracy between the two 
metrics ( +( )/22A Rbinary pressure ).
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4. Inverse Design of Soft Membranes

Having verified the accuracy of the NNs on a test set of unseen 
designs generated through three different algorithms, we then 
employ them to inverse-design target 3D shapes. Specifically, 
we feed a 3D shape as input to our trained NNs and obtain as 
output a 2D binary design for the soft membrane, along with 
the pressure necessary to reach the target shape upon inflation. 
To demonstrate the process, we select shapes that resemble a 
dog face, a turtle, and a manta ray (Figure 4a). Each target shape 
is flattened onto a 9220-dimensional vector, YY target , which is fed 
into the NNs. As output, for each design we obtain a pixelated 
membrane design XX  and inflation pressure p  (Figure 4b).

To measure the accuracy of the designs identified by the 
NNs, we start by employing FE to simulate the inflation of the 
binary design XX  until the pressure reaches p . As shown in 
Figure  4c, the numerically obtained inflated shapes qualita-
tively match the 3D target ones. To better quantify the similarity 
between the two sets of shapes, we flatten each numerically 
obtained shape into a vector YYFE  and compare all its internal 
voxels to the corresponding one in YY target . We then use the ratio 
between the number of voxels correctly predicted, Ncorrect, and 
the number of internal voxels in the target shape, Ntarget as the 
accuracy metric

=A
N

N
membrane

correct

target
 (4)

Using Equation (4), we obtain Amembrane  = 0.975, 0.945, 0.996 
for the dog face, turtle, and manta ray, respectively. Such high 
accuracy values are indicative of effective NNs that provide 

pixelated designs and pressures leading to 3D shapes extremely 
close to those targeted.

Next, we physically fabricate the designs identified by the 
NNs. In Figure  4d, we report snapshots of the physical mem-
branes inflated to the optimal pressure provided by the NNs. As 
is noticeable, despite the unavoidable imperfections introduced 
during fabrication and testing, the 3D shapes obtained upon 
inflation are clearly recognizable. To compare such shapes 
to those obtained via FE simulations, we use a hand-held 3D 
scanner (Artec Space Spider, Artec Studio 14.1.1.75) and record 
the experimentally obtained surface profiles at p  (insets in 
Figure 4d). As shown in Figure 4e, we find excellent agreement 
between the numerically predicted and experimentally obtained 
inflated shapes, confirming the validity of our approach: (more 
information on the experiments are reported in Section S2 and 
S3, Supporting Information Appendix).

Having demonstrated that our NNs, trained with a combi-
nation of three different datasets, can be used to identify soft 
membranes capable of mimicking target 3D shapes upon 
inflation, we then explore how these can be harnessed for appli-
cations. Specifically, since it is known that the application of 
compressive loading around a wound site can reduce healing 
time and formation of hypertrophic scars,[56,57] we design soft 
membranes that apply pressure in targeted areas while avoiding 
contact with sensitive locations.

To demonstrate our approach, we focus on the two scar pro-
files highlighted in orange in Figure  5a and aim at realizing 
membranes that upon inflation have their maximum elevation 
(along the z direction) in the areas surrounding the scars and 
minimum elevation in the areas where the scars lie. We expect 
such membranes to apply compressive loading to the region 

Figure 4. Inverse design of target 3D shapes. a) Target 3D shapes that resemble a dog face (top), a turtle (center), and a manta ray (bottom) are fed in 
the NNs. b) The NNs provide optimal inflation pressure, p , and binary designs, X , as outputs. c) The binary designs are inflated at the corresponding 
pressure though FE. The colors indicate maximum in-plane principal true strains. d) The designs are fabricated, inflated at the corresponding pres-
sure, and 3D-scanned. e) The clouds of points from the FE simulations (red dots) and the 3D-scans (green dots) are overlapped and compared. Solid 
markers are highlighted along cutting planes to better show the overlapping.
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around the wound when inflated against the skin and, there-
fore, to promote healing. To obtain pixelated membrane designs 
resulting in the target shapes shown in Figure  5a upon infla-
tion, we flatten their voxelated shapes onto 9220-dimensional 
vectors Ytarget and feed them into the trained NNs. As for the 
membranes shown in Figure  3, we then use FE to simulate 
the behavior of the designs identified by our NNs and find 
very good agreement between the target and numerically sim-
ulated inflated shapes (Figure  5b) testified by Amembrane=0.949 
and 0.932 for the c and χ-scars, respectively. Further, we build 
the physical membranes, and also in this case found that they 
nicely match the target shapes (Figure 5c). Finally, to evaluate 
the pressure locally applied by the inflated membranes around 
the two considered scars, we position the deflated membranes 
at 15 mm from a pressure mat (Tekscan - Model 5250). When 
inflated at p , the membranes come in contact with the pres-
sure mat which records the locally applied contact pressure, 
pc. In Figure  5d, we show the top view of the inflated mem-
brane pushing against the mat (visible through the transparent 

pressure chamber) as well as the recorded pressure distribution 
overlaid with the scar profiles. As clearly visible, the inflated 3D 
shapes optimized through our NNs are able to apply pressure 
around the prescribed areas without touching the scars.

5. Conclusion

In summary, to realize membranes that can morph into pre-
programmed shapes upon inflation, we have employed NNs 
that are trained to identify a pixelated membrane design and 
inflation pressure leading to the desired 3D shape. The data 
required to train the NNs were  obtained by simulating the 
membrane inflation through FE, and to guarantee the crea-
tion of a diverse dataset, three different algorithms have been 
used to produce pixelated designs. We have then employed 
our trained NNs to inverse-design a few user generated 3D 
shapes and showed how such platform could be used to create 
patient-specific devices for mechanotherapy routines where it 

Figure 5. Inverse design of target 3D shapes for mechanotherapy: a) Target 3D-shapes that can stimulate the tissue around pre-defined scar profiles 
during inflation are fed in the NNs. b) The NNs provide optimal inflation pressure, p , and binary designs, X , as outputs, which are inflated at the cor-
responding pressure though FE. Numerical snapshots of the inflated membranes are shown, with the color indicating the maximum in-plane principal 
true strain. c) The designs are fabricated, inflated at the corresponding pressure, and 3D-scanned. The clouds of points from the FE simulations (red 
dots) and the 3D-scans (green dots) are overlapped and compared. Solid markers are highlighted along cutting planes to better show the overlapping. 
d) The membranes are fixed upside down at a 15 mm distance from a pressure mat and imaged from the top through a transparent pressure chamber. 
The measured contact pressures are reported, along with their locations and the pre-defined scar profile.

Adv. Funct. Mater. 2022, 2111610
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is important to stimulate the tissue around prescribed areas 
(scars) to enhance healing and reduce recovery time.

Despite having presented results at the centimeter scale, 
our methodology is scale independent and can benefit a range 
of applications where having an inverse-design strategy could 
facilitate and improve the design process itself. Examples might 
include ergonomic designing, patient-specific medical devices, 
architectural components, and shape-morphing acoustic 
devices. Additionally, we have shown that our NNs trained on 
only 7500 forward FEM simulations can successfully solve an 
inverse problem with 2100 possible designs. This reinforces pre-
vious findings which identified machine learning methods as a 
valuable complementary tool to established mechanical approa
ches.[25–27,29–31,36] The performance of our model can be further 
improved by applying convolutional neural networks (CNNs) 
as the filters and pooling layers are efficient in capturing spa-
tial correlation and locality in a sparse data.[25] In particular, 
3D CNNs, which are widely used for point cloud labeling in 
computer vision,[58,59] would be ideal to handle the voxels of 
arbitrary 3D shapes. Moreover, recent deep learning methods 
such as conditional generative adversarial neural networks, 
with image-to-image translation capabilities,[60–62] could also be 
employed to solve inverse-design problems similar to the one 
hereby described.
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