
ar
X

iv
:2

20
1.

05
49

8v
1

 [
m

at
h.

O
C

]
 1

4
Ja

n
20

22

Convergence of an Asynchronous Block-Coordinate

Forward-Backward Algorithm for Convex Composite Optimization

Cheik Traoré� *, Saverio Salzo† and Silvia Villa‡

Abstract

In this paper, we study the convergence properties of a randomized block-coordinate de-
scent algorithm for the minimization of a composite convex objective function, where the block-
coordinates are updated asynchronously and randomly according to an arbitrary probability dis-
tribution. We prove that the iterates generated by the algorithm form a stochastic quasi-Fejér
sequence and thus converge almost surely to a minimizer of the objective function. Moreover, we
prove a general sublinear rate of convergence in expectation for the function values and a linear
rate of convergence in expectation under an error bound condition of Tseng type.

Keywords. Convex optimization, asynchronous algorithms, randomized block-coordinate descent, error

bounds, stochastic quasi-Fejér sequences, forward-backward algorithm, convergence rates.

AMS Mathematics Subject Classification: 65K05, 90C25, 90C06, 49M27

1 Introduction

We consider the composite minimization problem

minimize
x∈H

F (x) := f(x) + g(x), g(x) :=
m∑

i=1

gi(xi), (1.1)

where H is the direct sum of m separable real Hilbert spaces (Hi)1≤i≤m, that is, H =
⊕m

i=1 Hi and

the following assumptions are satisfied unless stated otherwise.

A1 f : H → R is convex and differentiable.

A2 For every i ∈ {1, · · · ,m}, gi : Hi →]−∞,+∞] is proper convex and lower semicontinuous.

A3 For all x ∈ H and i ∈ {1, · · · ,m}, the map ∇f(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → H is Lipschitz

continuous with constant Lres > 0 and the map ∇if(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → Hi is

Lipschitz continuous with constant Li. Note that Lmax := maxi Li ≤ Lres and Lmin := mini Li.

A4 F attains its minimum F ∗ := minF on H.

*Malga Center, DIMA, Università degli Studi di Genova, Genoa, Italy (traore@dima.unige.it).
†Istituto Italiano di Tecnologia, Genova, Italy (saverio.salzo@iit.it).
‡Malga Center, DIMA, Università degli Studi di Genova, Genova, Italy (silvia.villa@unige.it).

1

http://arxiv.org/abs/2201.05498v1

To solve problem 1.1, we use the following asynchronous block-coordinate descent algorithm.

It is an extension of the parallel block-coordinate proximal gradient method considered in [41] to

the asynchronous setting, where an inconsistent delayed gradient vector may be processed at each

iteration.

Algorithm 1.1. Let (ik)k∈N be a sequence of i.i.d. random variables with values in [m] := {1, . . . ,m}
and pi be the probability of the event {ik = i}, for every i ∈ [m]. Let (dk)k∈N be a sequence of integer

delay vectors, dk = (dk1 , . . . , d
k
m) ∈ N

m such that max1≤i≤m dki ≤ min{k, τ} for some τ ∈ N. Let

(γi)1≤i≤m ∈ R
m
++ and x

0 = (x01, . . . , x
0
m) ∈ H be a constant random variable. Iterate

for k = 0, 1, . . .

for i = 1, . . . ,m
⌊

xk+1
i =

{

proxγik gik

(
xkik − γik∇ikf(x

k−dk)
)

if i = ik

xki if i 6= ik,

(1.2)

where x
k−dk = (x

k−dk
1

1 , . . . , x
k−dkm
m).

In this work, we assume the following stepsize rule

(∀ i ∈ [m]) γi(Li + 2τLrespmax/
√
pmin) < 2, (1.3)

where pmax := max1≤i≤m pi and pmin := min1≤i≤m pi. If there is no delay, namely τ = 0, the usual

stepsize rule γi < 2/Li is obtained [14, 42].

The presence of the delay vectors in the above algorithm allows to describe a parallel computa-

tional model on multiple cores, as we explain below.

1.1 Asynchronous models

In this section we discuss an example of a parallel computational model, occurring in shared-memory

system architectures, which can be covered by the proposed algorithm. Consider a situation where

we have a machine with multiple cores. They all have access to a shared data x = (x1, . . . , xm) and

each core updates a block-coordinate xi, i ∈ [m], asynchronously without waiting for the others. The

iteration’s counter k is increased any time a component of x is updated. When a core is given a

coordinate to update, it has to read from the shared memory and compute a partial gradient. While

performing these two operations, the data x may have been updated by other cores. So, when the

core is updating its assigned coordinate at iteration k, the gradient might no longer be up to date.

This phenomenon is modelled by using a delay vector dk and evaluating the partial gradient at xk−dk

as in Algorithm 1.1. Each component of the delay vector reflects how many times the corresponding

coordinate of x have been updated since the core has read this particular coordinate from the shared

memory. Note that different delays among the coordinates may arise since the shared data may be

updated during the reading phase, so that the partial gradient ultimately is computed at a point

which may not be consistent with any past instance of the shared data. This situation is called

inconsistent read [6]. By contrast, in a consistent read model [29, 38], a lock is put during the reading

phase and the delay originates only while computing the partial gradient. The delay is the same for

all the block-coordinates, so that the value read by any core is a past instance of the shared data.

We remark that, in our setting, for all k ∈ N, the delay vector dk is considered to be a parameter

that does not dependent on the random variable ik, similarly to the works [30, 29, 16, 22]. Some

2

papers consider the case where the delay vector is a stochastic variable that may depend on ik [44, 8]

or that it is unbounded [44, 22]. A completely deterministic model, both in the block’s selection and

delays is studied in [12].

1.2 Related work

The topic on parallel asynchronous algorithm is not a recent one. In 1969, Chazan and Miranker [9]

presented an asynchronous method for solving linear equations. Later on, Bertsekas and Tsitsiklis [6]

proposed an inconsistent read model of asynchronous computation. Due to the availability of large

amount of data and the importance of large scale optimization, in recent years we have witnessed

a surge of interest in asynchronous algorithms. They have been studied and adapted to many opti-

mization problems and methods such as stochastic gradient descent [1, 38, 19, 39, 28], randomized

Kaczmarz algorithm [31], and stochastic coordinate descent [2, 29, 40, 50, 44].

In general, stochastic algorithms can be divided in two classes. The first one is when the function

f is an expectation i.e., f(x) = E[h(x; ξ)]. At each iteration k only a stochastic gradient ∇h(·; ξk) is

computed based on the current sample ξk. In this setting, many asynchronous versions have been

proposed, where delayed stochastic gradients are considered, see [35, 19, 3, 10, 27, 33]. The second

class, which is the one we studied, is that of randomized block-coordinate methods. Below we

describe the related literature.

[30] studied a problem and a model of asynchronicity which is similar to ours, but the proposed

algorithm AsySPCD requires that the random variables (ik)k∈N are uniformly distributed (i.e, pi =
1/m) and that the stepsize is the same for all the block-coordinates. This latter assumption is an

important limitation, since it does not exploit the possibility of adapting the stepsizes to the block-

Lipschitz constants of the partial gradients, hence allowing longer steps along block-coordinates.

A linear rate of convergence is also obtained by exploiting a quadratic growth condition which is

essentially equivalent to our error bound condition [18].

In the nonconvex case, [16] considers an asynchronous algorithm which may select the blocks

both in an almost cyclic manner or randomly with a uniform probability. In the latter case, it is

proved that the cluster points of the sequence of the iterates are almost surely stationary points

of the objective function. However, the convergence of the whole sequence is not provided, nor is

given any rate of convergence for the function values. Moreover, under the Kurdyka-Łojasiewicz (KL)

condition [18, 7], linear convergence is also derived, but it is restricted to the deterministic case.

To conclude, we note that our results, when specialized to the case of zero delays, fully recover

the ones given in [41].

1.3 Contributions

The main contributions of this work are summarized below:

• We first prove the almost sure weak convergence of the iterates (xk)k∈N, generated by Algo-

rithm 1.1, to a random variable x
∗ taking values in argminF . At the same time, we prove a sub-

linear rate of convergence of the function values in expectation, i.e, E[F (xk)]−minF = o(1/k).
We also provide for the same quantity an explicit rate of O(1/k), see Theorem 3.1.

• Under an error bound condition of Luo-Tseng type, on top of the strong convergence a.s of the

iterates, we prove linear convergence in expectation of the function values and in mean of the

iterates, see Theorem 4.2.

3

We improve the state-of-the-art under several aspects: we consider an arbitrary probability for the

selection of the blocks; the adopted stepsize rule improves over the existing ones, and coincides with

the one in [16] in the special case of uniform selection of the blocks — in particular, it allows for

larger stepsizes when the number of blocks grows; the almost sure convergence of the iterates in

the convex and stochastic setting is new and relies on a stochastic quasi-Fejerian analysis; linear

convergence under an error bound condition is also new in the asynchronous stochastic scenario.

The rest of the paper is organized as follows. In the next subsection we set up basic notation.

In Section 2 we recall few facts and we provide some preliminary results. The general convergence

analysis is given in Section 3 where the main Theorem 3.1 is presented. Section 4 contains the

convergence theory under an additional error bound condition, while applications are discussed in

Section 5. The majority of proofs are postponed to Appendices A and B.

1.4 Notation

We set R+ = [0,+∞[and R++ =]0,+∞[. For every integer ℓ ≥ 1 we define [ℓ] = {1, . . . , ℓ}. For all

i ∈ [m], we denote indifferently the scalar products of H and Hi by 〈·, ·〉 and:

(∀x = (x1, · · · , xm), y = (y1, · · · , ym) ∈ H) 〈x, y〉 =
m∑

i=1

〈xi, yi〉.

‖ · ‖ and | · | represent the norms associated to their scalar product in H and in any of Hi re-

spectively. We also consider the canonical embedding, for all i = 1, 2, · · · ,m, Ji : Hi → H,

xi 7→ (0, · · · , 0, xi, 0, · · · , 0), with xi in the ith position. Random vectors and variables are defined

on the underlying probability space (Ω,A,P). The default font is used for random variables while

sans serif font is used for their realizations or deterministic variables. Let (αi)1≤i≤m ∈ R
m
++. The

direct sum operator A =
⊕m

i=1 αiIdi, where Idi is the identity operator on Hi, is

A : H → H

x = (xi)1≤i≤m 7→ (αixi)1≤i≤m

This operator defines an equivalent scalar product on H as follows

(∀ x ∈ H)(∀ y ∈ H) 〈x, y〉A = 〈Ax, y〉 =
m∑

i=1

αi〈xi, yi〉,

which gives the norm ‖x‖2A =
∑m

i=1 αi|xi|2. We let

V =

m⊕

i=1

piIdi, Γ−1 =

m⊕

i=1

1

γi
Idi, and W =

m⊕

i=1

1

γipi
Idi,

where for all i ∈ [m], γi and pi are defined in Algorithm 1.1. We set pmax := max1≤i≤m pi and

pmin := min1≤i≤m pi. If S ⊂ H and x ∈ H, we set distA(x,S) = infz∈S‖x− z‖A. Let ϕ : H →]−∞,+∞]
be proper, convex, and lower semicontinuous. The domain of ϕ is domϕ = {x ∈ H |ϕ(x) < +∞}
and the set of minimizers of ϕ is argminϕ = {x ∈ H |ϕ(x) = inf ϕ}. If the function ϕ : H → R

is differentiable, then for all u, x ∈ H and any symmetric positive definite operator A, we have

〈∇Aϕ(x),u〉A = 〈∇ϕ(x),u〉, where ∇A denotes the gradient operator in the norm ‖·‖A.

4

2 Preliminaries

In this section we present basic definitions and facts that are used in the rest of the paper. Most of

them are already known, and we include them for clarity.

In the rest of the paper, we extend the definition of x
k by setting x

k = x
0 for every k ∈

{−τ, . . . ,−1}. Using the notation of Algorithm 1.1, we also set, for any k ∈ N

x̂
k = x

k−dk

x̄k+1
i = proxγigi

(
xki − γi∇if(x̂

k)
)

for all i ∈ [m]

x
k+1 = x

k + Jik
[
proxγik gik

(
xkik − γik∇ikf(x̂

k)
)
− xkik

]

∆
k = x

k − x̄
k+1.

(2.1)

With this notation, we have

x̄k+1
ik

= proxγik gik

(
xkik − γik∇ikf(x̂

k)
)
= xk+1

ik
; ∆k

ik
= xkik − xk+1

ik
. (2.2)

We remark that the random variables x
k and x̄

k+1 depend on the previously selected blocks, and

related delays. More precisely, we have

x
k = x

k(i0, . . . , ik−1,d
0, . . . ,dk−1)

x̄
k+1 = x̄

k+1(i0, . . . , ik−1,d
0, . . . ,dk).

(2.3)

From (2.1) and (2.2), we derive

xkik − xk+1
ik

γik
−∇ikf(x̂

k) ∈ ∂gik(x
k+1
ik

) and
xki − x̄k+1

i

γi
−∇if(x̂

k) ∈ ∂gi(x̄k+1
i) (2.4)

and therefore, for every x ∈ H

〈∇ikf(x̂
k)−

∆k
ik

γik
, xk+1
ik

− xik〉+ gik(x
k+1
ik

)− gik(xik) ≤ 0. (2.5)

Suppose that x and x′ in H differ only for one component, say that of index i, then it follows from

Assumption A3 and the Descent Lemma [36, Lemma 1.2.3], that

f(x′) = f(x1, . . . , xi−1, x
′
i, xi+1, · · · , xm)

≤ f(x) + 〈∇if(x), x
′
i − xi〉+

Li
2
|x′i − xi|2 (2.6)

≤ f(x) + 〈∇f(x), x′ − x〉+ Lmax

2
‖x′ − x‖2. (2.7)

We finally need the following results on the convergence of stochastic quasi-Fejér sequences and

monotone summable positives sequences.

Fact 2.1 ([13], Proposition 2.3). Let S be a nonempty closed subset of a real Hilbert space H. Let

F = (Fn)n∈N be a sequence of sub-sigma algebras of F such that (∀n ∈ N) Fn ⊂ Fn+1. We denote

by ℓ+(F) the set of sequences of R+-valued random variables (ξn)n∈N such that, for every n ∈ N, ξn is

Fn-measurable. We set

ℓ1+(F) =

{

(ξn)n∈N ∈ ℓ+(F)

∣
∣
∣
∣

∑

n∈N
ξn < +∞ P-a.s.

}

.

5

Let (xn)n∈N be a sequence of H-valued random variables. Suppose that, for every z ∈ S, there exist

(χn(z))n∈N ∈ ℓ1+(X), (ϑn(z))n∈N ∈ ℓ+(X), and (ηn(z))n∈N ∈ ℓ1+(X) such that the stochastic quasi-

Féjer property is satisfied P-a.s.:

(∀n ∈ N) E
[
‖xn+1 − z‖2 | Fn

]
+ ϑn(z) 6 (1 + χn(z)) ‖xn − z‖2 + ηn(z).

Then the following hold:

(i) (xn)n∈N is bounded P-a.s.

(ii) Suppose that the set of weak cluster points of the sequence (xn)n∈N is P-a.s. contained in S. Then

(xn)n∈N weakly converges P-a.s. to an S-valued random variable.

Fact 2.2. Let (ak)k∈N ∈ R
N
+ be a decreasing sequence of positive numbers and let b ∈ R+ such that

∑

k∈N ak ≤ b < +∞. Then ak = o(1/(k + 1)) and for every k ∈ N, ak ≤ b/(k + 1).

Fact 2.3. (∀n, k ∈ Z, k ≥ n)
∑k−1

h=n ah =
∑k−1

h=n(h− n+ 1)ah −
∑k

h=n+1(h− n)ah + (k − n)ak.

2.1 Auxiliary lemmas

Here we collect technical lemmas needed for our analysis, using the notation given in (2.1). For

reader’s convenience, we provide all the proofs in Appendix A.

The following result appears in [30, page 357].

Lemma 2.4. Let (xk)k∈N be the sequence generated by Algorithm 1.1. We have

(∀ k ∈ N) x
k = x̂

k −
∑

h∈J(k)
(xh − x

h+1), (2.8)

where J(k) ⊂ {k − τ, . . . , k − 1} is a random set.

The next lemma bounds the difference between the delayed and the current gradient in terms of

the steps along the block coordinates, see [30, equation A.7].

Lemma 2.5. Let (xk)k∈N be the sequence generated by Algorithm 1.1. It follows

(∀ k ∈ N) ‖∇f(xk)−∇f(x̂k)‖ ≤ Lres

∑

h∈J(k)
‖xh+1 − x

h‖.

Remark 2.6. Since ‖ · ‖2V ≤ pmax‖ · ‖2 and ‖ · ‖2 ≤ p−1
min‖ · ‖2V, Lemma 2.5 yields

‖∇f(xk)−∇f(x̂k)‖V ≤ √
pmax‖∇f(xk)−∇f(x̂k)‖

≤ Lres
√
pmax

∑

h∈J(k)
‖xh+1 − x

h‖

≤ Lres

√
pmax√
pmin

∑

h∈J(k)
‖xh+1 − x

h‖V.

We set LV
res = Lres

√
pmax√
pmin

.

6

The result below yields a kind of inexact convexity inequality due to the presence of the delayed

gradient vector.

Lemma 2.7. Let (xk)k∈N be a sequence generated by Algorithm 1.1. Then, for every k ∈ N,

(∀ x ∈ H) 〈∇f(x̂k), x − x
k〉 ≤ f(x)− f(xk) +

τLres

2

∑

h∈J(k)
‖xh − x

h+1‖2.

Lemma 2.8. Let H be a real Hilbert space. Let ϕ : H → R be differentiable and convex, and

ψ : H →]−∞,+∞] be proper, lower semicontinuous and convex. Let x, x̂ ∈ H and set x+ =
proxψ(x−∇ϕ(x̂)). Then, for every z ∈ H,

(
x− x+, z− x

〉
≤ ψ(z)− ψ(x) + 〈∇ϕ(x̂), z− x〉

+ ψ(x)− ψ
(
x+
)
+
〈
∇ϕ(x̂), x − x+

〉
− ‖x− x+‖2.

3 Convergence analysis

In this section we assume just convexity of the objective function and we provide worst case conver-

gence rate as well as almost sure weak convergence of the iterates.

Throughout the section we set

δ = max
i∈[m]

(

Liγi + 2γiτL
V
res

√
pmax

)

= max
i∈[m]

(

Liγi + 2γiτLres
pmax√
pmin

)

, (3.1)

where the constants Li’s and Lres are defined in Assumption A3 and the constant LV
res is defined in

Remark 2.6. The main convergence theorem is as follows.

Theorem 3.1. Let (xk)k∈N be the sequence generated by Algorithm 1.1 and suppose that δ < 2. Then

the following hold.

(i) The sequence (xk)k∈N weakly converges P-a.s. to a random variable that takes values in argminF .

(ii) E[F (xk)]− F ∗ = o(1/k). Furthermore, for every integer k ≥ 1,

E[F (xk)]− F ∗ ≤ 1

k

(
dist2W(x0, argminF)

2
+ C

(
F (x0)− F ∗)

)

,

where C ≤ max
{
1, (2− δ)−1

}

pmin
− 1 + τ

1√
pmin(2− δ)

(

1 +
pmax√
pmin

)

.

Remark 3.2.

(i) Theorem 3.1 extends classical results about the forward-backward algorithm to the asyn-

chronous and stochastic block-coordinate setting. See [42] and reference therein. Moreover,

we note that the above results, when specialized to the synchronous case, that is, τ = 0, yield

exactly [41, Theorem 4.9]. The o(1/k) was also proven in [26].

(ii) The almost sure weak convergence of the iterates for the asynchronous stochastic forward-

backward algorithm is new. In general only convergence in value is provided or, in the noncon-

vex case, cluster points of the sequence of the iterates are proven to be almost surely stationary

points [16, 8].

7

(iii) If we suppose that the random variables (ik)k∈N are uniformly distributed over [m], the stepsize

rule reduces to γi < 2/(Li + 2τLres/
√
m), which agrees with that given in [16] and gets better

when the number of blocks m increases. In this case, we see that the effect of the delay on

the stepsize rule is mitigated by the number of blocks. In [8] the stepsize is not adapted to the

blockwise Lipschitz constants Li’s, but it is chosen for each block as γ < 1/(Lres + τ2Lres/2),
leading, in general, to smaller stepsizes. In addition, this rule has a worse dependence on the

delay τ and lacks of any dependence on the number of blocks.

(iv) The framework of [8] is nonconvex and considers more general types of algorithms, in the

flavour of majorization-minimization approaches [23]. On the other hand the assumptions are

stronger (in particular, they assume F to be coercive) and the rate of convergence is given with

respect to ‖xk − proxg(x
k −∇f(xk))‖2, a quantity which is hard to relate to F (xk)− F ∗. They

also prove that the cluster points of the sequence of the iterates are almost surely stationary

points.

(v) The work [30] was among the first to study an asynchronous version of the randomized coor-

dinate gradient descent method. There, the coordinates were selected at random with uniform

probability and the stepsize was chosen the same for every coordinate. However, the stepsize

was chosen to depend exponentially on τ , i.e as O(1/ρτ) with ρ > 1, which is much worse

than our O(1/τ). The same problem affects the constant in front of the bound of the rate of

convergence which indeed is of the form O(ρτ).

Before giving the proof of Theorem 3.1, we present few preliminary results. The first one is

a proposition showing that the function values are decreasing in expectation. The proof of this

proposition, as well as those of the next intermediate results, are given in Appendix B.

Proposition 3.3. Assume that δ < 2 and let (xk)k∈N be the sequence generated by Algorithm 1.1. Then,

for every k ∈ N,

(2− δ)
pmin

2
‖x̄k+1 − x

k‖2Γ−1 ≤ F (xk) + αk − E
[
F (xk+1) + αk+1

∣
∣ i0, . . . , ik−1

]
P-a.s., (3.2)

where αk =
LV
res

2
√
pmax

k−1∑

h=k−τ
(h− (k − τ) + 1)‖xh+1 − x

h‖2V.

Lemma 3.4. Let (xk)k∈N be the sequence generated by Algorithm 1.1. Then for every k ∈ N, we have

〈∇f(xk)−∇f(x̂k), x̄k+1 − x
k〉V ≤ τLV

res

√
pmax

m∑

i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣
∣ i0, . . . , ik−1

]
,

where αk is defined in Proposition 3.3.

The next result exhibits the relationship between the norms ‖ · ‖W and ‖ · ‖Γ−1 .

Lemma 3.5. Let (xk)k∈N be a sequence generated by Algorithm 1.1. Let k ∈ N and let x be an H-valued

random variable which is measurable w.r.t. i1, . . . , ik−1. Then,

E[‖xk+1 − x‖2W | i0, . . . , ik−1]− ‖xk − x‖2W = ‖x̄k+1 − x‖2Γ−1 − ‖xk − x‖2Γ−1 (3.3)

and E[‖xk+1 − x
k‖2W | i0, . . . , ik−1] = ‖x̄k+1 − x

k‖2
Γ−1 .

8

Proposition 3.6. Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose that δ < 2. Let

(x̄k)k∈N and (αk)k∈N be defined as in (2.1) and in Proposition 3.3 respectively. Then, for every k ∈ N,

(∀ x ∈ H) 〈xk − x̄
k+1, x− x

k〉Γ−1 ≤ 1

pmin

(
F (xk) + αk − E

[
F (xk+1) + αk+1 | i0, . . . , ik−1

])

+ F (x)− F (xk) +
τLres

2

∑

h∈J(k)
‖xh − x

h+1‖2

+
δ − 2

2
‖xk − x̄

k+1‖2Γ−1 .

Next we state a proposition that we will use throughout the rest of this paper. It corresponds to

[41, Proposition 4.4].

Proposition 3.7. Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose that δ < 2. Let

(αk)k∈N be defined as in Proposition 3.3. Then, for every k ∈ N,

(∀ x ∈ H) E
[
‖xk+1 − x‖2W | i0, . . . , ik−1

]

≤ ‖xk − x‖2W

+
2

pmin

(
(δ − 1)+
2− δ

+ 1

)
(
F (xk) + αk − E

[
F (xk+1) + αk+1 | i0, . . . , ik−1

])

+ τLres

∑

h∈J(k)
‖xh − x

h+1‖2

+ 2(F (x)− F (xk)). (3.4)

In the following, we show a general inequality from which we derive simultaneously the conver-

gence of the iterates and the rate of convergence in expectation of the function values.

Proposition 3.8. Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose that δ < 2. Let

(αk)k∈N be defined as in Proposition 3.3. Then, for all x ∈ H,

E
[
‖xk+1 − x‖2W | i0, . . . , ik−1

]
≤ ‖xk − x‖2W + 2

(
F (x)− E

[
F (xk+1) + αk+1 | i0, . . . , ik−1

])
+ ξk,

where (ξk)k∈N is a sequence of positive random variables such that

∑

k∈N
E[ξk] ≤ 2C(F (x0)− F ∗), (3.5)

whith C ≤ max
{
1, (2 − δ)−1

}

pmin
− 1 +

τ√
pmin(2− δ)

(

1 +
pmax√
pmin

)

.

Proposition 3.9. Let (xk)k∈N be a sequence generated by Algorithm 1.1 and suppose that δ < 2. Let

(x̄k)k∈N be defined as in (2.1). Then there exists a sequence of H-valued random variables (vk)k∈N such

that the following assertions hold:

(i) v
k ∈ ∂F (x̄k+1) P-a.s.

(ii) v
k → 0 and x

k − x̄
k+1 → 0 P-a.s.

We are now ready to prove the main theorem.

9

Proof of Theorem 3.1. (i): It follows from Proposition 3.8 that

(∀ x ∈ argminF) E
[
‖xk+1 − x‖2W | i0, . . . , ik−1

]
≤ ‖xk − x‖2W + ξk,

where (ξk)k∈N is a sequence of positive random variable which is P-a.s. summable. Thus, the se-

quence (xk)k∈N is stochastic quasi-Fejér with respect to argminF in the norm ‖·‖W (which is equiva-

lent to ‖·‖). Then according to Fact 2.1 it is bounded P-a.s. We now prove that argminF contains the

weak cluster points of (xk)k∈N P-a.s. Indeed, let Ω1 ⊂ Ω with P(Ω\Ω1) = 0 be such that items (i) and

(ii) of Proposition 3.9 hold. Let ω ∈ Ω1 and let x be a weak cluster point of (xk(ω))k∈N. There exists

a subsequence (xkq (ω))q∈N which weakly converges to x. By Proposition 3.9, we have x̄
kq+1(ω)⇀ x,

v
kq+1(ω) → 0, and v

kq+1(ω) ∈ ∂(f+g)(x̄kq+1(ω)). Thus, [34, Proposition 1.6 (demiclosedness of the

graph of the subgradient)] yields 0 ∈ ∂F (x) and hence x ∈ argminF . Therefore, again by Fact 2.1

we conclude that the sequence (xk)k∈N weakly converges to a random variable that takes value in

argminF P-a.s.

(ii): Choose x ∈ argminF in Proposition 3.8 and then take the expectation. Then we get

E[F (xk+1) + αk+1]− F ∗ ≤ 1

2

(
E[‖xk − x‖2W]− E[‖xk+1 − x‖2W]

)
+

1

2
E[ξk].

Since
∑

k∈N(E[‖xk − x‖2W] − E[‖xk+1 − x‖2W]) ≤ ‖x0 − x‖2W, and recalling the bound on
∑

k∈N E[ξk]
in (3.5), we have

∑

k∈N

(
E[F (xk+1) + αk+1]− F ∗) ≤ ‖x0 − x‖2W

2
+ C(F (x0)− F ∗).

Thus, since, in virtue of Proposition 3.2, (E[F (xk+1) + αk+1] − F ∗)k∈N is decreasing, the statement

follows from Fact 2.2, considering that αk ≥ 0.

4 Linear convergence under error bound condition

In the previous section we get a sublinear rate of convergence. Here we show that with an additional

assumption we can get a better convergence rate. Also, we derive a strong convergence of the

iterates, improving the weak convergence proved in Theorem 3.1.

We will assume that the following Luo-Tseng error bound condition [32] holds on a subset X ⊂ H

(containing the iterates xk).

(∀x ∈ X) distΓ−1 (x, argminF) ≤ CX,Γ−1

∥
∥x− proxΓ

−1

g

(
x−∇Γ−1

f(x)
)∥
∥
Γ−1 . (4.1)

Remark 4.1. We recall that the condition above is equivalent to the Kurdyka-Lojasiewicz property

and the quadratic growth condition [18, 7, 41]. Any of these conditions can be used to prove linear

convergence rates for various algorithms.

The following theorem is the main result of this section. Here, linear convergence of the function

values and strong convergence of the iterates are ensured.

Theorem 4.2. Let (xk)k∈N be generated by Algorithm 1.1 and suppose δ < 2 and that the error bound

condition (4.1) holds with X ⊃ {xk | k ∈ N} P-a.s. for some CX,Γ−1 > 0. Then for all k ∈ N,

10

(i) E
[
F (xk+1)− F ∗] ≤

(

1− pmin

κ+ θ

)⌊k+1

τ+1
⌋
E
[
F (x0)− F ∗],

where

κ = 1 +
(2CX,Γ−1 + δ − 2)+

2− δ
= max

{

1,
2CX,Γ−1

2− δ

}

θ =
τLresγmax

2− δ

(
p2max√
pmin

+ 1

)

≤
√
pmin

pmax(2− δ)

(
p2max√
pmin

+ 1

)

.

(ii) The sequence (xk)k∈N converges strongly P-a.s. to a random variable x
∗ that takes values in

argminF and E
[
‖xk − x

∗‖Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1

⌋/2)
.

Proof. (i): From Proposition 3.6 we have

1

pmin
E
[
F (xk+1) + αk+1 − F (xk)− αk | i0, . . . , ik−1

]

≤ ‖xk − x̄
k+1‖Γ−1‖xk − x‖Γ−1

+ F (x)− F (xk) +
τLres

2

∑

h∈J(k)
‖xh − x

h+1‖2

+
δ − 2

2
‖xk − x̄

k+1‖2Γ−1 ,

where αk = (Lres/(2
√
pmin))

∑k−1
h=k−τ (h − (k − τ) + 1)‖xh+1 − x

h‖2V. Now, taking x ∈ argminF and

using the error bound condition 4.1 and equation 3.2, we obtain

1

pmin
E
[
F (xk+1) + αk+1 − F (xk))− αk | i0, . . . , ik−1

]

≤
(

CX,Γ−1 +
δ − 2

2

)

‖xk − x̄
k+1‖2Γ−1

− (F (xk)− F ∗) +
τLres

2

k−1∑

h=k−τ
‖xh − x

h+1‖2

≤ (2CX,Γ−1 + δ − 2)+

(2− δ)pmin
E
[
F (xk)) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]

− (F (xk)− F ∗) +
τLres

2

k−1∑

h=k−τ
‖xh − x̄

h+1‖2, (4.2)

Adding and removing F ∗ in both expectation yield

κE
[
F (xk+1) + αk+1 − F ∗ | i0, . . . , ik−1

]
≤ κE

[
F (xk) + αk − F ∗ | i0, . . . , ik−1

]

+
τLresγmaxpmin

2

k−1∑

h=k−τ
‖xh − x̄

h+1‖2Γ−1

− pmin(F (x
k) + αk − F ∗) + pminαk, (4.3)

11

where κ = 1 + (2CX,Γ−1 + δ − 2)+/(2− δ). Now, since ‖·‖2V ≤ γmaxp
2
max‖·‖2W we have

E[αk] ≤
τLresγmaxp

2
max

2
√
pmin

k−1∑

h=k−τ
E[‖xh+1 − x

h‖2W]

=
τLresγmaxp

2
max

2
√
pmin

k−1∑

h=k−τ
E[‖x̄h+1 − x

h‖2Γ−1], (4.4)

where in the last equality we used Lemma 3.5. From (3.2), we have, for k such that k − τ ≥ 0,

k−1∑

h=k−τ
E[‖x̄h+1 − x

h‖2Γ−1] ≤
2

(2− δ)pmin

k−1∑

h=k−τ
E
[
F (xh) + αh

]
− E

[
F (xh+1) + αh+1

]

=
2

(2− δ)pmin

(

E
[
F (xk−τ) + αk−τ

]
− E

[
F (xk) + αk

])

≤ 2

(2− δ)pmin

(

E
[
F (xk−τ) + αk−τ

]
− E

[
F (xk+1) + αk+1

])

=
2

(2− δ)pmin

(

E
[
F (xk−τ) + αk−τ − F ∗]− E

[
F (xk+1) + αk+1 − F ∗]

)

.

(4.5)

Because the sequence
(
E
[
F (xk) + αk

])

k∈N is decreasing, the transition from the second line to the

third one is allowed. Using (4.4) and (4.5) in (4.3) with total expectation, we obtain

(κ+ θ)E
[
F (xk+1) + αk+1 − F ∗] ≤ (κ− pmin)E

[
F (xk) + αk − F ∗]

+ θE
[
F (xk−τ) + αk−τ − F ∗]

≤ (κ− pmin)E
[
F (xk−τ) + αk−τ − F ∗]

+ θE
[
F (xk−τ) + αk−τ − F ∗]

= (κ+ θ − pmin)E
[
F (xk−τ) + αk−τ − F ∗], (4.6)

where θ = (2− δ)−1

(
τLresγmaxp

2
max√

pmin
+ τLresγmax

)

= τLresγmax(2− δ)−1

(
p2max√
pmin

+ 1

)

. That means

E
[
F (xk+1) + αk+1 − F ∗] ≤

(

1− pmin

κ+ θ

)

E
[
F (xk−τ) + αk−τ − F ∗]

≤
(

1− pmin

κ+ θ

)⌊k+1

τ+1
⌋
E
[
F (x0) + α0 − F ∗]. (4.7)

Now for k < τ , ⌊k+1
τ+1⌋ = 0. Because

(
E
[
F (xk) + αk

])

k∈N is decreasing, we know that

E
[
F (xk+1) + αk+1 − F ∗] ≤ E

[
F (x0) + α0 − F ∗]

=

(

1− pmin

κ+ θ

)⌊k+1

τ+1
⌋
E
[
F (x0) + α0 − F ∗].

So (4.7) remains true. Also from (B.10), we have

θ ≤
√
pmin

pmax
(2− δ)−1

(
p2max√
pmin

+ 1

)

.

12

(ii): From Jensen inequality, (3.2) and (4.7), we have

E
[
‖xk+1 − x

k‖Γ−1

]
≤
√

E
[
‖xk+1 − x

k‖2
Γ−1

]

≤
√

E
[
‖x̄k+1 − x

k‖2
Γ−1

]

≤
√

2

pmin(2− δ)
E
[
F (xk) + αk − F ∗]

≤

√

2

pmin(2− δ)

(

1− pmin

κ+ θ

)⌊ k
τ+1

⌋
E
[
F (x0) + α0 − F ∗]. (4.8)

Since 1− pmin/(κ + θ) < 1,

E

[
∑

k∈N
‖xk+1 − x

k‖Γ−1

]

=
∑

k∈N
E
[
‖xk+1 − x

k‖Γ−1

]
<∞.

Therefore
∑

k∈N‖xk+1 − x
k‖Γ−1 < ∞ P-a.s. This means the sequence (xk)k∈N is a Cauchy sequence

P-a.s. By Theorem 3.1 (i), this sequence has accumulation points that take values in argminF . So it

converges strongly P-a.s. to a random variable that takes values in argminF .

Now let ρ = 1− pmin/(κ+ θ). For all n ∈ N,

‖xk+n − x
k‖Γ−1 ≤

n−1∑

i=0

‖xk+i+1 − x
k+i‖Γ−1 ≤

∞∑

i=0

‖xk+i+1 − x
k+i‖Γ−1 .

Letting n→ ∞ and using (4.8), we get

E
[
‖xk − x

∗‖Γ−1

]
≤
(

2

pmin(2− δ)
E
[
F (x0) + α0 − F ∗]

)1/2 ∞∑

i=0

ρ⌊
k+i
τ+1

⌋/2

≤
(

2

pmin(2− δ)
E
[
F (x0) + α0 − F ∗]

)1/2

ρ⌊
k

τ+1
⌋/2

∞∑

i=0

ρ⌊
i

τ+1
⌋/2

= ρ⌊
k

τ+1
⌋/2
(

2

pmin(2− δ)
E
[
F (x0) + α0 − F ∗]

)1/2 τ + 1

1− ρ1/2
.

Remark 4.3.

(i) A linear convergence rate is also given in [30, Theorem 4.1] by assuming a quadratic growth

condition instead of the error bound condition (4.1). Their rate depend on the stepsize which

in general can be very small, as explained earlier in point (v) of Remark 3.2.

(ii) The error bound condition (4.1) is sometimes satisfied globally, meaning on X = domF , so

that the condition X ⊃ {xk | k ∈ N} P-a.s. required in Theorem 4.2 is clearly fulfilled. This is

the case when F is strongly convex or when f is quadratic and g is the indicator function of a

polytope (see Remark 4.17(iv) in [41]). More often, for general convex objectives, the error

bound condition (4.1) is satisfied on sublevel sets of F (see [41, Remark 4.18]). Therefore, it

is important to find conditions ensuring that the sequence (xk)k∈N remains in a sublevel set.

The next results address this issue.

13

We first give an analogue of Lemma 3.4.

Lemma 4.4. Let (xk)k∈N be the sequence generated by Algorithm 1.1. Then, for every k ∈ N,

〈∇f(xk)−∇f(x̂k), xk+1 − xk〉 ≤ τLres‖xk+1 − x
k‖2 + α̃k − α̃k+1,

with α̃k = (Lres/2)
∑k−1

h=k−τ (h− (k − τ) + 1)‖xh+1 − x
h‖2.

Proof. Let k ∈ N. We have, from Cauchy-Schwarz inequality, the Young inequality and Remark 2.5,

that

〈∇f(xk)−∇f(x̂k),xk+1 − x
k〉

≤ Lres

∑

h∈J(k)
‖xh+1 − x

h‖‖xk+1 − x
k‖

≤ 1

2

L2
res

s

(
∑

h∈J(k)
‖xh+1 − x

h‖
)2

+ s‖xk+1 − x
k‖2

≤ 1

2

[

τL2
res

s

(
k−1∑

h=k−τ
‖xh+1 − x

h‖2
)

+ s‖xk+1 − x
k‖2
]

=
s

2
‖xk+1 − x

k‖2 + τL2
res

2s

k−1∑

h=k−τ
‖xh+1 − x

h‖2.

Using the same decomposition of the last term as in Lemma 3.4 , we get

〈∇f(xk)−∇f(x̂k),xk+1 − x
k〉

≤ s

2
‖xk+1 − x

k‖2 + τL2
res

2s

k−1∑

h=k−τ
(h− (k − τ) + 1)‖xh+1 − x

h‖2

− τL2
res

2s

k∑

h=k−τ+1

(h− (k − τ))‖xh+1 − x
h‖2

+
τ2L2

res

2s
‖xk+1 − x

k‖2.

So taking

α̃k =
τL2

res

2s

k−1∑

h=k−τ
(h− (k − τ) + 1)‖xh+1 − x

h‖2,

we get

〈∇f(xk)−∇f(x̂k), x̄k+1 − xk〉 ≤
(
s

2
+
τ2L2

res

2s

)

‖x̄k+1 − x
k‖2 + α̃k − α̃k+1.

By minimizing s 7→ (s/2 + τ2L2
res/(2s)), we find s = τLres. We then obtain

〈∇f(xk)−∇f(x̂k), xk+1 − xk〉 ≤ τLres‖xk+1 − x
k‖2 + α̃k − α̃k+1,

and the statement follows.

14

Proposition 4.5. Let (xk)k∈N be the sequence generated by Algorithm 1.1. Then, for every k ∈ N,

(
1

γik
− Lik

2
− τLres

)

‖xk+1 − x
k‖2 ≤ F (xk) + α̃k −

(
F (xk+1) + α̃k+1

)
P-a.s., (4.9)

where α̃k = (Lres/2)
∑k−1

h=k−τ (h− (k − τ) + 1)‖xh+1 − x
h‖2.

Proof. Using Lemma 4.4 in equation (B.3), we have

F (xk+1) ≤ F (xk) + 〈∇ikf(x
k)−∇ikf(x̂

k), x̄k+1
ik

− xkik〉 −
(

1

γik
− Lik

2

)

|x̄k+1
ik

− xkik |
2

= F (xk) + 〈∇f(xk)−∇f(x̂k),xk+1 − x
k〉 −

(
1

γik
− Lik

2

)

‖xk+1 − x
k‖2

≤ F (xk) + α̃k − α̃k+1 −
(

1

γik
− Lik

2
− τLres

)

‖xk+1 − x
k‖2.

So the statement follows.

Corollary 4.6. Let (xk)k∈N be generated by Algorithm 1.1 with the γi’s satisfying the following stepsize

rule

(∀ i ∈ [m]) γi <
2

Li + 2τLres
. (4.10)

Then

(∀ k ∈ N) F (xk) ≤ F (x0) P-a.s. (4.11)

So if the error bound condition (4.1) holds on the sublevel set X = {F ≤ F (x0)}, then the assumptions

of Theorem 4.2 are met.

Proof. The left hand side in (4.9) is positive and hence (F (xk)+α̃k)k∈N is decreasing P-a.s. Therefore,

we have, for every k ∈ N

F (xk) ≤ F (xk) + α̃k ≤ F (x0) + α̃0 = F (x0).

Remark 4.7. The rule (4.10) yields stepsizes possibly smaller than the ones given in Theorem 3.1,

which requires γi < 2/(Li + 2τLrespmax/
√
pmin). Indeed this happens when pmax/

√
pmin < 1. For

instance if the distribution is uniform, we have pmax/
√
pmin = 1/

√
m < 1 whenever m ≥ 2. On the

bright side, there may exist distributions for which pmax/
√
pmin > 1.

5 Applications

Here we present two problems where Algorithm 1.1 can be useful.

15

5.1 The Lasso problem

We start with the Lasso problem [46], also known as basis pursuit [11]. It is a least-squares regression

problem with an ℓ1 regularizer which favors sparse solutions. More precisely, given A ∈ R
n×m and

b ∈ R
n, one aims at solving the following problem

minimize
x∈Rm

1

2
‖Ax− b‖22 + λ‖x‖1 (λ > 0) . (5.1)

We clearly fall in the framework of problem (1.1) with f(x) = (1/2)‖Ax− b‖22 and gi(xi) = λ|xi|. The

assumptions A1, A2, A3 and A4 are also satisfied. In particular, here Li = ‖ai‖2, where ai is the i-th
column of A, Lres = ‖A‖2 and F = f + g attains its minimum.

The Lasso technique is used in many fields, especially for high-dimensional problems – among

others it is worth mentioning statistics, signal processing, and inverse problems; see [4, 47, 24, 5,

17, 45] and references therein. Since there is no closed form solution for this problem, many itera-

tive algorithms have been proposed to solve it: forward-backward, accelerated (proximal) gradient

descent, (proximal) block coordinate descent, etc. [15, 4, 37, 21, 48, 20]. In the same vein, applying

Algorithm 1.1 to the Lasso problem (5.1) yields the iterative scheme:

for n = 0, 1, . . .

for i = 1, . . . ,m
⌊

xk+1
i =

{

softλγik

(
xkik − γika

⊺

ik
(Axk−dk − b)

)
if i = ik

xki if i 6= ik,

(5.2)

where, for every ρ > 0, softρ : R → R is the soft thresholding operator (with threshold ρ) [42].

Thanks to Theorem 3.1 we know that the iterates (xk)k∈N generated are weakly convergent and the

function values have a convergence rate of o(1/k). On top of that the cost function of the Lasso

problem (5.1) satisfies the error bound condition (4.1) on its sublevel sets [49, Theorem 2]. So,

following Corollary 4.6 and Theorem 4.2, the iterates converge strongly (a.s.) and linearly in mean,

whenever γi < 2/ (Li + 2τLres), for all i ∈ [m].

5.2 Linear convergence of dual proximal gradient method

We consider the problem

minimize
x∈H

m∑

i=1

φi (Aix) + h(x), (5.3)

where, for all i ∈ [m], Ai : H → Gi is a linear operator between Hilbert spaces, φi : Gi →]−∞,+∞]
is proper convex and lower semicontinuous, and h : H →]−∞,+∞] is proper lower semicontinuous

and σ-strongly convex (σ > 0). The first term of the objective function may represent the empirical

data loss and the second term the regularizer. This problem arises in many applications in machine

learning, signal processing and statistical estimation, and is commonly called regularized empirical

risk minimization [43]. It includes, for instance, ridge regression and (soft margin) support vector

machines [43], more generally Tikhonov regularization [25, Section 5.3].

In the following we apply Algorithm 1.1 to the dual of problem (5.3). Below we provide details.

Set G =
⊕m

i=1 Gi and u = (u1, u2, . . . , um). Then, the dual of problem (5.3) is

minimize
u∈G

F (u) = h∗
(

−
m∑

i=1

A∗
i ui

)

+
m∑

i=1

φ∗i (ui), (5.4)

16

where, A∗
i is the adjoint operator of Ai h

∗ and φ∗i are the Fenchel conjugates of h and φi re-

spectively. The link between the dual variable u and the primal variable x is given by the rule

u 7→ ∇h∗(−∑m
i=1A

∗
i ui). Since h∗ is (1/σ)-Lipschitz smooth, the dual problem above is in the form of

problem (1.1). Thus, Algorithm (1.1) applied to the dual problem (5.4) gives

for k = 0, 1, . . .

for i = 1, . . . ,m

 uk+1

i =

proxγikφ
∗

ik

(
ukik + γikAik∇h∗(−

∑m
j=1A

∗
ju
k−dkj
j

)
if i = ik

uki if i 6= ik,

(5.5)

Suppose that ∇h∗ = B is a linear operator and that the delay vecotr dk = (dk1 , · · · , dkm) is

uniform, that is, dki = dkj = dk ∈ N. Then, using the primal variable, the KKT condition

xk = ∇h∗(−
∑m

j=1A
∗
ju
k
j) = −

∑m
j=1BA

∗
ju
k
j , and the fact that uk+1 and uk differ only on the ik-

component, the algorithm becomes

for k = 0, 1, . . .

for i = 1, . . . ,m

uk+1
i =

{

proxγikφ
∗

ik

(
ukik + γikAikx

k−dk
)

if i = ik

uki if i 6= ik.

xk+1 = xk −BA∗
ik
(uk+1
ik

− ukik).

(5.6)

The above algorithm requires a lock during the update of the primal variable x. On the contrary,

the update of the dual variable u is completely asynchronous without any lock as in the setting we

studied in this paper. To get a better understanding of this aspect, we will expose a concrete example:

the ridge regression.

5.2.1 Example: Ridge regression

The ridge regression is the following regularized least squares problem.

minimize
w∈H

1

λm

m∑

i=1

(yi − 〈w, xi〉)2 +
1

2
‖w‖2. (5.7)

Its dual problem is

minimize
u∈Rm

1

2
〈(K+ λmIdm)u,u〉 − 〈y,u〉,

where K = XX∗ and X : H → R
m, with Xw = (〈w, xi〉)1≤i≤m. We remark that, in this situation,

Ai = 〈·, xi〉, A∗
i = xi and B = Id. Let dk = (dk, dk, · · · , dk). With wk = X∗uk and considering that the

non smooth part g is null, the algorithm is given by

for k = 0, 1, . . .

for i = 1, . . . ,m

uk+1
i =

{

ukik − γik
(
〈xik ,wk−dk〉+ λmuk−dk

ik
− yik

)
if i = ik

uki if i 6= ik.

wk+1 = wk − γikxik
(
uk+1
ik

− ukik

)
.

(5.8)

17

Remark 5.1. Now we will compare the above dual asynchronous algorithm to the asynchronous

stochastic gradient descent (ASGD) [38, 1]. We note that (5.8) yields

wk+1 = wk − γikxik
(
uk+1
ik

− ukik

)

= wk − γik
(
〈xik ,wk−dk〉xik + λmuk−dk

ik
xik − yikxik

)
.

Instead, applying asynchronous SGD to the primal problem (5.7) multiply by λm, we get

wk+1 = wk − γ′k
(
〈xik ,wk−dk〉xik + λmwk−dk − yikxik

)
.

We see that the only difference is the second term inside the parentheses in both updates. Indeed the

term wk−dk = X∗uk−dk =
∑m

i=1 u
k−dk

i xi in ASGD is replaced by only one summand uk−dk

ik
xik in our

algorithm. However, a major difference between the two approaches lies in the way the stepsize is

set. Indeed, in ASGD, the stepsize γ′k is chosen with respect to the operator norm of K + λmId i.e.,

the Lipschitz constant of the full gradient of the primal objective function, see [1, Theorem 1]. By

contrast, in algorithm (5.8), for all i ∈ [m], the stepsizes γki are chosen with respect to the Lipschitz

constant of the partial derivatives of the dual objective function i.e., Ki,i + λm. Not only the latter

are easier to compute, they also allow for possibly longer steps along the coordinates.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under the Marie Skłodowska-Curie grant agreement No 861137. S.V. acknowledges

the financial support of the European Research Council (grant SLING 819789), the AFOSR projects

FA9550-17-1-0390 and BAAAFRL- AFOSR-2016-0007 (European Office of Aerospace Research and

Development), and the EU H2020-MSCA-RISE project NoMADS - DLV-777826.

18

Appendices

A Proofs of the auxiliary Lemmas in Section 2

In this section, for reader’s convenience, we provide detailed proofs of the Lemmas presented in

Section 2, even though they are mostly not original. They are adapted from or can be found, e.g., in

[30, 41].

Proof of Lemma 2.4. Let k ∈ N. Since, for every i ∈ [m], dki ≤ min{k, τ}, we have

x
k−dk − x

k =
m∑

i=1

Ji(x
k−dki
i − xki)

=
m∑

i=1

Ji

(k−1∑

h=k−dki

(xhi − xh+1
i)

)

=
m∑

i=1

Ji

(k−1∑

h=k−τ
δh,i(x

h
i − xh+1

i)

)

=

k−1∑

h=k−τ

m∑

i=1

Ji
(
δh,i(x

h
i − xh+1

i)
)
. (A.1)

where δh,i = 1 if h ≥ k − dki and δh,i = 0 if h < k − dki . Note that for any h ∈ {k − τ, . . . , k − 1}, in

the sum
m∑

i=1

Ji
(
δh,i(x

h
i − xh+1

i)
)

at most one summand is different from zero, because the difference between x
h and x

h+1 is only in

the ih-th component. So

m∑

i=1

Ji
(
δh,i(x

h
i − xh+1

i)
)
=

{

Jih(x
h
ih
− xh+1

ih
) = x

h − x
h+1 if h ≥ k − dkih

0 if h < k − dkih .

Therefore setting J(k) =
{
h ∈ {k− τ, . . . , k− 1} |h ≥ k− dkih

}
, (A.1) yields (2.8). Note that, since ih

is a random variable, J(k) is a random set in the sense that J(k)(ω) =
{
h ∈ {k − τ, . . . , k − 1} |h ≥

k − dkih(ω)

}
.

Proof of Lemma 2.5. Let k ∈ N, let p = card(J(k)), and let (hj)1≤j≤p be the elements of J(k)
ordered in (strictly) increasing order. Then, from Lemma 2.4 we have

x
k − x̂

k =

p
∑

j=1

(xhj+1 − x
hj). (A.2)

Let’s set, for each t ∈ {0, . . . , p}

x̂
k,t = x̂

k +
t∑

j=1

(xhj+1 − x
hj).

19

Then it follows

x̂
k,0 = x̂

k, x̂
k,p = x

k, and ∀ t ≥ 1 x̂
k,t − x̂

k,t−1 = x
ht+1 − x

ht .

Therefore

x
k − x̂

k =

p
∑

t=1

(x̂k,t − x̂
k,t−1)

and x̂
k,t, x̂k,t−1 differ only in the value of a component. Thus

‖∇f(xk)−∇f(x̂k)‖ =
∥
∥
∥

p
∑

t=1

∇f(x̂k,t)−∇f(x̂k,t−1)
∥
∥
∥

≤
p
∑

t=1

‖∇f(x̂k,t)−∇f(x̂k,t−1)‖

≤ Lres

p
∑

t=1

‖x̂k,t − x̂
k,t−1‖

= Lres

p
∑

t=1

‖xht+1 − x
ht‖

= Lres

∑

h∈J(k)
‖xh+1 − x

h‖.

from which the result follows.

Proof of Lemma 2.7. Let k ∈ N and x ∈ H. Then

〈∇f(x̂k), x − x
k〉 = 〈∇f(x̂k), x − x̂

k〉+ 〈∇f(x̂k), x̂k − x
k〉

= 〈∇f(x̂k), x − x̂
k〉+

p−1
∑

t=0

〈∇f(x̂k), x̂k,t − x̂
k,t+1〉

= 〈∇f(x̂k), x − x̂
k〉

+

p−1
∑

t=0

〈∇f(x̂k,t), x̂k,t − x̂
k,t+1〉+ 〈∇f(x̂k)−∇f(x̂k,t), x̂k,t − x̂

k,t+1〉.

Thanks to the convexity of f and (2.7), it follows

〈∇f(x̂k), x − x
k〉 ≤ f(x)− f(x̂k) +

p−1
∑

t=0

f(x̂k,t)− f(x̂k,t+1) +
Lmax

2
‖x̂k,t − x̂

k,t+1‖2

+

p−1
∑

t=0

〈∇f(x̂k)−∇f(x̂k,t), x̂k,t − x̂
k,t+1〉

= f(x)− f(xk) +
Lmax

2

p−1
∑

t=0

‖x̂k,t − x̂
k,t+1‖2

20

+

p−1
∑

t=0

t−1∑

s=0

〈∇f(x̂k,s)−∇f(x̂k,s+1), x̂k,t − x̂
k,t+1〉

≤ f(x)− f(xk) +
Lmax

2

p−1
∑

t=0

‖x̂k,t − x̂
k,t+1‖2

+ Lres

p−1
∑

t=0

t−1∑

s=0

‖x̂k,s − x̂
k,s+1‖‖x̂k,t − x̂

k,t+1‖.

Using the equality of the square of sum, Holder inequality and Lmax ≤ Lres, we finally get

〈∇f(x̂k), x − x
k〉 ≤ f(x)− f(xk) +

Lmax

2

p−1
∑

t=0

‖x̂k,t − x̂
k,t+1‖2

+
Lres

2

[(p−1
∑

t=0

‖x̂k,t − x̂
k,t+1‖

)2

−
p−1
∑

t=0

‖x̂k,t − x̂
k,t+1‖2

]

= f(x)− f(xk) +
Lres

2

(p−1
∑

t=0

‖x̂k,t − x̂
k,t+1‖

)2

+

(
Lmax

2
− Lres

2

) p−1
∑

t=0

‖x̂k,t − x̂
k,t+1‖2

≤ f(x)− f(xk) +
τLres

2

∑

h∈J(k)
‖xh − x

h+1‖2.

The statement follows.

Proof of Lemma 2.8. Let z ∈ H. It follows from the definition of x+ that x− x+ −∇ϕ(x̂) ∈ ∂ψ (x+) .
Therefore, ψ(z) ≥ ψ (x+) + 〈x− x+ −∇ϕ(x̂), z− x+〉 , hence

〈
x− x+, z− x+

〉
≤ ψ(z)− ψ

(
x+
)
+
〈
∇ϕ(x̂), z− x+

〉
.

Then,

〈x− x+, z− x〉+ 〈x− x+, x− x+〉 ≤ ψ(z)− ψ (x+) + 〈∇ϕ(x̂), z− x〉+ 〈∇ϕ(x̂), x− x+〉 .

Rearranging the terms the statement follows.

B Proofs of Section 3

Proof of Lemma 3.4. Let k ∈ N. We have, from Cauchy-Schwarz inequality, the Young inequality

and Remark 2.5, that

〈∇f(xk)−∇f(x̂k), x̄k+1 − x
k〉V

≤ LV
res

∑

h∈J(k)
‖xh+1 − x

h‖V‖x̄k+1 − x
k‖V

21

≤ 1

2

(LV

res)
2

s

(
∑

h∈J(k)
‖xh+1 − x

h‖V
)2

+ s‖x̄k+1 − x
k‖2V

≤ 1

2

[

τ(LV
res)

2

s

(
k−1∑

h=k−τ
‖xh+1 − x

h‖2V

)

+ s‖x̄k+1 − x
k‖2V

]

=
s

2
‖x̄k+1 − x

k‖2V +
τ(LV

res)
2

2s

k−1∑

h=k−τ
‖xh+1 − x

h‖2V,

Now, thanks to a decomposition of the last term by Fact 2.3, we obtain

〈∇f(xk)−∇f(x̂k), x̄k+1 − x
k〉V

≤ s

2
‖x̄k+1 − x

k‖2V +
τ(LV

res)
2

2s

k−1∑

h=k−τ
(h− (k − τ) + 1)‖xh+1 − x

h‖2V

− τ(LV
res)

2

2s

k∑

h=k−τ+1

(h− (k − τ))‖xh+1 − x
h‖2V

+
τ2(LV

res)
2

2s
‖xk+1 − x

k‖2V.

We recall that ‖xk+1 − x
k‖2V = pik |x̄k+1

ik
− xkik |

2. So taking

αk =
τ(LV

res)
2

2s

k−1∑

h=k−τ
(h− (k − τ) + 1)‖xh+1 − x

h‖2V,

we get

E
[
〈∇f(xk)−∇f(x̂k), x̄k+1 − xk〉V

∣
∣ i0, . . . , ik−1

]

≤ s

2
‖x̄k+1 − x

k‖2V +
τ2(LV

res)
2

2s

m∑

i=0

p2i |x̄ik+1 − xki |2 + αk − E
[
αk+1

∣
∣ i0, . . . , ik−1

]

Meaning

〈∇f(xk)−∇f(x̂k), x̄k+1 − xk〉V

≤
m∑

i=0

pi

(
s

2
+
τ2(LV

res)
2

2s
pi

)

|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣
∣ i0, . . . , ik−1

]

≤
m∑

i=0

pi

(
s

2
+
τ2(LV

res)
2

2s
pmax

)

|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣
∣ i0, . . . , ik−1

]
.

By minimizing s 7→
(
s

2
+
τ2(LV

res)
2

2s
pmax

)

, we find s = τLV
res
√
pmax. We then get

〈∇f(xk)−∇f(x̂k), x̄k+1 − xk〉V

≤ τLV
res

√
pmax

m∑

i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣
∣ i0, . . . , ik−1

]
,

22

and αk =
LV
res

2
√
pmax

k−1∑

h=k−τ
(h− (k − τ) + 1)‖xh+1 − x

h‖2V.

Proof of Lemma 3.5. We have

‖xk+1−x‖2W =

m∑

i=1

1

piγi
|xk+1
i −xi|2 =

1

pikγik
|x̄k+1
ik

−xik |2+‖xk−x‖2W− 1

pikγik
|xkik −xik |

2. (B.1)

Thus, taking the conditional expectation we have

E[‖xk+1 − x‖2W | i0, . . . , ik−1] = ‖x̄k+1 − x‖2Γ−1 + ‖xk − x‖2W − ‖xk − x‖2Γ−1 (B.2)

and (3.3) follows. The second equation follows from (3.3), by choosing x = x
k.

Proof of Proposition 3.3. Let k ∈ N. We have from the descent lemma along the ik-th block-

coordinate,

F (xk+1) ≤ f(xk) + 〈∇ikf(x
k), x̄k+1

ik
− xkik〉+

Lik
2

|x̄k+1
ik

− xkik |
2 +

n∑

i=1

gi(x
k+1
i)

= f(xk) + 〈∇ikf(x
k), x̄k+1

ik
− xkik〉+

Lik
2

|x̄k+1
ik

− xkik |
2 +

(

gik(x
k+1
ik

) +

n∑

i 6=ik
gi(x

k
i)
)

= f(xk) + 〈∇ikf(x
k), x̄k+1

ik
− xkik〉+

Lik
2

|x̄k+1
ik

− xkik |
2

+
(

gik(x
k+1
ik

)− gik(x
k
ik
) + g(xk)

)

= F (xk) + 〈∇ikf(x
k), x̄k+1

ik
− xkik〉+

Lik
2

|x̄k+1
ik

− xkik |
2 +

(

gik(x̄
k+1
ik

)− gik(x
k
ik
)
)

= F (xk) + 〈∇ikf(x
k)−∇ikf(x̂

k), x̄k+1
ik

− xkik〉+
Lik
2

|x̄k+1
ik

− xkik |
2

+
(

〈∇ikf(x̂
k), x̄k+1

ik
− xkik〉+ gik(x̄

k+1
ik

)− gik(x
k
ik
)
)

.

From (2.5), we can write that

F (xk+1) ≤ F (xk) + 〈∇ikf(x
k)−∇ikf(x̂

k), x̄k+1
ik

− xkik〉 −
(

1

γik
− Lik

2

)

|x̄k+1
ik

− xkik |
2 (B.3)

By taking the conditional expectation, it follows:

E
[
F (xk+1)

∣
∣ i0, . . . , ik−1

]

≤ F (xk) + E
[
〈∇ikf(x

k)−∇ikf(x̂
k), x̄k+1

ik
− xkik〉

∣
∣ i0, . . . , ik−1

]

−
m∑

i=0

pi

(1

γi
− Li

2

)

|x̄k+1
i − xki |2

= F (xk) +

m∑

i=0

pi〈∇if(x
k)−∇if(x̂

k), x̄k+1
i − xki 〉

−
m∑

i=0

pi

(1

γi
− Li

2

)

|x̄k+1
i − xki |2

23

= F (xk) + 〈∇f(xk)−∇f(x̂k), x̄k+1 − x
k〉V

−
m∑

i=0

pi

(1

γi
− Li

2

)

|x̄k+1
i − xki |2. (B.4)

From Lemma 3.4, we have

〈∇f(xk)−∇f(x̂k), x̄k+1 − xk〉V

≤ τLV
res

√
pmax

m∑

i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣
∣ i0, . . . , ik−1

]
,

with αk =
LV
res

2
√
pmax

k−1∑

h=k−τ
(h− (k − τ) + 1)‖xh+1 − x

h‖2V. We then plug this result in (B.4) obtaining

m∑

i=0

pi

(1

γi
− Li

2

)

|x̄k+1
i − xki |2 ≤ F (xk) + αk + τLV

res

√
pmax

m∑

i=0

pi|x̄ik+1 − xki |2

− E
[
F (xk+1) + αk+1

∣
∣ i0, . . . , ik−1

]
.

Hence
m∑

i=0

pi

(
1

γi
− Li

2
− τLV

res

√
pmax

)

|x̄k+1
i − xki |2 ≤ F (xk) + αk − E

[
F (xk+1) + αk+1

∣
∣ i0, . . . , ik−1

]
.

Since δ < 2, recalling (3.1), we have, for all i ∈ [m],
(

1

γi
− Li

2
− τLV

res

√
pmax

)

=
1

2γi
(2− Liγi − 2γiτL

V
res

√
pmax) ≥

1

2γi
(2− δ) > 0.

Therefore the statement follows.

Proof of Proposition 3.6. Let k ∈ N and x ∈ H. Since 〈∇f(x̂k), x − x
k〉 = 〈∇Γ−1

f(x̂k), x − x
k〉Γ−1

and x̄
k+1 = proxΓ

−1

g

(
x
k −∇Γ−1

f(x̂k)
)
, we derive from Lemma 2.8 above written in weighted norm

that

〈xk − x̄
k+1, x− x

k〉Γ−1 ≤ g(x)− g(xk) + 〈∇f(x̂k), x − x
k〉

+ g(xk)− g(x̄k+1) + 〈∇f(x̂k),xk − x̄
k+1〉

− ‖xk − x̄
k+1‖2Γ−1 . (B.5)

From Lemma 2.7, we have

〈∇f(x̂k), x − x
k〉 ≤ f(x)− f(xk) +

τLres

2

∑

h∈J(k)
‖xh − x

h+1‖2.

So (B.5) becomes

〈xk − x̄
k+1, x− x

k〉Γ−1 ≤ F (x)− F (xk) +
τLres

2

∑

h∈J(k)
‖xh − x

h+1‖2

+ g(xk)− g(x̄k+1) + 〈∇f(x̂k),xk − x̄
k+1〉

− ‖xk − x̄
k+1‖2Γ−1 . (B.6)

24

Next, recalling that xk and xk+1 differs only in the ik-th component, we have

g(xk)− g(x̄k+1) + 〈∇f(x̂k),xk − x̄
k+1〉

= E

[
m∑

i=1

1

pi

(
gi(x

k
i)− gi(x

k+1
i) + 〈∇if(x̂

k), xki − xk+1
i 〉

)
| i0, . . . , ik−1

]

Moreover,

m∑

i=1

1

pi

(
gi(x

k
i)− gi(x

k+1
i) + 〈∇if(x̂

k), xki − xk+1
i 〉

)

=
1

pmin

(
g(xk)− g(xk+1) + 〈∇f(x̂k),xk − x

k+1〉
)

−
m∑

i=1

(
1

pmin
− 1

pi
︸ ︷︷ ︸

≥0

)
(
gi(x

k
i)− gi(x

k+1
i) + 〈∇if(x̂

k), xki − xk+1
i 〉

)

≤ 1

pmin

(
g(xk)− g(xk+1) + 〈∇f(x̂k),xk − x

k+1〉
)

−
(

1

pmin
− 1

pik

)
1

γik
|∆k

ik
|2

where in the last inequality we used that

−
(

gik(x
k
ik
)− gik(x

k+1
ik

) + 〈∇ikf(x̂
k), xkik − xk+1

ik
〉
)

≤ − 1

γik
|∆k

ik
|2,

which was derived from (2.5). So

g(xk)− g(x̄k+1) + 〈∇f(x̂k),xk − x̄
k+1〉

≤ 1

pmin
E
[
g(xk)− g(xk+1) + 〈∇f(x̂k),xk − x

k+1〉
∣
∣ i0, . . . , ik−1

]

− 1

pmin

m∑

i=1

pi

γi
|∆k

i |2 + ‖xk − x
k+1‖2Γ−1 .

Now, by Lemma 3.4 and the block-coordinate descent lemma (2.6), we have

E[〈∇f(x̂k),xk − x
k+1〉 | i0, . . . , ik−1]

≤ E
[
〈∇f(x̂k)−∇f(xk),xk − x

k+1〉
∣
∣ i0, . . . , ik−1

]
+ E

[
〈∇f(xk),xk − x

k+1〉
∣
∣ i0, . . . , ik−1

]

= 〈∇f(x̂k)−∇f(xk),xk − x̄
k+1〉V + E[〈∇f(xk),xk − x

k+1〉 | i0, . . . , ik−1]

≤ τLV
res

√
pmax

m∑

i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣
∣ i0, . . . , ik−1

]

+ E
[

f(xk)− f(xk+1) +
Lik
2

|∆k
ik
|2
∣
∣
∣ i0, . . . , ik−1

]

,

25

where αk = LV
res/(2

√
pmax)

∑k−1
h=k−τ (h− (k − τ) + 1)‖xh+1 − x

h‖2V for all k ∈ N. Therefore

g(xk)− g(x̄k+1) + 〈∇f(x̂k),xk − x̄
k+1〉

≤ 1

pmin
E[F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1]

+
1

pmin

m∑

i=1

pi

(
Li
2

+ τLV
res

√
pmax −

1

γi

)

|∆k
i |2 + ‖xk − x̄

k+1‖2Γ−1 . (B.7)

Since γiLi + 2γiτL
V
res

√
pmax ≤ δ < 2, we have

Li
2

+ τLV
res

√
pmax −

1

γi
=

1

2γi
(γiLi + 2γiτL

V
res

√
pmax − 2) < 0,

and hence (B.7) yields

g(xk)− g(x̄k+1) + 〈∇f(x̂k),xk − x̄
k+1〉

≤ 1

pmin
E[F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1]

+
δ − 2

2

m∑

i=1

1

γi
|∆k

i |2 + ‖xk − x̄
k+1‖2Γ−1 .

The statement follows from (B.6).

Proof of Proposition 3.7. We know that

‖xk − x‖2Γ−1 − ‖x̄k+1 − x‖2Γ−1 = −‖xk − x̄
k+1‖2Γ−1 + 2〈xk − x̄

k+1,xk − x〉Γ−1 .

We derive from Proposition 3.6, multiplied by 2, that

‖x̄k+1 − x‖2Γ−1 ≤ ‖xk − x‖2Γ−1

+
2

pmin
E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]

+ 2(F (x)− F (xk)) + τLres

∑

h∈J(k)
‖xh − x

h+1‖2

(δ − 1)‖xk − x̄
k+1‖2Γ−1 . (B.8)

where αk = LV
res/(2

√
pmax)

∑k−1
h=k−τ (h− (k − τ) + 1)‖xh+1 − x

h‖2V. It follows from Lemma 3.5 that

E
[
‖xk+1 − x‖2W | i0, . . . , ik−1

]

≤ ‖xk − x‖2W
+ (δ − 1)‖xk − x̄

k+1‖2Γ−1

+
2

pmin
E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]

+ 2(F (x)− F (xk)) + τLres

∑

h∈J(k)
‖xh − x

h+1‖2. (B.9)

26

Plugging (3.2) in (B.9) the statement follows.

Proof of Proposition 3.8. Let k ∈ N and x ∈ H. From Proposition 3.7, we have

E
[
‖xk+1 − x‖2W | i0, . . . , ik−1

]

≤ ‖xk − x‖2W

+
2

pmin

(
(δ − 1)+
2− δ

+ 1

)

E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]

+ τLres

∑

h∈J(k)
‖xh − x

h+1‖2

+ 2(F (x)− E
[
F (xk+1) + αk+1 | i0, . . . , ik−1

]
).

− 2(E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]
) + 2αk

Set for all k ∈ N,

ξk = 2

(
max{1, (2 − δ)−1}

pmin
− 1

)

E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]

+ τLres

∑

h∈J(k)
‖xh − x

h+1‖2 + 2αk.

Now, on the one hand, recalling (B.14), (3.2) and Lemma 3.5, we have

E

[
∑

k∈N

∑

h∈J(k)
‖xh − x

h+1‖2
]

≤ τγmaxpmax

∑

k∈N
E[‖xk − x

k+1‖2W]

≤ 2τγmaxpmax

(2 − δ)pmin

∑

k∈N

(
E[F (xk) + αk]− E[F (xk+1)− αk+1]

)

≤ 2τγmaxpmax

(2 − δ)pmin
(F (x0) + α0 − F ∗) < +∞

Recalling the definition of αk in Proposition 3.6 and of LV
res in Remark 2.6, this also yields

E

[
∑

k∈N
αk

]

≤ τLV
res

2
√
pmax

E

[
∑

k∈N

k−1∑

h=k−τ
‖xh − x

h+1‖2V
]

≤ τLV
respmax

2
√
pmax

E

[
∑

k∈N

k−1∑

h=k−τ
‖xh − x

h+1‖2
]

≤ τLresp
2
max√

pmin

τγmax

(2− δ)pmin
(F (x0) + α0 − F ∗).

On the other hand, setting ηk = F (xk) + αk − E
[
F (xk+1) − αk+1 | i0, . . . , ik−1

]
, which in virtue of

(3.2) is positive P-a.s., we have

E

[
∑

k∈N
ηk

]

=
∑

k∈N
E[ηk] = sup

n∈N

n∑

k=0

E[F (xk) +αk]− E[F (xk+1)−αk+1] ≤ F (x0) +α0 − F ∗ < +∞.

27

Let C =
max

{
1, (2 − δ)−1

}

pmin
− 1 + τ2

Lresγmaxpmax

pmin(2− δ)

(

1 +
pmax√
pmin

)

. We then get

∑

k∈N
E[ξk] ≤ 2C(F (x0)− F ∗).

We remark that (∀ i ∈ [m]) γi(Li + 2τLrespmax/
√
pmin) < 2. So γiτLres <

2−γiLi

2

√
pmin

pmax
. This implies

τγmaxLres <
2−γmaxLi0

2

√
pmin

pmax
, where i0 ∈ [m] such that γi0 = γmax. Thus

τγmaxLres <
2− γmaxLmin

2

√
pmin

pmax
. (B.10)

Using this in C, we get

C ≤ max
{
1, (2 − δ)−1

}

pmin
− 1 + τ

2− γmaxLmin

2
√
pmin(2− δ)

(

1 +
pmax√
pmin

)

≤ max
{
1, (2 − δ)−1

}

pmin
− 1 + τ

1√
pmin(2− δ)

(

1 +
pmax√
pmin

)

.

The statement follows.

Proof of Proposition 3.9. It follows from (3.2) that

(2− δ)
pmin

2
E
[
‖x̄k+1 − x

k‖2Γ−1

]
≤ E

[
F (xk) + αk

]
− E

[
F (xk+1) + αk+1

]
.

This means that
(
E[F (xk) + αk]

)

k∈N is a nonincreasing sequence and

(2− δ)
pmin

2
E

[
∑

k∈N
‖x̄k+1 − x

k‖2Γ−1

]

= (2− δ)
pmin

2
sup
k∈N

k∑

h=0

E
[
‖x̄h+1 − x

h‖2Γ−1

]

≤ sup
k∈N

E
[
F (x0) + α0

]
− E

[
F (xk+1) + αk+1

]

≤ F (x0) + α0 − F ∗ < +∞.

Therefore, since ‖·‖2 ≤ (maxi γi)‖·‖2Γ−1 , we derive that

∑

k∈N
‖x̄k+1 − x

k‖2 <∞ P-a.s. (B.11)

So, it follows that

‖x̄k+1 − x
k‖ → 0 P-a.s, (B.12)

and, since ‖xk+1 − x
k‖ ≤ ‖x̄k+1 − x

k‖ for all k ∈ N, we have also

∑

k∈N
‖xk+1 − x

k‖2 <∞ and ‖xk+1 − x
k‖ → 0 P-a.s. (B.13)

28

Now, by Lemma 2.4, we have ‖x̂k − x
k‖2 ≤ τ

∑

h∈J(k)‖xh − x
h+1‖2 and, moreover,

∑

k∈N

∑

h∈J(k)
‖xh − x

h+1‖2 ≤
∑

k∈N
τ‖xk − x

k+1‖2 <∞ P-a.s., (B.14)

so that

‖x̄k+1 − x̂
k‖ ≤ ‖x̄k+1 − x

k‖+ ‖xk − x̂
k‖ → 0 P-a.s. (B.15)

Define, for all i ∈ [m],

vki = ∇if(x̄
k+1)−∇if(x̂

k) +
∆ki
γi
. (B.16)

Then, thanks to the second equation in (2.4), we have

v
k = (vk1 , · · · , vkm) ∈ ∇f(x̄k+1) + ∂g(x̄k+1) = ∂ (f + g) (x̄k+1). (B.17)

Moreover, since ∇f is Lipschitz continuous, definition (B.16) and equations (B.12), (B.15) yield

v
k → 0 P-a.s.

29

References

[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization, 2011.

[2] H. Avron, A. Druinsky, and A. Gupta. Revisiting asynchronous linear solvers: Provable conver-

gence rate through randomization. Journal of the ACM (JACM), 62(6):1–27, 2015.

[3] K. Bäckström, M. Papatriantafilou, and P. Tsigas. Mindthestep-asyncpsgd: Adaptive asyn-

chronous parallel stochastic gradient descent. CoRR, abs/1911.03444, 2019.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[5] A. Belloni, V. Chernozhukov, and L. Wang. Pivotal estimation via square-root Lasso in nonpara-

metric regression. The Annals of Statistics, 42(2):757 – 788, 2014.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical methods,

volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[7] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity of

first-order descent methods for convex functions. Mathematical Programming, 165(2):471–507,

2017.

[8] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari. Asynchronous parallel algorithms for

nonconvex optimization. Mathematical Programming, pages 1–34, 2019.

[9] D. Chazan and W. Miranker. Chaotic relaxation. Linear algebra and its applications, 2(2):199–

222, 1969.

[10] S. Chen, A. Garcia, and S. Shahrampour. On distributed non-convex optimization: Projected

subgradient method for weakly convex problems in networks. IEEE Transactions on Automatic

Control, page 1–1, 2021.

[11] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM

review, 43(1):129–159, 2001.

[12] P. L. Combettes and J. Eckstein. Asynchronous block-iterative primal-dual decomposition meth-

ods for monotone inclusions. Mathematical Programming, 168(1):645–672, 2018.

[13] P. L. Combettes and J.-C. Pesquet. Stochastic quasi-Fejér block-coordinate fixed point iterations

with random sweeping. SIAM Journal on Optimization, 25(2):1221–1248, 2015.

[14] P. L. Combettes and V. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale

Modeling & Simulation, 4(4):1168—-1200, 2005.

[15] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Mul-

tiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[16] D. Davis. The asynchronous palm algorithm for nonsmooth nonconvex problems. arXiv preprint

arXiv:1604.00526, 2016.

[17] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306,

2006.

30

[18] D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence of

proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

[19] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. An asynchronous mini-batch algorithm

for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61(12):3740–

3754, 2016.

[20] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models

via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[21] W. J. Fu. Penalized regressions: the bridge versus the lasso. Journal of computational and

graphical statistics, 7(3):397–416, 1998.

[22] R. Hannah and W. Yin. On unbounded delays in asynchronous parallel fixed-point algorithms.

Journal of Scientific Computing, 76(1):299–326, 2018.

[23] D. Hunter and K. Lange. A tutorial on mm algorithms. Amer. Stat., 58(5):30–37, 2004.

[24] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method for large-

scale ℓ_1-regularized least squares. IEEE journal of selected topics in signal processing, 1(4):606–

617, 2007.

[25] R. Kress. Ill-conditioned linear systems. In Numerical Analysis, pages 77–92. Springer, 1998.

[26] C.-P. Lee and S. Wright. First-order algorithms converge faster than o(1/k) on convex problems.

In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference

on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3754–3762.

PMLR, 09–15 Jun 2019.

[27] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex

optimization. Advances in Neural Information Processing Systems, 28:2737–2745, 2015.

[28] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu. A comprehensive linear speedup analysis

for asynchronous stochastic parallel optimization from zeroth-order to first-order. arXiv preprint

arXiv:1606.00498, 2016.

[29] J. Liu, S. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic coordinate

descent algorithm. In International Conference on Machine Learning, pages 469–477. PMLR,

2014.

[30] J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent: Parallelism and conver-

gence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

[31] J. Liu, S. J. Wright, and S. Sridhar. An asynchronous parallel randomized kaczmarz algorithm.

arXiv preprint arXiv:1401.4780, 2014.

[32] Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods: a

general approach. Annals of Operations Research, 46(1):157–178, 1993.

[33] V. Mai and M. Johansson. Convergence of a stochastic gradient method with momentum for

non-smooth non-convex optimization. In International Conference on Machine Learning, pages

6630–6639. PMLR, 2020.

31

[34] S. Marcellin and L. Thibault. Evolution problems associated with primal lower nice functions.

Journal of convex Analysis, 13(2):385, 2006.

[35] A. Nedić, D. P. Bertsekas, and V. S. Borkar. Distributed asynchronous incremental subgradient

methods. Studies in Computational Mathematics, 8(C):381–407, 2001.

[36] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer

Science & Business Media, 2003.

[37] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,

140(1):125–161, 2013.

[38] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing

stochastic gradient descent. arXiv preprint arXiv:1106.5730, 2011.

[39] T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang. Gpu asynchronous stochastic gradient descent

to speed up neural network training. arXiv preprint arXiv:1312.6186, 2013.

[40] Z. Peng, Y. Xu, M. Yan, and W. Yin. Arock: an algorithmic framework for asynchronous parallel

coordinate updates. SIAM Journal on Scientific Computing, 38(5):A2851–A2879, 2016.

[41] S. Salzo and S. Villa. Parallel random block-coordinate forward–backward algorithm: a unified

convergence analysis. Mathematical Programming, pages 1–45, 2021.

[42] S. Salzo and S. Villa. Proximal gradient methods for machine learning and imaging. In F. D.

Mari and E. D. Vito, editors, Harmonic and Applied Analysis: from Radon transforms to machine

learning. Springer International Publishing, Cham, 2022.

[43] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algo-

rithms. Cambridge University Press, 2014.

[44] T. Sun, R. Hannah, and W. Yin. Asynchronous coordinate descent under more realistic assump-

tions. arXiv preprint arXiv:1705.08494, 2017.

[45] T. Sun and C.-H. Zhang. Sparse matrix inversion with scaled lasso. The Journal of Machine

Learning Research, 14(1):3385–3418, 2013.

[46] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58(1):267–288, 1996.

[47] J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise.

IEEE transactions on information theory, 52(3):1030–1051, 2006.

[48] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimiza-

tion. Journal of optimization theory and applications, 109(3):475–494, 2001.

[49] P. Tseng. Approximation accuracy, gradient methods, and error bound for structured convex

optimization. Mathematical Programming, 125(2):263–295, 2010.

[50] K. Um, R. Brand, P. Holl, N. Thuerey, et al. Solver-in-the-loop: Learning from differentiable

physics to interact with iterative pde-solvers. arXiv preprint arXiv:2007.00016, 2020.

32

	1 Introduction
	1.1 Asynchronous models
	1.2 Related work
	1.3 Contributions
	1.4 Notation

	2 Preliminaries
	2.1 Auxiliary lemmas

	3 Convergence analysis
	4 Linear convergence under error bound condition
	5 Applications
	5.1 The Lasso problem
	5.2 Linear convergence of dual proximal gradient method
	5.2.1 Example: Ridge regression

	A Proofs of the auxiliary Lemmas in Section 2
	B Proofs of Section 3

