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Abstract 9 

In the recent CASP (Critical Assessment of Structure Prediction) competition, 10 

AlphaFold2 performed outstandingly. Its worst predictions were for NMR structures, 11 

which has two alternative explanations: either the NMR structures were poor, implying 12 

that AlphaFold may be more accurate than NMR; or there is a genuine difference 13 

between crystal and solution structures. Here, we use the program ANSURR, which 14 

measures the accuracy of solution structures, and show that one of the NMR 15 

structures was indeed poor. We then compare AlphaFold predictions to NMR 16 

structures, and show that AlphaFold tends to be more accurate than NMR ensembles, 17 

in particular correctly more rigid in loops. There are however some cases where the 18 

NMR ensembles are more accurate. These tend to be dynamic structures where 19 

AlphaFold had low confidence. We suggest that AlphaFold could be used as the model 20 

for NMR structure refinements, and that AlphaFold structures validated by ANSURR 21 

require no further refinement. 22 

 23 

Introduction 24 

 25 

In November 2020 the results of the 14th Critical Assessment of Structure Prediction 26 

competition (CASP14) revealed that AlphaFold2 (AF2), an AI developed by 27 

DeepMind1, performed significantly better than all other methods2,3. Impressively, the 28 

majority of predictions obtained a GDT_TS (Global Distance Test Total Score) score 29 

above 80, with a median value of 92.4, where perfect agreement would be 100. Only 30 

5 of the 93 AF2 predictions had a GDT_TS score below 70. Three of these were chains 31 

from complexes and two were solved using nuclear magnetic resonance (NMR). 32 

Reduced performance for the former was to be expected as AF2 was not designed to 33 

predict structural changes that occur from complex formation. Why AF2 did less well 34 

for the NMR structures is less obvious. Most NMR structures are small single-chain 35 

proteins - a type of structure that should be relatively easy to predict. A possible 36 

explanation is that NMR structures are generally of poor quality, implying that AF2 37 

predictions may be more reliable than NMR structures.  However, a diametrically 38 

opposite explanation is that AF2 is less reliable for predicting NMR structures because 39 

it was trained using crystal structures, the assumption being that NMR structures are 40 

different from crystal structures because they are obtained in solution at close to body 41 

temperature, not in a crystal and (usually) at low temperature4. 42 

 This raises several important questions: How good is AF2 at predicting solution 43 

structures? Is it worth trying to determine NMR solution structures if AF2 structures 44 

are as good or better? Are solution structures genuinely different from crystal or AF2 45 

structures? Are NMR structures of good enough quality and reliability to be used as 46 

models for the “true” solution structure, and if so, how? This paper aims to provide 47 

answers to these questions. 48 

 A fundamental problem dating back to the first NMR protein structure5 is that 49 

there is no reliable way to tell if an NMR structure is correct, ie close to the “true” 50 
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solution average. The de facto method for validating an NMR structure is to compare 51 

it to a crystal structure. Surveys carried out based on such comparisons have shown 52 

that NMR structures are similar to crystal structures, but in general less well defined 53 

(less precise) and also less accurate6,7. However, if there are genuine differences 54 

between crystal structures and solution structures (for example due to increased 55 

flexibility in solution and at higher temperatures), then such comparisons will be 56 

misleading. We recently developed a method ANSURR, Accuracy of NMR Structures 57 

Using RCI and Rigidity, which calculates the local rigidity of a protein structure8, and 58 

compares it to the local rigidity as measured using a version of the Random Coil Index9 59 

based on backbone NMR chemical shifts10,11. The method has been tested on a wide 60 

range of structures and provides a reliable guide to accuracy. We have therefore 61 

applied ANSURR to answer the questions posed above.   62 

The paper is structured as follows. Firstly, we compare the accuracy of three 63 

NMR targets and the corresponding predicted structures from the CASP14 64 

competition, with consideration of both global and local aspects of accuracy. Next, we 65 

expand our study to compare 904 structures of human proteins from the AlphaFold 66 

Protein Structure Database12 with NMR structures from the Protein Data Bank (PDB), 67 

highlighting instances where NMR structures are significantly more accurate than AF2 68 

models and vice versa. Finally, we investigate the relationship between the estimated 69 

accuracy of AF2 models (as predicted by AF2 alongside a structure) with the accuracy 70 

determined by ANSURR.  71 

 72 

 73 

Results 74 

 75 

The accuracy of target NMR structures and predicted structures from CASP14. 76 

ANSURR works by computing two measures of protein flexibility; one obtained from 77 

backbone chemical shifts and the other from a structure using the mathematical theory 78 

of rigidity. The two measures are compared by computing the rank Spearman 79 

correlation coefficient and root-mean-squared deviation (RMSD) between them. The 80 

percentile of each value relative to those for all NMR structures in the PDB is used to 81 

obtain two scores, termed correlation score and RMSD score, respectively. These 82 

scores can be visualised on a single plot so that the best scoring structures (with good 83 

correlation and RMSD scores) appear in the top right-hand corner of the plot and the 84 

worst scoring appear in the lower left-hand corner (with poor correlation and RMSD 85 

scores). CASP14 had three NMR ensembles that were used as targets. These are 86 

shown in Figure 1, using either all the structures in the predicted or experimental 87 

ensemble (Fig 1a), or the scores averaged across all members of the ensemble (Fig 88 

1b). ANSURR scores for all NMR and AF2 models are provided in supplementary 89 

information. One of these (T1055) had AF2 CASP14 predictions that were close to the 90 

NMR target structures. However, the other AF2 predictions were very different, with 91 

one being worse than the NMR target (T1027), and one being significantly better 92 

(T1029). These two structures are now examined in more detail.   93 
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 94 
 95 

Figure 1. ANSURR scores for the three CASP14 NMR targets. Results for (a) all 96 

models and (b) ensemble averages are shown. NMR structures are in orange, AF2 97 

models in blue, and all other predictions in grey. The green points shown for T1029 98 

are scores for an NMR ensemble that was recalculated after the CASP14 results were 99 

released, and are discussed below. The NMR structure for T1055 (PDB 6zyc) has 20 100 

models and the NMR structure for T1027 (PDB 7d2o) has 19 models. The original 101 

NMR structure for T1029 (PDB 6uf2) has 10 models and the recalculated structure 102 

(PDB 7n82) has 20 models. Each group competing in CASP14 could provide up to 5 103 

predictions. 104 

 105 

Target T1027 106 

For target T1027, the target NMR ensemble is more accurate than all predicted 107 

structures. However, the AF2 models are the best scoring of the predicted structures, 108 

with one model approaching the accuracy of the NMR ensemble. Thus far, it is a fairly 109 

unremarkable result. However, interesting lessons can be learnt by a more detailed 110 

analysis, particularly of the ill-defined regions. 111 

 The CASP14 assessment for T1027 was limited to residues with well-defined 112 

atomic positions across all 19 models in the NMR ensemble. In total, four regions were 113 

considered ill-defined and therefore excluded (Figure 2). This is also standard practice 114 

for many NMR protein structure validation programs, which typically only consider 115 

well-defined regions identified by the program CYRANGE13. ANSURR validation is 116 

different in that it requires consideration of the entire protein structure, as excluding 117 

residues will lead to nearby regions becoming artificially too flexible. 118 
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The second ill-defined region (Figure 2, residues 20-33) is particularly 119 

interesting. The authors of the NMR structure used 15N relaxation dispersion and 1H-120 
15N heteronuclear NOE data to show that this region is dynamic, and suggested it is 121 

intrinsically disordered. However, ANSURR shows it is much less flexible than the 122 

other three ill-defined regions and therefore although it is dynamic, it is not intrinsically 123 

disordered. There is also a noticeable reduction in flexibility in the center of this region. 124 

Both of these features are reflected in the computed flexibility of the NMR structure, 125 

but not in the AF2 structure. The NMR structure has a short -helix in this region that 126 

acts to reduce the flexibility of the surrounding area, whereas this region is completely 127 

disordered in the AF2 structure (SI Figure 1a,b). Our ANSURR analysis suggests this 128 

region is flexible, in agreement with dynamic NMR measurements, but is not 129 

intrinsically disordered. ANSURR thus suggests that the helical structure is present in 130 

solution, for the majority of the time. 131 

Chemical shifts suggest the third ill-defined region (residues 82-94) is highly 132 

disordered. There is a small reduction in flexibility between residues 86-89. This region 133 

is completely disordered in the NMR ensemble. The slight reduction in computed 134 

flexibility in this region for model 11 (shown in Fig 2a) originates from two weak 135 

hydrogen bonds, but is not observed for any of the other models from the ensemble. 136 

In contrast, the AF2 models comprise a loose -sheet-like structure linked by a 137 

moderately rigid turn (SI Figure 1c,d). The position of the turn corresponds to the 138 

reduction in flexibility between residues 86-89 according to chemical shifts, but is more 139 

rigid. The same -sheet-like structure is present in all five AF2 models but with variable 140 

orientation relative to the rest of the protein, perhaps indicative of dynamics. It is likely 141 

that the truth lies somewhere in between the slightly too flexible NMR structure and 142 

slightly too rigid AF2 structure. That is to say, this region in solution is dynamic and 143 

likely transitions between disorder (the NMR structure) and a loose -sheet-like 144 

conformation (the AF2 model).  145 

In the fourth ill-defined region (residues 144-168), the AF2 model contains an 146 

-helix that is not present in the NMR structure. ANSURR shows this region is highly 147 

flexible and so does not support the existence of the helix. However, 15N relaxation 148 

dispersion and 1H-15N heteronuclear NOE data suggest this region could potentially 149 

transiently adopt secondary structure14. Given that chemical shifts represent a 150 

population-weighted average, it seems an -helix in this position would not comprise 151 

the dominant conformation in solution, as suggested previously4. 152 

Overall, our analysis suggests that for T1027 the experimental NMR structure 153 

is globally more accurate than the AF2 structure. However, the picture is less clear 154 

looking at the local detail. One reason for this could be that this protein is particularly 155 

dynamic and not well described by a single structure. Our ANSURR analysis also 156 

highlights the importance of validating ill-defined regions in NMR structures. Such 157 

regions can adopt a wide range of partially ordered structures. 158 

 159 
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 160 
 161 

Figure 2. ANSURR analysis of T1027. Blue lines show the rigidity as measured by 162 

RCI based on backbone chemical shifts (BMRB 36288); orange lines show the rigidity 163 

(a) of the best scoring NMR structure (model 11 from the ensemble), and (b) of the 164 

best scoring AF2 model (model 3). Red bars at the top of each figure denote -helical 165 

structure as assessed from the structure using DSSP, and blue bars denote -sheet. 166 

Regions characterised as ill-defined by CYRANGE are indicated in grey. 167 

 168 

Target T1029 169 

The highest scoring CASP14 prediction for T1029 had a GDT_TS of only 45, 170 

suggesting that it and all other predicted structures were highly inaccurate. However, 171 

our ANSURR analysis reveals that the target NMR structure is actually much less 172 

accurate than many of the predicted structures. In fact, 51% of the predicted structures 173 

have better ANSURR scores than the best scoring NMR model. During the preparation 174 

of this paper, it was confirmed that the NMR structure is inaccurate4. The NOESY peak 175 

list used to generate the original NMR structure was found to be missing many peaks 176 

present in the NOESY spectra. The NOESY peaks were carefully re-picked and used 177 

to recalculate the structure. The AF2 predictions were then used to guide refinement - 178 

referred to as “inverse structure determination” by the authors. The resulting NMR 179 

structure is very similar to the AF2 structure and has much improved ANSURR scores 180 

(green points on Fig 1). Even so, the recalculated NMR structure remained slightly 181 

less accurate than the AF2 structure.  More details are presented in Supplementary 182 

Information. 183 

 184 

Comparison of all available human AF2 and NMR structures 185 

Our analysis of three examples from CASP14 suggests that structures 186 

predicted by AF2 can rival or even exceed the accuracy of NMR structures. To 187 

investigate this more broadly we extended our study to compare 904 human protein 188 

structures from the recently published AlphaFold Protein Structure Database12 with 189 

their NMR structure counterparts from the PDB. ANSURR was used to validate each 190 

AF2 structure and each model in the corresponding NMR ensembles. To simplify the 191 

analysis of a large number of structures, correlation and RMSD scores generated by 192 
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ANSURR were summed to obtain a single accuracy score, termed ANSURR score, as 193 

described previously11. Individual correlation and RMSD scores are provided in 194 

supplementary information. 195 

 196 

Figure 3a shows the difference in ANSURR score between the AF2 models and the 197 

models from the corresponding NMR ensembles. AF2 structures tend to be more 198 

accurate than NMR structures, with a mean difference in ANSURR score of 28. The 199 

ANSURR score is a ranked centile score on a range from 0 to 200: this difference 200 

therefore represents a significantly better performance for AF2 compared to NMR. We 201 

have previously shown11 that the accuracy of the different structures within the NMR 202 

ensemble varies widely. In Figure 3b, we therefore compare the AF2 prediction to the 203 

best scoring model from the NMR ensemble. The difference in ANSURR score is now 204 

only 2, indicating a very similar overall accuracy for the two methods, though with a 205 

wide spread.  206 

Fig 3c depicts the difference in ANSURR score between AF2 and NMR 207 

structures according to regular secondary structure content. We find the difference in 208 

accuracy is particularly apparent for β-sheet proteins (mean difference of 45) whereas 209 

the accuracy of α-helical proteins is closer (mean difference of 17).The difference for 210 

proteins with mixed secondary structure content falls in between (mean difference of 211 

29). These results make sense as α-helices have limited variation in local geometry 212 

and so hydrogen bonds (important for imparting rigidity) are relatively straightforward 213 

to obtain during refinement. In contrast, β-sheets can adopt a wider range of local 214 

geometries making it more challenging to correctly resolve hydrogen bonds. We have 215 

noted this effect before11, finding that NMR structures often lack hydrogen bonds in β-216 

sheets. 217 

For a new protein target, an AF2 structure can be generated by a non-expert 218 

within a few minutes, while an NMR structure generally takes months of specialist skills 219 

and equipment. A simplistic conclusion would therefore be that AF2 is quicker, cheaper 220 

and at least as accurate, and so should be the preferred method for generation of 221 

structural models. However, the reality is more nuanced, and we approached it by 222 

looking in more detail at instances where one method represents a significant 223 

improvement over the other.  224 

 225 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.18.476751doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.18.476751
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

 226 
 227 

 228 

 229 

Figure 3. Frequency distribution for the difference in ANSURR score between the AF2 230 

prediction and NMR structure, given as [AF2 score] – [NMR score] so that a positive 231 

difference indicates a better score for the AF2 prediction. Selection criteria are outlined 232 

in Methods. (a) Comparison of AF2 to the averaged ANSURR score for the NMR 233 

ensemble. Mean difference is 28. (b) Comparison of AF2 to the single best NMR 234 

structure in the ensemble (ie, the NMR structure with the best ANSURR score). Mean 235 

difference is 2. (c) Breakdown of the data in (a) by protein secondary structure 236 

classification as determined by DSSP, using proteins classified as -helical, -sheet 237 

or mixed /. 238 

 239 

Examples where AlphaFold structures are significantly more accurate than 240 

NMR structures 241 

To understand why AF2 structures tend to be more accurate than NMR 242 

structures, we looked more closely at the AF2 structures that had ANSURR scores at 243 

least 50 greater than those of the NMR structures. There were 282 such structures 244 

(31% of the 904). The increased accuracy largely stemmed from AF2 models having 245 

more extensive hydrogen bond networks than NMR structures, which results in them 246 

being more rigid overall, giving them a higher ANSURR RMSD score. We have noted 247 

previously11 that NMR structures tend to be too floppy, and that increasing the rigidity 248 

of the NMR structure by addition of hydrogen bonds generally improves its ANSURR 249 

score. The locations of the hydrogen bonds do of course have to be correct, and AF2 250 

provides accurate predictions of hydrogen bond locations1. Figure 4 provides two 251 

examples. 252 
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Figures 4a and 4b depict the ANSURR output for the 20th Filamin domain from 253 

human Filamin-B, a fairly rigid protein, while Figures 4c and 4d depict ANSURR output 254 

for a much more flexible zinc finger domain. For both proteins, the AF2 structure has 255 

greater rigidity, and matches better to the rigidity determined from experimental 256 

chemical shifts. For the Filamin domain (Figs 4a and b) the additional hydrogen bonds 257 

mainly define and extend the -sheet regions better (and more correctly). The zinc 258 

finger (Figs 4c and d) has a large flexible loop between residues 16-30 which is 259 

completely lacking any backbone hydrogen bonds in the NMR structure. However, the 260 

AF2 structure contains six backbone hydrogen bonds in this region, so that the loop 261 

adopts a loose -sheet-like conformation. These hydrogen bonds act to reduce the 262 

overall flexibility, and more specifically in a way that leads to better agreement with the 263 

flexibility obtained from chemical shifts, suggesting that they persist in solution. In 264 

summary, we suggest that the AF2 models tend to be better than NMR structures 265 

because they contain not just more hydrogen bonds but also correct hydrogen bonds 266 

that tend to persist in solution. 267 

 268 

 269 

  270 
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 271 

 272 

 273 
 274 

Figure 4. Representative ANSURR output for two proteins where the AF2 model is 275 

more accurate than the NMR structure. Each panel shows the rigidity from chemical 276 

shifts in blue, and the structure rigidity in orange. The colored bars at the top of each 277 

plot indicate regions of regular secondary structure: α-helix (red) and β-sheet (blue). 278 

The structures are shown beside each plot in cartoon representation, with backbone 279 

hydrogen bonds depicted as grey lines. (a) and (b): 20th Filamin domain from human 280 

Filamin-B. (a) is the NMR structure (PDB ID 2dlg, model 19) and (b) is the AF2 model 281 

(UniProt O75369). (c) and (d): the zinc finger BED domain of the zinc finger BED 282 

domain containing protein 1. (c) is the NMR structure (PDB ID 2ct5, model 3) and (d) 283 

is the AF2 model (UniProt O96006). 284 

 285 

 286 

Examples where NMR structures are significantly more accurate than 287 

AlphaFold structures 288 
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There were only 25 instances (3% of the 904) where NMR structures had an 289 

ANSURR score at least 50 greater than the AF2 structure. From the ANSURR output 290 

and inspection of the structures we find that there are three main reasons as to why.  291 

First, in some cases better ANSURR scores were achieved due to differences 292 

in terminal regions that likely result from NMR measurements being performed on 293 

constructs representing only part of an entire protein e.g. a single domain. The models 294 

in the AlphaFold Protein Structure Database cover the entire sequence associated 295 

with a particular UniProt accession number whereas many NMR structures only 296 

represent some portion. As a result, terminal regions in NMR structures are likely to 297 

be more disordered/flexible than they would be as part of a larger construct, which 298 

could explain differences between NMR and AF2 structures at the C-terminal end of 299 

Figs 5a,b. An example outlining this in more detail is included in SI Figure 5. It should 300 

be noted that because we use the chemical shifts associated with an NMR structure, 301 

we are biased towards favouring NMR structures. This makes the high ANSURR 302 

scores obtained by the AF2 structures even more impressive.  303 

Second, some AF2 models are missing the correct regular secondary structure. 304 

An example is shown in Figs 5a,b, where the NMR structure has a short β-sheet region 305 

which is missing in the AF2 structure. As a result, the AF2 structure is much too flexible 306 

between residues 732-738 and 763-771. We note that AF2 produces its own 307 

confidence score called per-residue local difference distance test (pLDDT). AF2 308 

correctly indicates confidence in this particular prediction as “low” with a mean pLDDT 309 

of 66 (out of a maximum of 100, SI Figure 6a).  310 

Third, some AF2 models have incorrect secondary structure. Figure 5c shows 311 

the NMR structure of a membrane-associated helix with a break that is reflected in 312 

both the flexibility determined from chemical shifts and the computed flexibility. In 313 

contrast, the AF2 structure does not have the break, clearly in violation of the NMR 314 

data. As before, AF2 correctly indicates “low confidence” in the prediction, with a mean 315 

pLDDT of 58 and particularly low confidence in the region that should contain the break 316 

(SI Figure 6b). We speculate that AF2 will struggle to predict breaks in helices as they 317 

are less commonly observed in crystal structures (because they are difficult to 318 

crystallise or because crystallisation stabilises unbroken helices) and are therefore 319 

under-represented in the AF2 training data. 320 
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 321 
 322 

Figure 5. Representative ANSURR output for two proteins where the NMR structure 323 

is better than the AF2 model. Color scheme as for Figure 4. The structures are shown 324 

beside each plot in cartoon representation, with backbone hydrogen bonds depicted 325 

as grey lines. (a) and (b): EF-hand domain of human polycystin 2. (a) is the NMR 326 

structure (PDB ID 2y4q, model 3) and (b) is the AF2 structure (UniProt Q13563). (c) 327 

and (d): transmembrane and juxtamembrane domains of epidermal growth factor 328 

receptor in DPC micelles. (c) is the NMR structure (PDB ID 2n5s, model 2), and (d) is 329 

the AF2 structure (UniProt P00533), 330 

 331 

 332 

Comparison of estimated per-residue pLDDT and ANSURR scores 333 

Figure 6 shows two examples where the AF2 structures are less accurate than 334 

NMR structures. In both cases, AF2 had correctly identified a low confidence in the 335 

predictions, via a low mean pLDDT. We therefore carried out an analysis to see 336 

whether mean pLDDT can be used as a measure of accuracy. Figure 6a shows that 337 

the AF2 models that have significantly better ANSURR score than the NMR structures 338 

(AF2 >> NMR) have a larger mean pLDDT, whereas the AF2 models that have 339 
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significantly worse ANSURR scores have a smaller mean pLDDT. However overall 340 

there is little correlation between pLDDT and ANSURR score (Fig 6b). In a paper 341 

accompanying the public release of AF2, it was demonstrated that regions with low 342 

pLDDT tend to be disordered, to the extent that pLDDT can be used as highly 343 

competitive disorder predictor15,16. Hence, AF2 may assign low confidence to a 344 

disordered region which ANSURR highlights as accurate because it correctly lacks 345 

structure (see Figure 4c,d as an example of how ANSURR can distinguish between 346 

regions of high flexibility and complete disorder).  347 

 348 

 349 

 350 

 351 
Figure 6. A comparison of pLDDT scores to ANSURR scores. (a) The mean pLDDT 352 

score averaged over all amino acids for each AF2 model. Statistics are shown for all 353 

AF2 models in the test set, and separately for the 282 structures in which the AF2 354 

structure is significantly better than the NMR structure, and for the 25 structures in 355 

which the NMR structure is significantly better than the AF2 structure. The mean 356 

pLDDT score is shown below each box. (b) Correlation plot for mean pLDDT scores 357 

vs ANSURR scores for each AF2 model in the test set. The orange line is the line of 358 

best fit. Pearson’s r and the corresponding two-tailed p value are given in the legend. 359 

 360 

Discussion 361 

It is already clear that the availability, simplicity and remarkable accuracy of AF2 362 

will make it invaluable for modelling protein structures, for example for the design of 363 

drugs that work by binding to the protein. However, this is only true as long as the AF2 364 

models are good models for the structure of the protein in solution. The studies 365 

presented here compare AF2 models to solution chemical shifts, and provide 366 

convincing evidence for the accuracy of AF2 models as solution structures, confirming 367 

earlier reports17,18. Nevertheless, there are rare occasions where the AF2 models are 368 
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incorrect, likely because they do not adequately represent the dynamics of proteins in 369 

solution. Can NMR be used to identify and correct such errors? 370 

 Two reviews comparing NMR and crystal structures6,7 have concluded that 371 

NMR structures have the same fold as corresponding crystal structures, but are on 372 

average of lower quality. Our own analysis using ANSURR10,11 reached the same 373 

conclusion. An interesting point made by Andrec, et al.7 is that the precision of the 374 

NMR ensemble is tighter than the average distance between the NMR ensemble and 375 

the crystal structure: that is, that the most obvious measure of the “error” of the NMR 376 

structures is misleadingly small - not only are NMR structures of low quality but the 377 

error attached to them is unreliable. More recent analyses have reached similar though 378 

slightly more optimistic conclusions: thus, Schneider, et al.19 showed that NMR 379 

structures can be useful templates for structural models; Abaturov and Nosova20 380 

showed that structural differences are minimised by collecting more NMR data; Li and 381 

Brüschweiler21 showed that molecular dynamics optimisation of NMR structures can 382 

make them much more comparable to crystal structures; Everett, et al.22 revisited the 383 

analysis of Andrec, et al. 7, and concluded that agreement between NMR and crystal 384 

structures is improved by using modern NMR methods; and Faraggi, et al.23 concluded 385 

that much of the difference may reflect genuinely increased mobility in solution. We 386 

have shown that although NMR structures are significantly too floppy by comparison 387 

to chemical shift data, crystal structures are too rigid. Indeed, numerous studies have 388 

shown that NMR structures can represent the dynamic nature of protein structures in 389 

solution better than crystal structures: for example24,25. These studies are of relevance 390 

to the current work, because AF2 predictions are trained on crystal structures. Thus, 391 

if NMR can be used to “correct” crystal structures to produce a more correct dynamic 392 

solution structure, it can clearly do the same also for AF2 structures. 393 

Most AF2 structures are at least as accurate as NMR ensembles. Calculation 394 

of an AF2 prediction takes minutes and can be done with minimal training. By contrast, 395 

the calculation of an NMR structure usually takes months, and requires expensive 396 

equipment and a trained operator. It is impractical to calculate an NMR structure for 397 

every target. However, the backbone NMR assignment of small to medium sized 398 

proteins can be done almost automatically26,27, and permits the application of 399 

ANSURR. On the basis of the results presented here, we therefore propose that it 400 

would make sense to test the accuracy of AF2 models by carrying out semi-automated 401 

backbone assignment, followed by ANSURR. A model validated by ANSURR can be 402 

accepted as an accurate solution model (with no need for further NMR structure 403 

calculation), while models that have clear local violations need revision and would be 404 

good targets for NMR-based structure refinement of the AF2 model. Figure 7ab 405 

provides a good example of how this could be done. ANSURR shows that the AF2 406 

model for human polycystin 2 (UniProt Q13563) is inaccurate in that it is missing a 407 

short antiparallel -sheet present in solution. It would be straightforward to calculate a 408 

more accurate structure by starting from the AF2 model and adding additional 409 

restraints to resolve the -sheet. 410 

It may be argued that such a procedure biases the resulting NMR structure by 411 

imposing interatomic interactions present in the AF2 starting model. However, bias of 412 

this type is imposed on every NMR structure calculation by the use of knowledge-413 

based restraints. The use of an AF2 model is just a more sophisticated version of a 414 

knowledge-based restraint and should be welcomed. 415 

A complementary approach would be to produce a modified version of AF2 416 

trained to generate more accurate solution structures, by “learning” the locations of 417 

dynamic structure.  Such an approach would be enormously powerful, but would of 418 
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course require the generation of appropriate training sets. The most obvious way of 419 

providing suitable training sets is via NMR chemical shifts, which carry all the 420 

information needed to characterise local dynamic regions28,29 and are often available 421 

from the Biological Magnetic Resonance Data Bank (BMRB)30. Alternatively, training 422 

data for solution structure and dynamics could be generated from molecular 423 

simulations31 or deep learning methods32. 424 

Finally, we note that most structure calculations and structure predictions 425 

assume that the structure can be represented by a single structure. In general this 426 

seems to be true, but some of the examples discussed here suggest some element of 427 

heterogeneity, even if only in the form of folded and unfolded local structure in 428 

equilibrium. Such heterogeneity is potentially of great importance for both function and 429 

inhibition of function, and the results presented here suggest that a combination of 430 

AF2 and ANSURR would be one way to identify and characterise such equilibria. 431 

 432 

 433 

Methods 434 

 435 

A set of comparable NMR and AlphaFold structures 436 

Each structure in the AlphaFold Protein Structure Database12 is indexed by a 437 

UniProt accession number. We used the Structure Integration with Function, 438 

Taxonomy and Sequence (SIFTS) resource33 to map the UniProt accession number 439 

of each human protein in the AlphaFold Protein Structure database to NMR structures 440 

in PDB34. Specifically, we used the uniprot_segments_observed.tsv SIFTS file to 441 

identify overlapping regions between the two types of structures and extracted these 442 

regions from the structure files using an in-house program. AF2 structures do not 443 

contain hydrogen atoms, so we added them using the program REDUCE v3.2335. We 444 

applied the following criteria to filter out NMR structures which could complicate our 445 

comparison. NMR structures needed to a) comprise only a single chain, b) have a set 446 

of backbone chemical shifts in the BMRB with at least 75% completeness, to ensure 447 

the reliability of ANSURR, and c) have at least 20 amino acid residues. The final set 448 

consisted of 904 AlphaFold/NMR structure pairs. A summary listing UniProt accession 449 

numbers and PDB IDs of the mapped AF2/NMR structures and corresponding residue 450 

ranges is provided in a supplementary text file (comparable_af2_nmr_structures.txt). 451 

 452 

ANSURR calculations 453 

All ANSURR calculations were performed with ANSURR v1.1.0 (DOI 454 

10.5281/zenodo.4984229) with the following options: re-reference chemical shifts 455 

using PANAV, include non-standard residues when computing flexibility, do not include 456 

ligands when computing flexibility. NMR structures contain multiple models (typically 457 

20) and so we computed ANSURR scores for all models and averaged them to obtain 458 

a single ANSURR score for each PDB entry. Each AF2 structure could be mapped to 459 

multiple PDB entries. In this case we computed the average ANSURR score of the 460 

PDB entries and compared this to the average ANSURR score computed for regions 461 

taken from the AF2 structure which overlapped with the PDB entries. For example, 462 

AF2 structure O00206 was mapped to two PDB entries (5NAM and 5NAO), so we 463 

compared the average ANSURR score for the two PDB entries with the average 464 

ANSURR score for models comprising residues 623-670 and residues 623-657 from 465 

the AF2 structure. Individual ANSURR scores for all structures validated in this work 466 

are provided as supplementary text files (AF2 – af2_ansurr_scores.txt, NMR – 467 

nmr_ansurr_scores.txt). We chose not to include ligands when computing flexibility as 468 
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they are not present in AF2 structures. We therefore felt that removing any ligands 469 

from NMR structures was the fairest comparison. We showed previously11 that ligands 470 

can cause changes in computed flexibility, but that the overall effect on ANSURR score 471 

is small: including ligands to compute flexibility for a set of 162 NMR ensembles led to 472 

a mean change in ANSURR score of only 1. Secondary structure was classified using 473 

DSSP v2.0.436. 474 

 475 

Data availability. Source data are listed in Supplementary Information and are from 476 

publicly available databases: specifically, the Protein Data Bank (www.rcsb/org), 477 

Biological Magnetic Resonance Bank (BMRB: www.bmrb.io) and the Alphafold Protein 478 

Structure Database (https://alphafold.ebi.ac.uk). The accession codes of PDB and 479 

BMRB entries used in this study are listed in the file comparable_af2_nmr_structures. 480 

Data supporting the findings of this work are available within the paper and its 481 

Supplementary Information. The datasets generated and analysed during the current 482 

study are available from the authors upon request. 483 
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