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Deep Measurement Updates for Bayes Filters
Johannes Pankert, Maria Vittoria Minniti, Lorenz Wellhausen, Marco Hutter

Abstract—Measurement update rules for Bayes filters often
contain hand-crafted heuristics to compute observation proba-
bilities for high-dimensional sensor data, like images. In this
work, we propose the novel approach Deep Measurement Update
(DMU) as a general update rule for a wide range of systems. DMU
has a conditional encoder-decoder neural network structure to
process depth images as raw inputs. Even though the network
is trained only on synthetic data, the model shows good perfor-
mance at evaluation time on real-world data.
With our proposed training scheme primed data training, we
demonstrate how the DMU models can be trained efficiently
to be sensitive to condition variables without having to rely on
a stochastic information bottleneck. We validate the proposed
methods in multiple scenarios of increasing complexity, beginning
with the pose estimation of a single object to the joint estimation
of the pose and the internal state of an articulated system.
Moreover, we provide a benchmark against Articulated Signed
Distance Functions(A-SDF) on the RBO dataset as a baseline
comparison for articulation state estimation.

Index Terms—Sensor Fusion; Deep Learning for Visual Per-
ception; Deep Learning Methods

I. INTRODUCTION

IN computer vision, many research works have focused on
the problem of directly inferring state information from

sensor measurements [1]–[3]. However, only partial observa-
tions are available for many real-world robotics applications,
and the entire system state cannot be inferred from a single
measurement. In Fig. 1, an example is presented in which a
target object is fully occluded. Free space can however be
observed and information on the object pose can be indirectly
inferred. A sequence of measurements and prior knowledge is
often needed to estimate the full system state.
Bayes Filters provide a general way to solve this problem
[4]. Using the Markov assumption, this framework aims to
recursively compute the belief bel(x[t]) of the state x at time
t given the prior belief bel(x[t−1]) and the observation y[t].
In this work, we take a detailed look at how to update the
predicted belief bel(x[t]) from a measurement:

bel(x[t]) = ηp(y[t]|x[t])bel(x[t]). (1)

In (1), η is a normalizing factor and p(y[t]|x[t]) is the condi-
tional probability density function (CPDF) of a measurement
y[t], conditioned on the current system state x[t]. In the
following, we drop the [t] superscripts since we do not focus
on the time evolution aspect of Bayes filtering.
Finding the CPDF can be viewed as the inverse problem of
inferring the state from measurements. In practical robotic ap-
plications, this conditional probability is difficult to determine.
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Fig. 1: Upper Left: A scene with three boxes. The pose of the
small box highlighted in green should be estimated.
Lower left: The same scene from the point of view of the
depth sensor. The target box is occluded.
Right: Particle filter estimation of the box pose. A depth image
of the scene is displayed as a point cloud. The distribution of
100 particles is visualized with overlaying red semi-transparent
boxes. DMU is run on the depth image and assigns a higher
observation probability to the particles behind the obstacles
than those in visible free space.

Often, hand-crafted sensor processing pipelines are designed
and tuned and measurement probabilities are being assigned
solely based on heuristics [4], [5]. In this work, we want to use
deep learning to find a systematic approach for determining
p(y|x).We propose a conditional auto-encoder (CAE) archi-
tecture to learn the probability distribution of possible mea-
surements that can be observed for our system, conditioned
on the ground truth system state. Learning the probability
distribution associated with high-dimensional training data is
addressed by generative models, which include several deep-
learning architectures [6]–[11]. Conditional Variational Auto
Encoders (CVAEs) [10] offer a general method to perform an
approximate inference of the probability of the training data,
based on some input observation. They have been shown to be
successful in generating output samples that behave according
to the underlying probability distribution of the training data.
However, numerical evaluation of the marginalized conditional
probability p(y|x) requires Monte Carlo sampling on the
latent code distribution [10] for each queried system state x,
making inference slow. Furthermore, balancing the evidence
lower bound objective (ELBO) to condition the latent state
distribution and the reconstruction loss adds more complexity
to the task.
The proposed CAE architecture makes the sampling step
superfluous. It allows to efficiently compute and evaluate the
measurement probability for integration in the filter update
rule. Learning to extract a state-independent latent code from

ar
X

iv
:2

11
2.

00
38

0v
1 

 [
cs

.C
V

] 
 1

 D
ec

 2
02

1



2

the input observation is an additional challenge. The difficulty
increases when the state dimension is much smaller than
the latent code dimension. For instance, in visual object
localization, the state includes the object pose and the latent
distribution needs to describe the, possibly highly complex,
image background. In preliminary tests, we found that the
trained models relied entirely on the latent code to capture
both background and state information. The CAE degenerated
to a non-conditional autoencoder.
To overcome this issue, we propose a new training method,
named primed data training, which requires the network to
synthesize observations with the same background information
as the input, but a different conditional state. Primed data
training successfully conditions the network on the state
variable. We validate the training scheme on our proposed
CAE architecture, although we point out its generality and
possible applicability with different conditional models, such
as CVAEs or Conditional Normalizing Flows [12].

A. Related Work

Methods for single-shot object pose detection are well
established in the computer-vision and robotics literature [3],
[13]. Those works are conceptually very different from ours
since they solely focus on the specific problem of pose
estimation and cannot easily be applied to a broader class
of state estimation problems. DeepIM [14] uses a render-
and-compare approach to refine 6D pose estimates. It uses
synthetically rendered images that a learned model compares
to the input image. In our work, we also render images and
compare them to the input image. However, our rendering is
done by a decoder network that can process both the state
provided explicitly and information extracted from the input
image by the encoder network.
One of the demo cases we present in this paper is articulation
state estimation. We benchmark against Articulated Signed
Distance Functions (A-SDF) [15], a method that shows good
performance on the RBO dataset [16]. Unlike our work, A-
SDF requires pre-processing with segmentation masks and is
prohibitively slow for real-time applications.
In recent years, Bayes Filtering has regained the attention of
researchers from the deep learning community. Methods like
Deep Kalman Filter learn variational models from sequence
data [17]–[19]. In contrast to our work, their learned system
states are latent variables that cannot be interpreted directly.
Particles filter networks [20] learn an observation model to
compute the weights required for resampling in a particle filter.
In contrast to our work, they do not use a generative model to
predict a measurement given a particle state but directly infer
weights. This requires them to train the system end-to-end on
sequence data since no ground truth weights are available.
Some works use learned models to extract state information
from input images and process the information with Bayes
filters [21]. This approach is different from ours since we do
not require problem-specific heuristics to perform measure-
ment updates.

B. Contributions

The contribution of this paper is twofold: A new approach to
learn measurement update rules for Bayes filters is presented.
Second, we propose a novel training scheme, primed data
training, which enforces decoder sensitivity to condition vari-
ables without introducing a stochastic information bottleneck
usually found in CVAEs.
The learned models, which are trained only on synthetic data,
are validated in real-world experiments.

II. METHODS

A. Deep Measurement Update

Let X be the model of a system. x is the state the system is
currently in. Such a model is a simplified abstraction of the real
world in which only those parts of the world are described that
are relevant for a particular task. The state vector may contain
heterogeneous elements such as position vectors, orientation
quaternions, or categorical variables. We call the unmodeled
part of the reality Z and z the corresponding unmodeled state.
For instance, in a perception problem for robotic manipulation,
x could represent the pose of the object that needs to be
grasped by a robot. In the same scenario, z would correspond
to the state of the background and surrounding objects. A
measurement y usually does not only depend on the modeled
system state x but also on the unmodeled state z. We suppose
that there exists a function f : (x, z)→ y that uniquely maps
x and z to a measurement y.
Suppose the system is in the state (x′, z′) and the measure-
ment y′ is observed. We want to infer p(y′|xi) for a set
of particles i = 1, . . . , n by computing the similarity L of
the corresponding measurements yi to y′. We assume that
p(y′|xi) ∝ 1/L(yi, y′), given zi = z′.
Since the measurements yi do not only depend on the known
states xi but also the unmodeled part of the system, they
cannot trivially be rendered with the function f since z′ is
usually not known.
We propose to use a conditional encoder-decoder network to
render a measurement yi given the state xi without explicit
knowledge of the unmodeled state z′. Fig. 2 shows the struc-
ture of the proposed method. An encoder network φ extracts
a latent code from an input measurement y′. The latent code
resembles the unmodeled state z′. Together with the modeled
state vector xi, the decoder ψ generates the measurement yi.

In this work, we call the encoder-decoder combination
Conditional Autoencoder (CAE), which is slightly inaccurate
nomenclature since the learned network transcodes the tuple
(y′, xi) to the target yi.

B. Primed Data Training

Training the CAE is challenging since the encoder network
has to learn how to extract a latent code that only describes
the unmodeled state z while ignoring the x dependencies.
CVAEs achieve this separation between the latent code and the
condition variable by imposing structure on the latent code:
the encoder network does not directly infer the latent code but
the parameters of a normal distribution µ and σ. The latent
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Fig. 2: The encoder network compresses the background information of the input image, shaded in red, into a latent vector.
The latent vector is augmented with the condition vector (i.e. the particle state of a Bayes filter, relevant image part shaded
blue). The augmented latent is then decompressed by the decoder and fed to the output module. We also evaluate an optional,
more complex structure CAE with Generator, which feeds the particle state to an additional generator network and increases
state sensitivity. In this case, generator and decoder outputs are concatenated and fused with a final block of convolutions.
During training (green), the target is a primed image with the same background as the input image but a different state. When
deploying as part of a particle filter (purple), the target image is the same as the input, with the network conditioned on the
queried particle state.

code z is then sampled from the distribution z ∼ N (µ, σ). A
Kullback-Leibler divergence cost term penalizes deviations of
z from the standard normal distribution.
This approach is not suitable for our problem. A CVAE
only allows for sampling from the distribution of all possible
unmodeled states z but does not extract the specific instance
z′ we need to reconstruct yi from xi.
Instead, we achieve the separation by training the networks
with primed synthetic data: a synthetic data generator imple-
ments the function f(x, z). z is some parametrization of Z
but typically not identical to the one that the encoder-decoder
network learns. We use f to generate two measurements: y1 =
f(x1, z) and y2 = f(x2, z). Both measurements are based on
different modeled states but share the same unmodeled state.
During training, we provide y1 as an input to the encoder and
x2 as a condition variable. The training loss is the similarity L
between the decoder output ỹ2 and the synthetic measurement
y2.

Ltraining = L(ỹ2 = ψ(φ(y1), x2), y2) (2)

This encourages the encoder network to ignore the influence
of x1 on y1 and only focus on the regression of z since
this information is necessary to perform well in the task of
generating ỹ2 with the decoder.

III. IMPLEMENTATION

A. Network Architecture

Two different Conditional Autoencoder networks have been
evaluated. The basic CAE has an encoder and a decoder
network. The encoder network compresses the input image
with 6 convolutional layers followed by 3 linear layers all
with Relu activations to a 64 dimensional latent vector. The
decoder network reconstructs a depth image from the latent
vector and the state vector with 6 deconvolutional layers.
The CAE with Generator network shares the basic building

blocks with the CAE except that it has an additional generator
module consisting of 7 convolutional layers. The generator
output is combined with the decoder output in the output
conv module with 2 convolutional layers. The rationale behind
the encoder and decoder structure is described in subsection
II-A. The generator network supports the decoder in delivering
high-quality reconstructions by increasing the emphasis on the
modeled state x dependency. Conceptually it can be viewed
as a part of the decoder implementation.
Convolutional layers extract local features from their inputs
or reconstruct pixels from those features in the case of de-
convolution. However, they lack a sense of global positioning
information in an image. We found that this increases the
difficulty of creating good reconstructions. To alleviate that
problem, we use Coordinate Convolutional (CoordConv) Lay-
ers that take the horizontal and vertical pixel coordinates as
additional inputs [22].
The decoder and encoder use kernel size 4 and stride 2;
the generator and output networks only employ kernel size
1 convolutions with stride 1.

B. Training

A data loader has been implemented that generates training
data in parallel to the training process. It uses Nvidia’s Issac
Sim1 to generate batches of depth image pairs (y1, y2) with a
resolution of 128×256 pixel along with their corresponding
states. The use of depth images over RGB data is motivated
by recent works showing that depth images can transfer from
simulation to real applications [23], [24], [25]. Additionally,
we generate segmentation masks υ2 for the image y2 with
problem-specific regions of interest labeled.
1050 samples are generated for each epoch which are reused
5 times in shuffled order. The minibatch size is set to 35.

1https://developer.nvidia.com/isaac-sim

https://developer.nvidia.com/isaac-sim


4

As a loss function L we use the L1-norm between y1 and
y2. During experimentation, we noticed an imbalance in the
number of pixels affected by the difference between x1 and
x2 and the parts of the image that only depend on z and
are therefore equal between y1 and y2. To counteract the
imbalance, we use the segmentation mask υ2 to compute the
losses for labeled and unlabeled pixels separately. The total
loss is the sum of both labeled and unlabeled loss with mean
normalization applied over all pixels in a mini-batch for the
separate loss terms. At test time, the segmentation masks are
not available, and we compute the loss as described in (2).
The networks are trained on an Nvidia RTX 2080 Super GPU
with an Adam optimizer [26] and a learning rate of 10−4 until
convergence.

IV. EXPERIMENTS

We present several experimental evaluations of the proposed
method. In Sec. IV-A, we demonstrate how the method can
be used to infer the observation probability of a measurement
when the system describes the pose of an object. Even though
object pose estimation is not the main focus of this work and
as a depth-only method it cannot compete with modern RGB-
D detectors, we included this experiment to show that DMU’s
likelihood estimation can handle ambiguities from symmetries
and occlusions nicely. In Sec. IV-B, we describe the integration
of DMU into a particle filter to estimate the pose of an object
in a scene with occluding obstacles. In Sec. IV-C, DMU’s
ability to infer the articulation state of an object is compared
to A-SDF on the RBO dataset. Sec. IV-D demonstrates the
capabilities of DMU in a more complex perception problem,
where both the pose and door opening angle of a switchboard
cabinet are used as condition states for the CAE network. In
all the experimental scenarios we evaluate on real-world depth
images.

Likelihood Function Evaluation: Since the learned CPDF
p(y|x) is high dimensional, it is difficult to visualize as a
whole. Instead, we evaluate the learned models as likelihood
functions. We treat the state vector x as parameters for a given
input image and evaluate the likelihood function along the
coordinate axes around the ground truth state. The learned
likelihoods are compared to two benchmark quantities that we
call Input&Synthetic and Synthetic&Synthetic:
For the first benchmark, Input&Synthetic, a synthetic image
ysyn(x) with the query state x is rendered. The image does
not have a background; all non-foreground pixels are set to the
maximum depth value. We compute the pixel-wise minimum
between the input image and the synthetic image to copy
the background and possible occlusions of the input image
into the synthetic image. This combined image is used as a
replacement for the learned reconstruction image ỹ in the loss
computation:

Input&Synthetic(y, x) = L(y,min(y, ysyn(x))) (3)

The benchmark generally performs better than a simpler
version in which the loss between the input image y and the
synthetic image ysyn(x) is computed, since the simple version
has no notion of occlusions.

The second benchmark, Synthetic&Synthetic, compares a ren-
dering of the ground truth state xgt with the rendered scene
at query state x:

Synthetic&Synthetic(xgt, x) = L(ysyn(x), ysyn(xgt)) (4)

The second benchmark is the best possible result that the
learned model could achieve under ideal conditions with no
occlusions. It requires knowledge of the ground truth state xgt,
which we determined for the evaluation experiments. The first
benchmark does not require this ground truth knowledge and
can therefore compete with the learned model in application
scenarios.

A. Symmetric Object With Occlusions
For this experiment we examine the system Xobject in

which x describes the pose of a box in camera frame with
dimensions 11 cm × 11 cm × 6 cm. The rotation is encoded
with a quaternion to avoid discontinuities in the state pa-
rameterization. The box shape was chosen to demonstrate
the strength of our method in handling symmetric objects
naturally. Inferring the pose of a symmetric object represents a
particularly challenging problem, as documented in literature
[27], [28], [29]. This is because the likelihood to be estimated
is multi-modal, something that direct methods for object pose
inference do not explicitly handle. In fact, such methods either
infer one possible rotation arbitrarily [3] or require symmetry
labeled training data [27]. Objects of other shapes can easily
be considered by including their meshes into the synthetic data
loader. In addition to the target object, a plane and up to three
boxes are added to the scene. They constitute the unmodeled
part of the system. The poses of the plane and boxes and
the boxes sizes are randomized. All additional objects may
occlude the target object partially or entirely.

Results: Fig. 3a-3l shows the results of the proposed exper-
iments. The trained models are evaluated on several real-world
depth images. In those images, the box is placed on a table.
We present the results of scenes with increasing difficulty.
In the first scene, the object is placed at the center of the
scene, and no obstacles are present. In the second scene, two
obstacles are placed next to the target object. The obstacles
are also box-shaped but have different sizes than the target
object. In the third scene, the target object is only partially
visible, and there are two obstacles present. In Fig. 3c,3g,3k,
we present examples of reconstructed input depth images
from Fig. 3b,3f,3j with different condition vectors. In the
presented cases, the cubes can be reconstructed at the desired
poses. The networks are able to extrapolate the background
to complete the depth images at the original cubes’ locations.
We noticed that the reconstructions with the basic CAE model
were considerably more blurry than the presented results of
the CAE with Generator in Fig. 3c,3g,3k. This suggests that
the additional component in the network architecture makes
the trained model more expressive. Both models are able to
reconstruct the background plane from the input images well.
The obstacles in 3g and 3k are also visible in the generated
images, but they are less sharp than the target objects. During
the development process of the method, we saw that the back-
ground reconstruction quality was higher when training with a
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(a) Scene (b) Input Depth Image (c) Reconstruction with Tgt +
10 cm·(~nx,obj+~ny,obj), CAE with
Generator model.
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(d) Likelihood Function

(e) Scene (f) Input Depth Image. The black
dots are missing sensor readings.

(g) Reconstruction with Tgt ro-
tated by 45° around ~nz,obj , CAE
with Generator model.
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(h) Likelihood Function

(i) Scene (j) Input Depth Image (k) Reconstruction with Tgt trans-
lated by 20 cm·(−~nx,obj+~ny,obj)
and rotated by 45° around ~nz,obj ,
CAE with Generator model.
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(l) Likelihood Function

(m) Synthetic RGB Scene Image (n) Synthetic Input Depth Image (o) Reconstruction with αgt −
180 deg

(p) Likelihood Function

(q) Scene (r) Input Depth Image (s) Reconstruction with αgt +
140 deg

(t) Likelihood Function

Fig. 3: Top 3 rows: Symmetric Object Experiment results. Bottom 2 rows: Results of the switchboard cabinet experiment.
Column 1 gives an overview of the scene. Column 2 shows the recorded depth images. In column 3, reconstructions of the
depth images with state vectors deviating from the ground truth are shown. Column 4 shows the loss L evaluated as a function
of the state for the trained models CAE (blue) and CAE with Generator (red) and the two benchmark quantities Input&Synthetic
(orange) and Synthetic&Synthetic (green). For the symmetric pose experiments the state vector x is the object pose in camera
frame. In the switchboard cabinet experiment, the state vector is the translation of the cabinet, the yaw angle, and the door
opening angle.



6

(a) Scene overview, initial state. (b) Two obstacles are present (c) One obstacle has been re-
moved.

(d) The target object is visible
now.

(e) Initial condition, no DMU has
been applied yet.

(f) The particle distribution be-
comes bimodal. The filter as-
sumes that the box is hidden be-
hind one of the obstacles.

(g) After removing one obstacle,
the particles behind that obstacle
annihilate.

(h) The target object is visible.
The filter converges to the ground
truth state.

Fig. 4: Selected stills from a particle filter implementation with deep measurement updates. A box to localize is initially hidden
behind one of two obstacles. Fig. 4a shows an overview of the scene, Fig. 4b,4c,4d show the changing scene from the viewpoint
of the sensor. The point clouds are 3D visualizations of the recorded depth images. The current particle states are visualized
as red semi-transparent boxes. As long as the target object is not visible, DMU assigns higher probabilities to the particles
hidden behind the obstacles. While obstacles are consequently removed, the state estimate is refined until the filter converges
to the ground truth state when the object becomes visible.

simple reconstruction loss instead of using the weighted loss
function on labeled pixels, described in Sec. III-B. However,
for a good likelihood estimation the accurate reconstruction of
the target object is of greater importance, so we compromised
in the background reconstruction abilities. Imperfections in
the reconstruction of the background can lead to a constant
bias on the L1 loss for each queried state vector. Scaling the
loss values to unit range can alleviate the bias. As shown in
Figs. 3d,3h,3l, the likelihood functions of the learned models
have their minima at the ground truth object states for the
translational directions. In all cases, these minima are global
among the queried states. The asymmetric shape of the loss
functions correlates to the change of scale when the object is
moved along the axes. The same effect can be observed in the
Synthetic&Synthetic benchmark. In general, the shape of the
loss along the axes follows the Synthetic&Synthetic benchmark
well, suggesting that the model performs well on the posed
problem.
Compared to the benchmark Input&Synthetic, it stands out
that our method does not suffer from self occlusions while the
benchmark does. Especially for translations along the object’s
z-axis, the input image fully occludes the synthetic image in
the benchmark case while the learned model can remove the
box at its original pose.
The loss function exhibits symmetries when evaluating it
along the rotational directions for the test object. Since the
height (z-direction) differs from its depth (x-direction) and
width (y-direction), the depth images should be identical for
rotation of 180° around x and y-axis and of 90° around z-

axis. The expected symmetries can be observed with the CAE
with Generator model for rotations in directions. The basic
CAE model cannot produce a reasonable likelihood function
for rotations around the defined axes. We hypothesize that
the reconstruction of objects with the correct orientation is
harder to achieve than with the correct translation since a
smaller change in loss is observed when changing orientation
compared to translation.

B. Particle Filter Integration

We integrate the DMU model with a particle filter im-
plementation. DMU is used to compute weights for the re-
sampling step during the measurement update. The normaliz-
ing factor η is computed as the sum of all particle weights.
A static depth camera observes a scene with two obstacles
and a target object placed on a table. At the beginning of
the experiment, the target object is hidden behind one of the
obstacles. The two obstacles are then removed one by one
such that the target object becomes visible.

Results: The accompanying video2 features the described
experiment. Fig. 4 shows selected stills from one experi-
ment. For better visibility, we chose a one-dimensional initial
distribution with 100 particles, while for other experiments
featured in the video, the particles are randomly placed on
the table. After a few DMU steps, the particle distribution
becomes bimodal with clusters of particles behind the two
obstacles. Even though the target box is not visible yet,

2https://youtu.be/MtTNIRcKBbk

https://youtu.be/MtTNIRcKBbk


7

DMU can leverage the knowledge of observed free space to
eliminate some particles. After removing the first obstacle
and revealing that the target has not been hidden here, the
particle distribution collapses, and only the particles behind
the second obstacle remain. Finally, the target cube is visible
in the depth image, and the filter converges to the ground truth
box location.

C. Articulation State Estimation

We compare DMU’s ability to infer the articulation state of
an object to A-SDF as a baseline solution. The comparison is
made on the laptop sequences of the RBO dataset. For each
sequence, 10 depth images were selected by the authors of A-
SDF for evaluation. We train the DMU network on synthetic
depth images with a laptop placed on a table with varying
positions, orientations, and opening angles. The system state
x is the opening angle, and the position and orientation are part
of the unmodeled state. For each image of the test sequences,
we compute the likelihood of 100 possible joint angles. The
angle with the highest likelihood is the estimate.

Results: Fig. 5a shows the estimated articulation states
computed with both DMU and A-SDF for the sequences
1, 2, 3, 5, 9, 11, 12, 13, 19. Tab. 5b reports the mean average
error (MAE) on the entire dataset and different subsets.
While A-SDF is generally more accurate in articulation angle
estimation, the inference time of our method is three orders of
magnitude smaller, making it practical for real-time applica-
tions. We have observed an estimation bias for both methods
with respect to the ground truth labels. Visual inspection of
the depth images from the dataset and synthetic data generated
by the simulator lets us conclude that the ground truth labels
were biased. We report the bias compensated MAE as well
and see similar accuracies for DMU and A-SDF.

D. Articulation State and Object Pose Estimation

In this experiment, we evaluate the CAE model in a scenario
where the network condition variables are the pose and the
door opening angle of the switchboard cabinet shown in
Fig 3q. In particular, estimating the state of a door represents
a common challenge in the current robotics manipulation
research with increasing attention in recent years [30], [31].
For this experiment, the modeled state of the system is defined
as x = [px, py, θz, α], where px, py are the planar position
coordinates of the cabinet in a camera-fixed gravity-aligned
coordinate frame, θz is the rotation of the cabinet around
the vertical axis of that frame, and α is the door opening
angle. Following the notation introduced in Sec II-A, the
unmodeled state of the system is represented by the walls
and floor in the background image. For training, the CAE
model without the additional generator network has been used.
During evaluation on images from a real dataset, we observed
a significant presence of outliers in the depth map. Those
outliers are undetected points to which the sensor assigns 0
depth. To increase robustness against outliers, the loss function
was modified to mask out the extremes of the normalized depth
interval, thus avoiding the undetected points to be decoded as
close points.

−70 −60 −50 −40 −30 −20 −10
Ground Truth Angle in [deg]

−80

−60

−40

−20

0

20

Es
tim

at
ed

 A
ng

le
 in

 [d
eg

]

DMU
DMU Fit
A-SDF
A-SDF Fit
Identity

(a) Scatter plot of estimated articulation angles over ground truth
angles. Bias-compensated fits are visualized for both DMU and A-
SDF.

DMU A-SDF

MAE 20.23° -
MAE A-SDF subset 26.63° 17.20°
MAE visualized subset 18.99° 15.91°
MAE unbiased 5.11° 5.29°
Inference time (25± 1)ms (33± 0) s

(b) Reported values: Mean average error (MAE) on the entire dataset
(4142 images), a subset of 190 images picked by the authors of
A-SDF, the subset of 90 we have picked for visualization and the
average inference time per depth image.

Fig. 5: Joint angle estimates on laptop sequences of RBO
dataset.

Results: Results are presented in Fig. 3m-3t. We evaluate
the CAE on two depth input images, acquired from the
synthetic data generator described in Sec. III-B and from a
real dataset, respectively. The loss function L is plotted as
a function of the considered four-dimensional state. In the
synthetic test-case, the CAE model gives comparable results as
the Synthetic&Synthetic and the Input&Synthetic benchmarks.
The loss function plots of Fig. 3p all have a minimum at
the ground truth state, which shows that the network succeeds
in learning the dependency on the state. This is in accordance
with the generated image of Fig. 3o, where a new depth image
is reconstructed at a specified door angle.

Evaluation for the real test scenario (last row of Fig. 3)
is more challenging due to the considerable measurement
noise in the input depth image, shown in Fig. 3r. The CAE
model proves to be robust against the measurement noise
and, as for the synthetic test, is able to generate different
images at specified door angles. The performance of the
learned model in estimating the likelihood is on par with the
Synthetic&Synthetic benchmark, the upper bound of what can
be achieved with the proposed method. It outperforms the
Input&Synthetic benchmark, which fails for translations in y
direction and rotations around z due to self occlusions.
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V. CONCLUSIONS & FUTURE WORK

DMU has shown to be a general framework to derive mea-
surement update rules for Bayes filters. The learned models
outperform the synthetic data baseline solution in the accuracy
of the computed likelihood. Even though the models are only
trained on synthetic data, they perform well on real-world data,
too. Compared to A-SDF, we report a 1000x inference speedup
in articulation state estimation, making the deployment in
robotic applications feasible.

Furthermore, a particle filter using DMU offers interesting
perspectives for active perception. In a scenario such as the
example shown in Fig. 4b where the particle filter proposes
two possible regions where a target object could be hidden, a
robot can be commanded to explore those regions actively.

Solely providing depth information, the learned models have
to rely on geometric properties to distinguish the modeled
and unmodeled aspects of the observed system. We identified
this as the major limitation during the inspection of failure
cases on the RBO dataset. In future work, we would like to
use RGB images as well, since texture greatly simplifies the
detection of important features in complex scenes. Extending
this work to RGB-D images poses additional challenges,
because the unmodeled state dimension is much larger than for
depth-only, increasing the imbalance between background and
state dimensionality. Instead, we propose to use segmentation
masks as an additional input since they are easy to obtain
from the simulator for training and from a separate instance
segmentation network for deployment.
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