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Probe for Autonomous Spinal Sonography Using a

Shadow-aware Dual-Agent Framework
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Abstract—Ultrasound (US) imaging is commonly used to assist
in the diagnosis and interventions of spine diseases, while the
standardized US acquisitions performed by manually operating
the probe require substantial experience and training of sonog-
raphers. In this work, we propose a novel dual-agent framework
that integrates a reinforcement learning (RL) agent and a deep
learning (DL) agent to jointly determine the movement of the
US probe based on the real-time US images, in order to mimic
the decision-making process of an expert sonographer to achieve
autonomous standard view acquisitions in spinal sonography.
Moreover, inspired by the nature of US propagation and the
characteristics of the spinal anatomy, we introduce a view-specific
acoustic shadow reward to utilize the shadow information to
implicitly guide the navigation of the probe toward different
standard views of the spine. Our method is validated in both
quantitative and qualitative experiments in a simulation envi-
ronment built with US data acquired from 17 volunteers. The
average navigation accuracy toward different standard views
achieves 5.18mm/5.25◦ and 12.87mm/17.49◦ in the intra- and
inter-subject settings, respectively. The results demonstrate that
our method can effectively interpret the US images and navigate
the probe to acquire multiple standard views of the spine.

Index Terms—Medical robotic system, Robot decision-making,
Robotic ultrasound, Ultrasound image analysis.

I. INTRODUCTION

MEDICAL ultrasound (US) imaging has been widely
accepted in a broad range of clinical applications

because of its ease of use, non-invasiveness, low cost and
real-time capabilities. In spinal applications, US imaging is a
commonly practiced diagnostic tool for various spine diseases
such as scoliosis and low-back pain [1], and is also frequently
used in preprocedural scan [2] and real-time needle guidance
during minimally invasive spine procedures [3][4].
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In standardized US acquisitions, the standard views are a
number of view planes defined by expert consensus to perform
US imaging of specific anatomical structures, which usually
contain essential information of the anatomy for diagnosis,
biometric measurement or interventional guidance [5][6]. For
example, an overview of the lumbar spine anatomy is show
in Fig. 1(a). Each lumbar vertebra is composed of a ver-
tebral body, a spinous process, two laminae, two transverse
processes, two articular processes and two pedicles [7]. The
US examination of the lumbar spine typically involves the
imaging of three standard views, namely, the paramedian
sagittal lamina (PSL) view, paramedian sagittal articular
processes (PSAP) view, and transverse spinous process (TSP)
view [8][9], as illustrated in Fig. 1(b). The PSL and PSAP
views can be acquired during the paramedian sagittal scan at
the level of the lamina and articular process, respectively, and
the TSP view is acquired during the transverse scan when
the probe is placed over the spinous process. Acquiring these
standard views can help the physician identify and locate the
spinal anatomical landmarks to perform diagnosis or spine
procedures [7].

However, the current standard view acquisition procedure
requires manual navigation of the probe based on the inter-
pretation of the US images and the knowledge of the internal
anatomy, which usually requires substantial experience and
extensive training of sonographers. Therefore, the sonogra-
phers are suffering from heavy physical and cognitive burdens
due to excessive workload [10], and the imaging quality is
strongly dependent on the operator [11]. In addition, the
direct patient contact would increase the risk of infection for
frontline medical staff during a pandemic such as COVID-19
[12]. In view of this, an autonomous robotic system for US
acquisitions holds great promise for relieving user workload,
improving imaging results, and reducing the need for direct
patient contact [13].

Autonomously navigating the US probe toward the standard
view is a highly challenging task, as it requires the robot to
interpret the US image data and perform visual navigation,
which mimics the decision-making process of an experienced
sonographer. As an active field of research in artificial intel-
ligence, reinforcement learning (RL) has become a powerful
tool for solving complex sequential decision-making problems
in real-world applications [14]. Meanwhile, deep learning
(DL) has superior ability in learning high-level representation
from raw image data and has been intensively studied in US
image analysis tasks [15]. Therefore, a combination of RL and
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Fig. 1. (a) Lumbar spine anatomy and (b) US acquisitions of three standard
views of the lumbar spine, i.e., PSL: paramedian sagittal lamina view, PSAP:
paramededian sagittal articular process view, and TSP: transverse spinal
process view of the spine. The left column illustrates the corresponding probe
poses [7]. The middle column presents the B-mode images acquired by a
clinician from a volunteer. The right column shows the corresponding images
acquired with the same probe poses from the virtual patient in our simulation.

DL techniques can be a potential solution to our problem.
In this paper, we introduce a novel framework that inte-

grates RL and DL techniques to achieve autonomous standard
view acquisitions in robotic spinal sonography. An overview
showing the main components of our proposed framework is
illustrated in Fig. 2. An RL agent for navigation action selec-
tion and a DL agent for standard view recognition are proposed
to jointly determine the movement of the probe to search for
the standard views of the spine. Furthermore, inspired by the
nature of US propagation and the characteristics of the spinal
anatomy, we introduce a novel approach to utilize the acoustic
shadow information in the learning of navigation policy. The
main contributions of this paper are as follows.

• A deep RL agent is delicately designed and trained end-
to-end to plan the 6-DOF movement of a US probe
based on real-time US images, in order to autonomously
navigate toward the standard views of the lumbar spine.

• We innovatively investigate the correlation between the
navigation performance of the RL agent and the acoustic
shadow characteristics in spinal sonography based on
the US confidence map [16], and propose a novel view-
specific acoustic shadow reward that utilizes the shadow
information to implicitly guide the RL-based navigation.

• A location-sensitive DL agent is proposed to recognize
the standard views of the lumbar spine from real-time US
images, and jointly determines the movement of the probe
with the RL agent through a dual-agent collaborative
navigation workflow.

• A general approach is presented to build a simulation
environment that models the probe-patient interaction
in US imaging based on real-world US data, which
can realize continuous state and action spaces for the
development of US-guided navigation algorithms.

The remainder of this article is organized as follows: Sec-
tion II provides an overview of the related work in the fields
of US standard view detection and robotic US acquisitions.
Then, we introduce the details of our presented method in

Section III, before experiments and results are presented in
Section IV. Conclusions and future perspectives are discussed
in Section V.

II. RELATED WORK

A. US Standard View Detection

As a leading machine learning tool in image analysis, DL
has been intensively studied and applied to to the detection
of standard views from 2D US image sequences [5] or 3D
US volumes [17]. Some researchers detect the standard views
from 3D US volumes by breaking down the 3D volume into
2D slices for image classification [17]. Lorenz et al. [18]
used anatomical landmark detection to align the 3D volume
with a model to localize the standard view planes. Other
groups applied convolutional neural networks to regress the
transformation from the current plane to the standard view
plane in 3D US volumes [19]. However, this kind of prediction
may cause abrupt changes in position, which may not be
suitable for the robotic control of the US probe. Alansary
et al. [20] customized an RL agent to learn the incremental
adjustment of the plane parameters (ax + by + cz + d = 0)
toward the standard views in MRI data, and Dou et al.
[21] extended this method for standard view detection in 3D
US data by performing landmark alignment and RL-based
adjustment of the plane parameters. However, these methods
focus on detecting the standard views from expert-acquired,
pre-processed US images and have not taken the autonomous
control of a robotic US probe into consideration. Instead, we
are committed to directly establishing the relationship between
the US image content and probe motion control with RL and
DL techniques, in order to mimic the decision making process
of expert sonographers to realize standard view acquisitions in
robotic spinal sonography.

B. Robotic US acquisitions

A large number of robotic systems have been developed
to automate the US imaging of different human tissues. The
reader can refer to [13] for a literature review. Different
methods have been proposed to plan the movement of the
probe during robotic US acquisitions. In [22], the researchers
transfer a manually planned scanning path in pre-operative
MRI data to the actual patient during the intra-operative stage
by registering the patient skin surface extracted from the MRI
data to real-time RGB-D data. Other researchers directly plan
the scanning path on the patient skin surface to cover a region
of interest extracted from the RGB-D data [23]. Recently, an
RL-based method is proposed to control 3 degrees of freedom
(DOFs) of a US probe based on the observation of tissue
surface by an RGB camera to realize US imaging of a soft
target in the presence of occlusion and movement [24]. While
these surface-based methods have demonstrated the feasibility
to keep the probe in contact with the patient and acquire mean-
ingful images, it may not always be feasible to identify the
anatomy based on surface landmarks (e.g., in obese subjects)
[25], which may reduce the versatility of these methods. Also,
the US images that contain rich information of the anatomy
have not been fully utilized in the probe motion planning.
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Fig. 2. Overview of the presented method for autonomous standard view acquisition in robotic spinal sonography. (a) shows the real-world system configuration,
where a US probe is controlled by a robotic arm to scan the patient in the prone position. (b) Given the acquired US image as input, the RL agent selects
the best navigation action based on the SonoQNet to control the 5-DOF movement of the probe. The US confidence map is computed from the US image
to calculate the (c) view-specific acoustic shadow reward, which is used in combination with the navigation reward to train the RL agent. Meanwhile, (d) a
pre-trained DL agent recognizes the standard views from the US image and jointly determines the movement of the probe under the safety-related environment
constraints. The objective of the proposed framework is to automatically acquire three standard views of the lumbar spine (PSL, PSAP and TSP views).

Some researchers proposed US-based visual servoing methods
[26], but they focus on stabilizing the view of an existing
target in the image rather than automatically searching for an
anatomy. In [27], an automatic scanning strategy is designed
to search for the longitudinal plane of the carotid artery by
detecting carotid landmarks using well-engineered features. In
order to develop more generic methods, a number of machine
learning-based solutions have been proposed to learn US probe
guidance in a data-driven manner. Some researchers used
imitation learning (IL) algorithms to learn 3-DOF guidance
of the probe orientation from expert demonstrations in fetal
US imaging [28]. However, the IL-based methods usually
rely on complete and accurate demonstrations, which may be
intractable or expensive to obtain [29]. Other groups applied
RL to learn the navigation of a US probe based on self-
generated experiences in simulation. Some researchers built
the simulation environment with spatially tracked 2D US
images acquired by a sonographer on a grid placed on the
patient during cardiac [30] and spinal US imaging [31], and
used RL to learn probe control with 2 to 4 DOFs. However,
these methods have limited state-action spaces due to the
design of simulation environments, which would reduce the
flexibility of the RL agent. In [32], we preliminarily developed
a deep RL solution to the 6-DOF control of the probe in a
simulation environment built with reconstructed 3D volumes
that cover the anatomy of interest, which can improve the
flexibility of the learned navigation policy.

A distinction between our work and the above works is that
we explicitly focus on a system that enables fully automatic
6-DOF control of the US probe based on real-time US images
to search for multiple standard views in spinal sonography.
Therefore, the system does not rely on manual planning of

the scanning path, preoperative tomographic imaging, surface
landmark detection or manual initialization of the probe po-
sition. Also, our method does not require expert demonstra-
tion data, and is not restricted by limited state-action pairs.
Instead, we build a simulation environment for probe-patient
interaction using real-world US data, and propose a framework
based on RL and DL to automatically interpret US images and
autonomously plan the movement of the probe.

III. METHODOLOGY

A. Simulation of Probe-Patient Interaction

Since the RL agent learns the optimal policy through trial
and error, it is unsafe and impractical to directly train the US
probe navigation agent on real patients. A feasible solution
is to build a simulation environment with real-world data to
train the RL agent. Different from previous studies [30][31]
that build the simulation environment with manually acquired,
spatially tracked 2D US frames, we build the simulation envi-
ronment with reconstructed 3D volumes of the lumbar spine
acquired in real-world US scans. Since we use a reconstructed
volume as the virtual patient in our simulation, any slice
with arbitrary position and orientation can be sampled in the
volume, which can significantly enlarge the state-action spaces
for more realistic simulation of probe-patient interaction.

In order to acquire US data from real volunteers, we built
a robotic system as shown in Fig. 2(a). The system used
a robotic arm (KUKA LBR iiwa 7 R800, KUKA Roboter
GmbH, Germany) to control the movement of a convex US
probe (C5-1B, Shenzhen Wisonic Medical Technology Co.,
Ltd, China) attached to its end-effector. We asked the volun-
teers to lie in the prone position on a horizontal bed, and a
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Fig. 3. Illustration of the simulation environment for robotic spinal sonogra-
phy. The virtual patients in our simulation are reconstructed 3D volumes of
the lumbar spine, and the virtual probe is modeled as a commonly used 2D
probe with a square field-of-view. The imaging plane of the probe is set as
the y-z plane of the probe frame {P}. The world frame {W} is attached to
the robot base. The current probe pose and the goal probe pose associated
with the target standard view are represented by the transformations W

PT and
W
GT, and the corresponding US images are denoted by I and Ig , respectively.

clinician manually configured the US imaging parameters and
spread the coupling gel over the skin surface of the volunteers.
The start and end points of the scan were specified by the
clinician to cover the lumbar spine, and the robot linearly
moved the US probe under Cartesian impedance control while
applying a downward force of 5N to ensure acoustic couping.
We set a high stiffness (2000N/m) in the horizontal directions
and a low stiffness (50N/m) in the vertical direction for com-
pliance. The acquired B-mode images and the corresponding
probe poses estimated based on the robotic arm kinematics
and US hand-eye calibration [33] were recorded for volume
reconstruction with a squared distance weighted approach [34].
Three sweeps were performed on each volunteer. Finally, the
reconstructed volumes were manually screened to remove the
data with poor quality, yielding a total of 41 US volumes
of 17 healthy male volunteers aged 23 ± 3 years old. The
average volume size of our dataset is 350 × 397 × 274
and the size of each voxel is 0.5 × 0.5 × 0.5mm3. After
each robotic acquisition, the clinician manually acquired three
standard views of the lumbar spine on each volunteer and the
corresponding probe poses were recorded.

An overview of our simulation environment is shown in
Fig. 3. The transformation from the world frame (robot base)
{W} to the probe frame {P} is denoted as W

PT, which is
a 4 × 4 matrix that describes the current 6-DOF pose of the
probe. The goal probe pose {G} associated with the target
standard view is described as transformation W

GT. Without loss
of generality, we assume the virtual probe in our simulation as
a commonly used 2D probe with a field-of-view of 150× 150
pixels, and the imaging plane is defined as the y-z plane of
the probe frame {P}. Given a virtual patient (US volume)
and an arbitrary probe pose W

PT, the acquired US image I
can be uniquely determined by sampling in the volume. In
our simulation environment, the skin surface of each virtual
patient is extracted as z = f(x, y) based on the intensity of
the 3D US volume. In real-world applications, the patient skin
surface can be extracted using external sensor data, such as

RGB-D or lidar information [22].
The ground truth B-mode images of the three standard

views acquired by the clinician and the corresponding images
acquired by the virtual probe with the recorded poses in our
simulation are compared in Fig. 1(b). It can be seen that in
spite of a slight deterioration in resolution, the images acquired
from the virtual patient can preserve important anatomical
structures in the B-mode images, which shows that our sim-
ulation environment can realistically reproduce the real-world
US acquisitions.

B. Reinforcement Learning for Navigation Action Selection

1) Problem formulation: In the RL framework, an agent
learns the behavior policy by interacting with the environment
through a sequence of states, actions and rewards. Here, we
formulate the task of the US acquisition robot to observe US
images and navigate the probe toward a target standard view
as a partially observed sequential decision making problem in
the RL framework.

a) States and observations: The full state of the probe-
holding agent can be represented as (WPT,

W
GT, I, Ig), indicat-

ing the current and goal probe poses and the corresponding
US images, as described in Section III-A. We assume that
the patient anatomy and the relative pose between the robot
and the patient are unknown. Therefore, the goal probe pose
and image are unobservable to the agent, and the agent can
only observe the acquired US image I and make navigation
decisions. In order to take advantage of the dynamic informa-
tion, we use a sequence of 4 recently acquired images as the
observation at time t: st = [It−3, · · · , It].

b) Navigation actions: The policy of the RL agent
π : st 7→ at maps from the current observation st to a
navigation action at. In order to make the learned actions
more versatile and independent of the actual patient position
and orientation, different from previous methods that represent
the actions in the world frame [30][31], we follow a probe-
centric parameterization and define the navigation action a as
a transformation operator PT with respect to the probe frame
{P}, so that the probe is moved by

W
PT←

W
PT ·

PT (1)

Since PT contains 16 parameters under constraints to repre-
sent a valid transformation, directly learning these parameters
will be intractable and the interpretability of the learned policy
will be limited. Also, a small change of the parameters may
result in an abrupt change of the probe pose, which is not
favorable in the US probe navigation task. To address these
issues, we discretize the action space into 10 action primitives
associated with 5 DOFs of the probe, as shown in Fig. 2 (b).
Four actions represent the translation of the probe along ±x,
±y axes of the probe, and six actions represent the rotation
around ±x, ±y, ±z axes of the probe. We adopt hierarchical
action steps to navigate the probe in a coarse-to-fine manner,
similar to [32]. Specifically, the action step dstep and θstep are
initialized as 5mm/5◦. 30 most recent probe poses are stored
in a buffer with the format of (pt, qt), where pt is the position
of the probe at time t and qt is the quaternion representation
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of the probe orientation. If at least 3 pairs among the 30 most
recent probe poses have a pairwise Euclidean distance smaller
than 0.01, the probe pose is assumed to have converged and
the action step will be decreased by 1mm/1◦.

c) State transition under constraints: Different from
previous work that directly apply the navigation action selected
by the agent [30][31], we take into account some safety-related
environment constraints in real-world US scans to update the
probe pose, as shown in Fig. 2. First, we consider the practical
requirement that the probe be placed over the skin surface
to ensure good acoustic coupling. Since the virtual patient in
our simulation is roughly parallel with the horizontal plane
(see Section III-A), we use 1-DOF translational movement of
the probe in the ±z direction to follow the patient surface
z = f(x, y). Second, to ensure good probe-patient contact
and guarantee patient safety, the tilt angle of the probe (angle
between the imaging plane and the vertical direction) should
be limited. Therefore, after the new probe orientation is
calculated, the tilt angle is calculated as

α = arccos(ẑp, [0, 0,−1]T ) = arccos[−W
PT(3, 3)] (2)

where ẑp is a unit vector along the z-axis of the probe. We
limit the tilt angle to be smaller than 30◦. If α > 30◦, the
probe orientation will not be updated.

After the new probe pose is determined under the above
constraints, a new US image can be acquired from the virtual
patient, and the state of the probe will be updated.

d) Reward function: In our task, the reward function used
for RL training should encourage the agent to minimize the
distance to goal, which can be represented by

dt =
∥∥pt − pg

∥∥
2
, θt = 2 arccos(|〈qt, qg〉|) (3)

where ‖·‖2 is the L2 norm and 〈·, ·〉 is the inner product. By
definition, dt measures the Euclidean distance between the
current probe position and the goal position at time t, and θt
is the minimum angle required to rotate from the current probe
orientation to the goal orientation.

Some methods construct a dense reward function by clas-
sifying the actions as “good” (moving closer to the goal) or
“bad” (moving away from the goal), and assigning rewards
with manually set values [30][31]. Similar to [32], we design
the navigation reward at time t to be proportional to the
amount of pose improvement normalized by the action steps

rnav,t = ∆dt + ∆θt,

where ∆dt =
dt−1 − dt
dstep

∈ [−1, 1],

∆θt =
θt−1 − θt
θstep

∈ [−1, 1]

(4)

Note that rnav,t ∈ [−1, 1] since the action in each step is either
translation or rotation. In addition, we assign a high reward
(+10) for task accomplishment (dt ≤ 1mm and θt ≤ 1◦)
and add some penalties based on the safety-related constraints.
When the tilt angle of the probe α exceeds 30◦, the agent will
receive a penalty of −0.5. When the probe moves outside the
patient volume (the proportion of pixels with non-zero gray

Fig. 4. Schematic illustration of the SonoQNet architecture for navigation
action selection. The input are 4 recently acquired US images of size
150 × 150. The output are the predicted Q-values for the 10 navigation
actions, and the agent will select the action with the highest Q-value. The
feature extractor contains 13 convolutional layers (blue), each followed by
batch normalization and ReLU activation. Max pooling (yellow) is performed
after the first 4 convolutional blocks with a filter size of 2 × 2 and a stride
of 2. The size of each feature map is denoted above the blocks. The output
of the last convolution+BN block (green) are 10 class score maps associated
with the 10 navigation actions, which are finally aggregated by global average
pooling (GAP) to approximate the Q-values.

value in It is less than 30%), the agent will get a reward of
−1. In summary, the reward at time step t is defined as

rt =


−1, if moving out of patient;
−0.5, if α > 30◦;

10, if reaching goal;
rnav,t, otherwise.

(5)

e) Termination conditions: During training, we define
four conditions to terminate the navigation: (i) the goal is
reached; (ii) the number of steps exceeds the maximum limit
(e.g., 120); (iii) the action step is decreased to zero; and
(iv) the probe moves out of the patient. Only the last three
conditions are used during inference, since the true location
of the standard plane is assumed unknown to the agent.

2) Deep reinforcement learning algorithm: The learning
goal of the RL agent is to maximize the return or discounted
cumulative future rewards

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT (6)

where γ ∈ (0, 1) is a discount factor and T is the time step
when the episode is terminated. The state-action value function
Qπ(s, a) is defined as the expected return following policy π:
Qπ(s, a) = Eπ[Gt|st = s, at = a]. The optimal Q-function
Q∗(s, a) = maxπ Q

π(s, a) following any policy π is known
to satisfy the Bellman equation

Q∗(s, a) = Es′ [r(s, a) + γmax
a′

Q∗(s′, a′)] (7)

If Q∗(s, a) is known, then the optimal policy can be
determined by π∗ = arg maxaQ

∗(s, a). In this work, we use a
deep neural network Q(s, a;w) to approximate Q∗(s, a), and
train the network with the deep Q-learning algorithm [35]. The
deep Q-network architecture used in our method is referred to
as SonoQNet, as illustrated in Fig. 4. It is modified from the
SonoNet-16 architecture [5], which was originally proposed
for real-time detection of standard views in fetal US images.
The input of SonoQNet are 4 recently acquired US images, and
the output are the approximated Q-values for the 10 navigation
actions. The optimal network parameters w∗ can be learned
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Fig. 5. (a)-(c) show the US images and the corresponding confidence maps
of the PSL view, PSAP view and TSP view of the spine. The acoustic shadow
can be seen in the images as area below the yellow dotted line. (d) illustrates
the proposed ROI candidates to quantitatively measure the shadow area.

by iteratively updating w with stochastic gradient descent to
minimize the loss function

L(wi) = Es,a,r,s′ [(r + γmax
a′

Q(s′, a′;wi−1)−Q(s, a;wi))
2]

(8)
where wi is the weight in the i-th iteration.

3) Implementation details: The SonoQNet is trained by the
temporal-difference method with experience replay and target
network techniques described in [35]. In our implementation,
we train the network every 10 interaction steps with a batch
size of 32 using Adam optimizer [36], and the target nerwork is
updated every 1k training steps. The discount factor γ is 0.9.
The capacity of experience replay memory is 100k. During
initialization, the network is updated for 10k iterations with a
learning rate of 0.01 on experiences generated by a supervised
policy, which selects the actions to minimize the distance-to-
goal. Subsequently, the network is trained for 200k iterations
on self-generated experiences with an ε-greedy policy. The
exploration rate ε linearly decays from 0.5 to 0.1 in the first
100k interactions steps and remains unchanged thereafter. The
learning rate is set to 0.01 for the first 40k training steps, 0.001
for the next 40k steps, 5e-4 for the next 30k steps, and 1e-4
for the remaining steps.

C. View-specific Acoustic Shadow Reward

1) Acoustic shadow estimation with US confidence map:
Due to the nature of sound propagation, the US signal will
be strongly attenuated at the tissue-bone interface, resulting in
acoustic shadows after the interface. In most cases, the shad-
owing artifacts in US images should be avoided to improve the
imaging quality. In spinal sonography, however, the shadows
can produce some sonographic patterns that can help locate
the spine anatomy [7]. For instance, the shadow patterns in
the PSL and PSAP views are referred to as the “horse head
sign” and the “camel hump sign”, and the acoustic shadow
in the TSP view appears as a tall dense acoustic shadow, as
shown in Fig. 5(a-c). Therefore, we speculate that additionally
taking into account the shadow information may improve the
navigation performance in spinal sonography.

In this work, we detect the shadow regions from the US
image It by calculating its US confidence map at time step
t, Ct ← confidenceMap(It), Ct(i, j) ∈ [0, 1], based on the

method in [16] that estimates the per-pixel confidence in the
US image to emphasize the uncertainty in shadow regions
using a random walks framework. A lower confidence value of
a pixel indicates an increased likelihood of acoustic shadow.
As shown in Fig. 5(a)-(c), the possible shadowed regions in the
US images are highlighted in the confidence maps. Moreover,
based on the insight that different standard view acquisition
tasks may require different underlying shadow patterns, we
calculate the average confidence in a view-specific region of
interest (ROI) in the image:

ct =
1

|S|
∑

(i,j)∈S

Ct(i, j) (9)

where S denotes the selected ROI for the target standard view.
Note that the shadow density in S can be represented by 1−
ct. The confidence change in the ROI at time step t can be
represented by ∆ct = ct − ct−1 ∈ [−1, 1].

A total of 8 ROI candidates are proposed, as shown in Fig.
5(d). They are selected as rectangles centered horizontally in
the image and offset 10 or 20 pixels from the top edge. The
height of the ROI is set as 80 and the width is chosen from
{80, 100, 120, 140}. The selection of these band-like regions
is based on the observation that the top region (with a height
of about 10 pixels) is almost completely located above the
tissue-bone interface, and the bottom region (with a height of
50 pixels) is almost completely located below the tissue-bone
interface, which can hardly provide any discriminating shadow
information.

2) Selection of view-specific region of interest: In order to
select view-specific ROIs for different tasks, we analyze the
relationship between the navigation performance of the RL
agent and the shadow characteristics in each task. As shown
in Fig. 6(a-c), the average navigation reward per step Rnav ,
final position error d, and final orientation error θ against the
average confidence change per step ∆c of the RL agent during
training in the PSL, PSAP and TSP view acquisitions are
illustrated. It can be seen in Fig. 6(a-b) no matter which ROI
configuration is used, as ∆c increases, the pose improvement
becomes greater and the final pose error becomes smaller.
This indicates that the navigation performance toward the PSL
and PSAP views are positively correlated with an improved
confidence in the ROI, and the agent implicitly learns to reduce
the shadow area in the ROI during learning of the navigation
policy. This is probably because most of the shadow region
appears below the ROI in these standard views (see Fig. 5(a-
b)). Differently, for the navigation toward the TSP view, a
negative correlation between the navigation performance and
the confidence change is observed, which implies that the
agent learns to maximize the shadow region during the search
for the TSP view, which may be due to the tall dense acoustic
shadow in the image center under the spinous process (see
Fig. 5(c)). To find the ROI configuration that is most related
to the navigation performance in each task, we use Pear-
son’s correlation coefficient (PCC) to quantitatively measure
the relationship between the navigation performance and the
confidence improvement of different ROIs. PCC measures the
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Fig. 6. (a-c) show the average navigation reward per step Rnav , final position
error d, and final orientation error θ against the average ROI confidence change
per step ∆c during RL training to acquire the PSL, PSAP and TSP views,
respectively. The results using different ROI configurations are indicated by
different colors. (d) shows the correlation ρ that measures the relationship
between the navigation performance and the confidence change in different
ROIs during the acquisition of the three standard views.

linear relationship between two variables X and Y , which can
be calculated by

ρ(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY
(10)

where µX , µY are the means of X and Y , respectively, and
σX , σY are standard deviations of X and Y . ρ(X,Y ) ∈
[−1,+1]. In order to take into account both the navigation
efficiency and accuracy, we calculate a weighted combination
of the PCCs between Rnav , d, θ and ∆c:

ρ = α1ρ(Rnav,∆c) + α2ρ(−d,∆c) + α3ρ(−θ,∆c) (11)

where the weights are empirically set as α1 = 0.5, α2 =
α3 = 0.25. Therefore, ρ ∈ [−1,+1] indicates the correlation
between the overall navigation performance and confidence
change in the training data.

The correlation ρ of different ROI configurations in different
tasks are shown in Fig. 6(d). It can be seen that the navigation
performance toward the PSL view is most strongly correlated
with the confidence improvement in ROI No. 0 , which is a
small square region of size 80×80, offset 10 from the top edge.
For the acquisition of PSAP view, ROI No. 1 is selected (size
80×80, offset 20 from the top edge). This may be because the
tissue-bone interface is deeper in the PSAP view than in the
PSL view. For the TSP view acquisition, ROI No. 1 has the
largest negative correlation with the navigation performance,
which implies that the agent intends to maximize the shadow
area in this region.

3) Hybrid reward function: In order to utilize the shadow
information to guide the navigation, we introduce a view-
specific acoustic shadow reward (ASR) ras,t = ∆ct = ct −
ct−1 in the original reward function (5) for RL training:

rt =


−1, if moving out of patient;
−0.5, if α > 30◦;

10, if reaching goal;
rnav,t + λrsa,t, otherwise.

(12)

where λ = 1 is used in the acquisition of PSL and PSAP
views to encourage confidence improvement in the ROI and
λ = −1 is used for the TSP view to encourage shadow area
maximization in the ROI.

D. Deep Learning for Standard View Recognition

Although the RL agent can decide the step-by-step move-
ment of the US probe based on the US images, the navigation
is “blindly” terminated, i.e., the navigation is stopped after
the probe pose gradually converges, and the finally acquired
image is assumed the best. This strategy may bring some
problems. For example, the RL agent may be trapped at a
location and the navigation will be quickly terminated without
further exploration. Another case is that the agent may have
acquired the standard view, but mistakenly moves away to a
suboptimal position. To this end, a method should be proposed
to enable active termination and exploration of the RL agent.
Some methods determines the best stopping position of the
RL agent based on the Q-values [20][21], but these methods
may not have a good interpretability. Therefore, we propose
to use a pre-trained DL agent to recognize the standard views
from the US images to provide feedback to the RL agent and
jointly determine the movement of the probe.

1) Deep neural network fine-tuning: In this work, we adopt
the VGG-16 [37], one of the state-of-the-art architectures
for image classification, as the basic deep neural network
model for our standard view recognition task. We initialize
the network with publicly available weights trained on the
ImageNet dataset [38]. Then, the original top fully connected
layer is replaced with a fully connected layer with 4 outputs
corresponding to the 3 standard views and background, and
initialized with random weights. The network is fine-tuned
on our training data (US images with class labels associated
with the three standard views and background) using stochastic
gradient descent and cross-entropy loss with a batch size of 16
for 50 epochs to achieve stable performance. A small learning
rate of 0.0001 is used in training.

2) Multi-scale fusion: In our task, the spatial location of
pixels in the US image plays an important role to correctly
locate the spine anatomy for standard view recognition. To this
end, we propose a multi-scale fusion (MSF) approach to make
the classification network more sensitive to location features.
Instead of using the whole image as input of the network,
we accumulate multiple scales of the US image (100%, 75%
and 50% around the image center) as different channels, as
shown in Fig. 2(d). Note that this approach will not increase
the overall complexity of the network.
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Fig. 7. Workflow of the dual-agent collaborative navigation method for
standard view acquisition. The blue boxes indicate the operations by the RL
agent and the orange boxes indicate the operations by the DL agent. The
standard view recognition results of the DL agent are used as feedback to
enable active termination and exploration of the RL agent.

E. Workflow of Dual-agent Collaborative Navigation

In order to integrate the RL and DL agents to improve the
acquisition results, we propose a workflow to allow collabo-
ration of the two agents to jointly determine the movement of
the US probe, as shown in Fig. 7. Each time the RL agent
selects a navigation action and acquires an image, the DL
agent will detect and save possible standard view images with
a predicted probability over 0.5 in a candidate set. After the RL
action step is reduced to zero or time is out, the candidate set
will be inspected. If it is not empty, the last recorded standard
view candidate during RL navigation will be selected as the
best stopping position. We use the last recorded candidate
rather than the candidate with the highest predicted probability
because i) the standard view recognition result may not be
accurate, and ii) it is likely that a position at a later stage in
the RL navigation trajectory is more reliable than one in an
earlier stage. If time is out but the candidate set is empty,
the navigation will be directly terminated. If no standard view
is detected during RL navigation and there is still time left,
the probe will be randomly repositioned on the patient, and
the previous navigation process will be repeated until the total
number of steps exceeds the limit.

TABLE I
CLASSIFICATION SCORES OF DIFFERENT MODELS

Model Precision Recall F1-score

VGG-16 0.9281 0.9249 0.9233
VGG-16 + MSF 0.9603 0.9594 0.9589

IV. EXPERIMENTS

A. Dataset

Among the whole dataset of 41 US volumes acquired from
17 subjects using the pipeline described in Section III-A, 25
US volumes of 14 subjects are used for training of the RL
agent, and the remaining data is split into two testing datasets
associated with two different settings, i.e., intra-subject and
inter-subject, in order to fully evaluate the effectiveness of
the proposed methods. In the intra-subject setting, the agent
is evaluated on 8 unseen data volumes acquired from 8
seen subjects over time. This setting is designed to evaluate
the effectiveness of the method to perform reproducible US
acquisitions on familiar subjects in the presence of target
displacement and tissue deformation; this is important in the
medical applications that require multiple US acquisitions of
the same patient, such as pre- and post-operative ultrasonog-
raphy. The inter-subject setting is more challenging, which
requires the agent to be evaluated on 8 data volumes acquired
from 3 unseen subjects. This task is more difficult as it requires
the learned policy to be generalized to out-of-distribution data
and deal with highly variable patient anatomy.

B. Evaluation of the Standard View Recognition Module

In order to train and test the DL agent for standard view
recognition, we create a training set and a testing set by
sampling in the 25 training data volumes and 8 testing data
volumes in the inter-subject setting. Specifically, the position
of the probe is sampled with a 10-pixel interval within 40%
around the center of the volume to avoid sampling outside
the patient. The orientation of the probe is sampled densely
around the standard view orientations by rotating around the
z-axis by −10◦ to 10◦ with an interval of 2◦, and sampled
sparsely in other orientations by rotating around the z-axis
by 30◦ to 360◦ with an interval of 30◦. The sampled image is
annotated as a standard view image if the probe pose is within
10mm and 10◦ from a standard view pose and the structural
similarity (SSIM) between the acquired image and the ground-
truth standard view image is larger than 0.5, and annotated
as background if the corresponding probe pose is more than
20mm/20◦ away from all standard views. Finally, a total of
1956 images (PSL: 535, PSAP: 381, TSP: 648, BG: 392) and
493 images (PSL: 118, PSAP: 155, TSP: 100, BG: 120) are
collected for training and testing purposes, respectively.

We quantitatively evaluate the classification performance of
the DL agent for standard view recognition on the test data
using the precision, recall and F1-score. The results of the
fine-tuned VGG-16 models with and without using the MSF
approach are reported in Table I. Moreover, the confusion
matrices on the test data are shown in Fig. 8 for a clear
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TABLE II
PERFORMANCE EVALUATION OF DIFFERENT METHODS FOR STANDARD VIEW ACQUISITION

Test setting Method
Final position error (mm) Final orientation error (◦) SSIM

PSL view PSAP view TSP view Average PSL view PSAP view TSP view Average PSL view PSAP view TSP view Average

Intra-subject

RL 9.55±11.96 9.06±15.76 8.78±8.35 9.13±12.40 7.27±13.53 17.31±43.38 6.73±2.81 10.44±26.29 0.49±0.18 0.46±0.16 0.51±0.22 0.49±0.33
RL + ASR 5.73±4.89 7.94±9.53 7.14±10.18 6.94±8.53 6.74±10.92 9.57±22.98 6.19±3.77 7.50±14.85 0.57±0.20 0.44±0.16 0.56±0.20 0.52±0.32
RL + DL 6.14±6.41 6.64±11.48 7.18±6.30 6.65±8.42 4.81±3.56 10.02±28.07 6.50±2.99 7.11±16.43 0.57±0.15 0.48±0.14 0.53±0.22 0.53±0.30
RL + ASR + DL 3.76±3.42 4.78±2.02 7.01±9.30 5.18±5.84 4.66±4.22 4.51±2.98 6.57±4.34 5.25±3.90 0.66±0.14 0.48±0.12 0.58±0.18 0.57±0.26

Inter-subject

RL 24.97±20.69 14.05±12.32 16.41±24.63 18.48±19.89 39.96±55.43 29.21±47.56 19.28±30.24 29.48±45.64 0.30±0.09 0.33±0.10 0.46±0.15 0.36±0.20
RL + ASR 18.51±16.37 14.38±16.26 11.71±22.27 14.87±18.51 15.32±26.08 24.67±46.34 10.93±13.61 16.97±31.69 0.33±0.10 0.33±0.08 0.45±0.16 0.37±0.20
RL + DL 26.21±23.02 11.16±9.94 11.07±8.85 16.15±15.35 27.65±37.78 19.75±45.93 7.20±4.24 18.20±34.42 0.39±0.12 0.37±0.10 0.49±0.15 0.42±0.22
RL + ASR + DL 18.07±11.35 10.96±11.99 9.57±10.00 12.87±11.14 18.39±31.16 19.96±43.29 14.13±30.95 17.49±35.60 0.43±0.09 0.35±0.07 0.49±0.14 0.43±0.18

Fig. 8. Confusion matrices of the (a) VGG-16 and (b) VGG-16+MSF models
for standard view recognition on the test images.

comparison. It can be observed that the proposed MSF ap-
proach can effectively improve the classification performance
of the network without increasing the complexity and number
of parameters. As shown in Fig. 8, all the PSAP and TSP views
are classified accurately by both models, while the VGG-
16+MSF model can recognize the PSL views with a higher
accuracy, showing that our localization sensitive approach can
yield better classification performance.

C. Evaluation of the Overall Framework for Standard View
Acquisitions

Then, we conduct both quantitative and qualitative exper-
iments to evaluate the overall performance of our proposed
framework for standard view acquisitions. Ablation studies are
performed to validate the effectiveness of the three components
in our proposed framework: the basic RL agent, the view-
specific acoustic shadow reward (ASR), and the dual-agent
collaborative navigation. Each of the four variations of our
method (i.e., “RL”, “RL+ASR”, “RL+DL”, “RL+ASR+DL”)
is evaluated on 24 random test cases (including 3 navigation
tests on each test data) toward each of the three standard views
in both the intra- and inter-subject settings. In each navigation
episode during the training and testing of the RL agent, the
pose of the probe is randomly initialized as follows. The hori-
zontal position of the probe is randomly sampled in the center
region {(x, y) : x ∼ U(0.3W, 0.7W ), y ∼ U(0.2L, 0.8L)} of
patient data to avoid sampling outside the patient, where L,
W are the length and width of the US volume, and the height
of the probe is then adapted to the patient surface. The z-axis
of the probe is initialized to be aligned with the −z direction
of the world frame, and the probe is randomly rotated around
its z-axis by η ∼ U(0, 360◦)}. The maximum number of steps
in each episode is limited to 120. We use the final position

Fig. 9. Navigation performance of the RL agent with and without using the
view-specific acoustic shadow reward (ASR) toward the PSL view (first line),
PSAP view (second line) and TSP view (third line). The box-plots illustrate
the evaluation metrics (total navigation reward, final position error and final
orientation error) for every test case. In each box-plot, the first two columns
show the performance of the methods in the intra-subject setting, and the last
two columns show the performance of the methods in the inter-subject setting.

error, final orientation error and structural similarity (SSIM)
between the acquired image and the target standard view image
as the evaluation metrics, to consider the navigation accuracy
in terms of both the actual distance and the image content.
The results are reported in Table II.

1) Evaluation of view-specific acoustic shadow reward:
We first evaluate the RL agents trained with and without using
ASR (i.e., by applying the reward function in (12) or (5)), and
compare their navigation performance in the acquisition of the
three standard views of the spine. We also compare the cumu-
lative navigation reward

∑T
t=0 rnav,t and final pose error of

the two agents in both test settings in Fig. 9. As shown in Table
II (lines 1-2, 5-6), the navigation accuracy of the “RL+ASR”
agent in both position and orientation shows a remarkable
improvement of 2.19mm/2.94◦ and 3.61mm/12.51◦ over the
“RL” agent in the intra- and inter-subject settings, respectively,
and the SSIM is also improved by 3% and 1% in the two
settings. It can be observed in Fig. 9 that by applying ASR in
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Fig. 10. Navigation trajectory of the “RL” agent toward the PSL view in an example test case. The first line shows the 3D plots of the virtual patient surface
(salmon), current imaging plane (green), goal plane (blue), and the corresponding probe poses. The second line shows the top-view trajectory of the agent
on the horizontal plane (green lines). The start and goal positions are indicated by a blue square and a red star, respectively. The US images are shown in
the third line, with the pose errors marked in green. The confidence maps are plotted at the bottom, with the average confidence value of the selected ROI
(yellow rectangle) marked in yellow.

the RL training, the cumulative navigation rewards are slightly
increased, and the final position and orientation errors are
generally lower compared with the basic RL agent trained
without using ASR, especially in the more challenging inter-
subject setting.

We also compare the navigation performance of the
“RL+DL” and “RL+ASR+DL” methods to see the effective-
ness of the ASR module when using RL-DL collaborative
navigation to determine the probe movement. As shown in
Table II (lines 3-4, 7-8), the “RL+ASR+DL” method yields
a better navigation performance over “RL+DL”, with a final
pose error of 5.18mm/5.25◦ and 12.87mm/17.49◦ in the
intra- and inter-subject settings, respectively, and the SSIM is
increased by 4% and 1% in the two settings. The results show
that the use of acoustic shadow information in our method
can implicitly improve the navigation performance of the RL
agent, which is consistent with the prediction in Section III-
C. It should also be noted that a decline in the orientation
accuracy by the “RL+ASR+DL” method toward the TSP view
is witnessed, which may be due to the inaccuracy introduced
by the DL-based standard view recognition module.

For a qualitative evaluation, we illustrate the navigation
trajectories by the “RL” and “RL+ASR” agents toward the
PSL view in an example test case in Fig. 10 and Fig. 11,
respectively. As shown in Fig. 10 and Fig. 11, both agents
take actions that smoothly navigate the probe toward the target
standard view in the first 45 steps in their navigation. The pose
errors of the two agents (marked in green) are greatly reduced
to 4.63mm/6.52◦ and 3.10mm/3.66◦, respectively, and the
acquired US images show high similarity with the ground truth

PSL view (see Fig. 2). However, the “RL” agent mistakenly
moves the probe away from the goal in the subsequent 5 steps,
and reaches a location with a low confidence value in the
selected ROI (step 50, c = 0.39). In the remaining steps, the
agent moves even farther away from the goal until the end of
its navigation and “misses the victory”. This may be because
the agent only learns to minimize the distance-to-goal and
cannot interpret the shadow information, so the large acoustic
shadows that suddenly appear in the image greatly affect its
navigation decisions.

In contrast, the “RL+ASR” agent keeps refining the pose of
the US probe in a small range after step 45, concerning both
the distance-to-goal and shadow characteristics, and finally
stops at a location close to the goal. Meanwhile, it can be
observed from the confidence maps in Fig. 11 that the acoustic
shadow area in the selected ROI of the “RL+ASR” agent is
gradually decreased during the fine-tuning of the probe pose
in steps 45 to 65. This shows that the shadow-aware agent
has learned to maximize both the navigation reward and the
auxiliary shadow reward so that it can utilize the shadow
information to achieve better US acquisition results.

2) Evaluation of dual-agent collaborative navigation:
Then, we evaluate the dual-agent collaborative navigation
method for the integration of the RL and DL agents, as
described in Section III-E. As shown in Table II, “RL+DL”
and “RL+ASR+DL” denote the methods that use RL-DL
collaborative navigation with the RL agent trained without and
with ASR, respectively.

We first take a look at the performance of the dual-agent
collaborative navigation approach when using the basic “RL”
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Fig. 11. Navigation trajectory of the “RL+ASR” agent toward the PSL view in the same test case as in Fig. 10. The first line shows the 3D plots of the
virtual patient surface (salmon), current imaging plane (green), goal plane (blue), and the corresponding probe poses. The second line shows the top-view
trajectory of the agent on the horizontal plane (green lines). The start and goal positions are indicated by a blue square and a red star, respectively. The US
images are shown in the third line, with the pose errors marked in green. The confidence maps are plotted at the bottom, with the average confidence value
of the selected ROI (yellow rectangle) marked in yellow.

agent. As shown in Table II (lines 1, 3), compared with the
“RL” method, the “RL+DL” method can significantly reduce
the final pose errors and increase the similarity between the
acquired images and standard views in the intra-subject setting,
especially for the PSL and PSAP view acquisitions. In the
inter-subject setting, the final pose error and SSIM of the
“RL+DL” method toward the PSAP and TSP views also see
a large improvement over the “RL” method (see Table II,
lines 5, 7), while a slight deterioration is found in the final
position error during the PSL view acquisition. This may be
due to the inaccurate recognition results of the DL agent and
the suboptimal navigation trajectory of the RL agent trained
without ASR.

Second, we compare the navigation performance of the
“RL+ASR” and “RL+ASR+DL” methods to validate the ef-
fectiveness of the dual-agent collaborative navigation method
when used in combination with ASR. As shown in Table II
(lines 2, 4, 6, 8), the “RL+ASR+DL” method further im-
proves over the “RL+ASR” method in the final position errors
toward the standard views in both intra- and inter-subject
settings. While the orientation error of the “RL+ASR+DL”
method shows a slight increase by 0.52◦ compared with
the “RL+ASR” method in the inter-subject setting, the final
SSIM between the acquired image and the goal image of
the “RL+ASR+DL” method shows a remarkable improvement
over “RL+ASR” by 6%. This may be because the dual-agent
framework is more sensitive to the US image content since
it takes advantage of the standard view recognition results.
Since the ultimate objective of our method is to acquire
the standard view images that visualize the target anatomical

structures, the slight deterioration of the orientation accuracy
can be considered as tolerable compared with the significant
improvement of image similarity.

We further investigate the effectiveness of the dual-
agent collaborative navigation through qualitative analysis. As
shown in Fig. 12, the standard view acquisition results of
the “RL+ASR” and “RL+ASR+DL” methods are compared
on example test cases. It can be observed in Fig. 12(a) that
the “RL+ASR” agent takes a zig-zag path toward the PSL
view in the first ∼ 40 steps, and then moves aways from the
goal and terminates the navigation at step 84, ending up with
a pose error of 19.64mm/2.39◦ and a low SSIM of 0.25.
While the “RL+ASR+DL” stops at step 47, with a pose error
of 7.51mm/2.35◦ and an SSIM of 0.54, showing that using
the standard view recognition results for active termination
can effectively improve the navigation performance. For the
PSAP view acquisition, as shown in Fig. 12(b), the “RL+ASR”
agent also gradually approaches the goal at first, but takes
some wrong actions in the last 20 steps and ends up with a
slight deviation from the goal (6.45mm/9.08◦). By applying
the dual-agent collaboration navigation method, the stopping
position is closer to goal (3.02mm/9.08◦), and the SSIM is
also increased from 0.30 to 0.49. As shown in Fig. 12(c),
during the navigation toward TSP view, the “RL+ASR” agent
gets trapped around the initial position and stops at step 40
with a large pose error of 24.76mm/4.81◦. In contrast, the
“RL+ASR+DL” agent makes an exploration and begins a new
round of search, and successfully reaches the goal at step 91,
with a high accuracy of 1.68mm/4.26◦ and an SSIM of 0.72.
This is because the proposed dual-agent framework can mimic



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 12. (a)-(c) illustrate the PSL, PSAP, and TSP view acquisitions by the
“RL+ASR” and “RL+ASR+DL” methods on example test cases. The first line
shows the top-view navigation trajectories toward each target standard view
(green line), with the start and goal positions indicated by a blue square and
a red star. The final stopping position of the RL agent (“RL stop”) and the
best stop determined by dual-agent collaborative navigation (“best stop”) are
indicated by green and orange balls, respectively. The next two lines show the
final images acquired at the RL stop and the best stop, with the corresponding
termination step (yellow), final SSIM (cyan) and pose error (green).

the behavior of a sonographer to randomly reposition the probe
on the patient multiple times. As a result, it can escape from
bad initial positions to better search for the target anatomy and
efficiently navigate the probe toward the goal within the time
limit.

D. Video Demonstration

Video demonstration is available at https://youtu.
be/qhtZ7-vY6M8 and https://www.bilibili.com/video/
BV1A3411C78V/ for a better visualization of our results.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a framework that inte-
grates RL and DL techniques for autonomous standard view
acquisitions in robotic spinal sonography. The proposed RL
agent can automatically control the 6-DOF movement of a
US probe based on US images, and utilize the task-specific
acoustic shadow information to guide the navigation. The
location-sensitive DL agent for standard view recognition can
jointly determine the movement of the probe to improve the
navigation accuracy and efficiency. Our results in both quanti-
tative and qualitative experiments show the effectiveness of the
proposed framework, with an average navigation accuracy of
5.18mm/5.25◦ and 12.87mm/16.97◦ in the intra- and inter-
subject settings, respectively.

In view of the real-world application of the framework,
some additional challenges need to be addressed. First, the

planned motion of the probe by our method should be executed
under force monitoring and control to ensure patient safety and
comfort during the robotic acquisition. Also, our simulation
of probe-patient interaction has not considered the impact of
contact force on the imaging results, such as tissue deforma-
tion. However, since we focus on the spinal applications, the
bone structure can be roughly considered as rigid with little
deformation during the scan when the force is controlled in a
safe range. To generalize the proposed method to the imaging
of some highly deformable human tissues (e.g., abdominal or-
gans), the simulation environment need some modifications to
include the force control by introducing additionally recorded
force-image paired data. Another limitation of this work is
that our simulation only considers a static patient without
movement during the scan, while patient movement may cause
undesired displacement of the probe in real-world US scans.
Although our method can learn probe-centric navigation based
on real-time US images, which has the inherent advantage
of overcoming tissue movement, its robustness under patient
movement has not been fully assessed. To this end, future work
should also take into account the tissue motions to improve
the robustness of the learned navigation policy.

Despite the challenges that need to be tackled before the
method could be used in the clinical setting, our presented
work has the potential to realize autonomous and intelligent
robotic US imaging, and will hopefully pave the way for a
promising future of US-based medical care.
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