
Discovering and Exploiting Sparse Rewards in a
Learned Behavior Space

Giuseppe Paolo giuseppe.paolo@softbankrobotics.com
AI Lab, SoftBank Robotics Europe
Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR
Paris, France

Alexandre Coninx alexandre.coninx@sorbonne-universite.fr
Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR
Paris, France

Alban Laflaquière alaflaquiere@softbankrobotics.com
AI Lab, SoftBank Robotics Europe
Paris, France

Stephane Doncieux stephane.doncieux@sorbonne-universite.fr
Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR
Paris, France

Abstract
Learning optimal policies in sparse rewards settings is difficult as the learning agent has
little to no feedback on the quality of its actions. In these situations, a good strategy is to
focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A
learning algorithm capable of dealing with this kind of settings has to be able to (1) explore
possible agent behaviors and (2) exploit any possible discovered reward. Efficient exploration
algorithms have been proposed that require to define a behavior space, that associates to an
agent its resulting behavior in a space that is known to be worth exploring. The need to define
this space is a limitation of these algorithms. In this work, we introduce STAX, an algorithm
designed to learn a behavior space on-the-fly and to explore it while efficiently optimizing
any reward discovered. It does so by separating the exploration and learning of the behavior
space from the exploitation of the reward through an alternating two-steps process. In the
first step, STAX builds a repertoire of diverse policies while learning a low-dimensional
representation of the high-dimensional observations generated during the policies evaluation.
In the exploitation step, emitters are used to optimize the performance of the discovered
rewarding solutions. Experiments conducted on three different sparse reward environments
show that STAX performs comparably to existing baselines while requiring much less prior
information about the task as it autonomously builds the behavior space.

Keywords
Sparse Rewards, Novelty Search, Emitters, Evolutionary Algorithms, Quality Diversity

1 Introduction

For an embodied agent whose goal is to learn a policy capable of solving a task, situations of
sparse rewards can be difficult to deal with. The reason behind this is that many policy-learning
algorithms work by optimizing a reward function providing feedback on the performances of
the policy. A well designed reward function has to provide a reward often enough so that the
agent can know how good each performed action is (Sutton and Barto, 2018). These kind of

ar
X

iv
:2

11
1.

01
91

9v
1

 [
cs

.L
G

]
 2

 N
ov

 2
02

1

 Evaluation Population Environment

O
bservations Selection

Exploration

YES

NO

Reward

Autoencoder

Training

Exploitation

Boostrap

Step

Emitter

Step

Scheduler

KK K K

Budget

K K K K

K

Autoencoder

Figure 1: STAX consists of an exploration and an exploitation process alternating thanks to a
scheduler. During exploration, the algorithm explores and learns a representation of the behavior
space through an AE trained online. Any discovered reward is then exploited in the exploitation
step through emitters.

rewards are called dense rewards. On the contrary, in sparse rewards settings this feedback is
provided sparingly, only after a given amount of time is passed or if a specific situation happens.
In these situations, it is difficult for a learning agent to evaluate how good a policy is and how
appropriate each action is to each situation. This can reduce the performances or even hinder
the learning of a good policy. An example of this can be a robotic arm learning how to pick an
object. The simplest way of rewarding the agent is to give the reward when the arm picks the
object, while designing a reward that could lead the arm to pick the object is very hard. For
these reasons, when a reward feedback is not readily available, a good strategy is to focus on
exploration, with the goal of finding a reward in the future.

Following this strategy, the way exploration is performed becomes fundamental. Standard
Reinforcement Learning (RL) algorithms, as described by Sutton and Barto (2018), perform
exploration through random actions, a strategy that renders unlikely to find rewards if they are
sparse enough. This problem has been addressed with the introduction of different approaches,
based on both RL methods and Evolutionary Algorithms (EAs) (Andrychowicz et al., 2017;
Trott et al., 2019; Ecoffet et al., 2019; Paolo et al., 2021; Hare, 2019; Riedmiller et al., 2018;
Eysenbach et al., 2018; Lehman and Stanley, 2008). Among them, Novelty Search (NS) is
an EA that completely discards any performance information, focusing solely on exploration
by looking for a set of policies whose behaviors are as different as possible (Lehman and
Stanley, 2008). This is done in an hand-designed space, the behavior space (BS), in which the
behavior of each one of the generated policies is represented in order to evaluate their diversity.
The development of NS has led to the birth of the evolution-based divergent search family of
algorithms, also known as Quality-Diversity (QD) (Pugh et al., 2016; Cully and Demiris, 2017).
These methods, in addition to focusing on pure exploration through divergent search, can also
optimize the performances of the discovered policies. This grants a strong advantage over
methods like NS that tend to produce low performing solutions with respect to the a posteriori
evaluation on a rewarding task. Nonetheless, the exploration abilities of these approaches, NS

2

included, is often limited by the need to hand-design the BS. While this allows the designer to
define what aspects of the problem needs to be explored, it also increases the engineering cost
of these methods while limiting the range of problems to which they can be applied. To address
this issue, researchers have introduced methods that can autonomously learn the BS through
representation learning approaches, thus reducing the amount of prior information needed for
the design of the BS itself (Liapis et al., 2013; Paolo et al., 2020; Grillotti and Cully, 2021).
Notwithstanding the good results obtained by these methods, they are still limited either by the
discarding of reward-related information of NS (Liapis et al., 2013; Paolo et al., 2020) or by the
need to discretize the learned BS (Grillotti and Cully, 2021).

In this paper we introduce the STAX algorithm, a method that can perform exploration in a
search space that is autonomously learned at execution time, while also optimizing any possible
discovered reward. As with NS, this exploration is completely reward agnostic, but contrary to
this method, once an area of the search space is discovered to contain a reward, STAX performs
a local search in this area with the goal to optimize the total obtained reward. This optimization
is performed through emitters, a concept introduced by Fontaine et al. (2020), consisting in
instances of reward-based EAs used to perform local search in an area of the whole BS. The idea
of emitters was used in SparsE Reward Exploration via Novelty search and Emitters (SERENE)
(Paolo et al., 2021) optimize any reward discovered during the search performed by NS. At the
same time, SERENE still relies on an hand-designed BS in which to perform the search. STAX
builds on SERENE by removing this requirement thanks to the ideas introduced by Paolo et al.
(2020) with the Task Agnostic eXploration of Outcome spaces through Novelty and Surprise
(TAXONS) algorithm. This approach uses an autoencoder (AE) to learn the behavior space
online while performing the search with minimal prior information from the part of the designer.

SERENE augmented TAXONS (STAX) deals with sparse reward problems by separating
the exploration and the learning of the unknown search space from the exploitation of any
possible reward through an alternating two-steps process. In the first step, the algorithm
explores the search space guided by the low-dimensional representation of the policies behavior
given by the AE. At the same time, this representation is learned by training the AE on the
data collected during the evaluation of the discovered policies. When rewards are found, they
are exploited in the second step through the use of emitters, in a way similar to what SERENE
(Paolo et al., 2021) does.

As a recap, STAX performs three main tasks: (1) it learns a behavior space while (2) explor-
ing it and (3) once a reward is found it exploits it in an efficient way. The method builds on NS by
adding an AE (Hinton and Zemel (1994)) to learn a low dimensional representation of the search
space, similar to what both Grillotti and Cully (2021) and Paolo et al. (2020) have done. More-
over, the reward is exploited through emitters, a concept introduced by Fontaine et al. (2020) and
used by Cully (2020) and Paolo et al. (2021) to quickly improve on rewards. The advantages pro-
vided by STAX are twofold: (1) it can efficiently deal with sparse rewards situations, thanks to
the separation of the exploration process from the exploitation of the reward provided by the use
of emitters; (2) by autonomously learning the BS, it removes the limitation of classical divergent-
search approaches requiring an hand-designed search space, thus greatly reducing the amount of
prior informations needed at design time. All of this allows STAX to efficiently deal with sparse
reward environments with minimum prior information required about the task at design time.

The paper is organized as follows: Sec. 2 will present an overview of related work and
the methods on which STAX builds. The STAX method itself is detailed in Sec. 3, while the
experimental settings on which it has been tested are shown in Sec. 4. The obtained results are
shown and discussed in Sec. 5. The paper concludes with Sec. 6, in which possible extensions
and improvements are discussed.

3

2 Background and related work

This section presents an overview of other works on the sparse rewards problem, together with
an explanation of how NS and emitters work.

2.1 Sparse Reward
For many policy learning approaches, the reward function is fundamental: it is through this
function that the designer communicates to the learning agent what the goal the policy should
solve is (Sutton and Barto, 2018). If the reward signal is given sparingly, after a lot of time
or only if certain conditions are met, the agent can often find itself in situation in which
no reward is present, thus with no signal to drive the learning. To address this issue, many
approaches have been proposed. Some of these approaches rely on reward shaping (Mataric,
1994; Ng et al., 1999), a technique consisting in augmenting the original reward function with
additional features that are supposed to provide the agent with a better guidance in solving
the task (Hu et al., 2020; Berner et al., 2019; Trott et al., 2019). Another successful strategy
is the self-assigning of goals. This can be done either by using information from previously
encountered situations (Andrychowicz et al., 2017), or by using the representations of an
unsupervised learning algorithm over a distribution of possible targets (Nair et al., 2018).

A different approach is based on Intrinsic Motivation (IM) (Oudeyer and Kaplan, 2009;
Aubret et al., 2019), by having the agent generate its own learning signal, without the need
of any environmental reward. This can be obtained by estimating the novelty of a state by
considering how often that state has been visited (Bellemare et al., 2016; Burda et al., 2018).
The less novel a state is, the more the agent is pushed to go elsewhere, thus performing
more exploration. Goal-Exploration Processes (GEP) are another family of algorithms that
use the self assignment of goals to foster exploration (Baranes and Oudeyer, 2013; Forestier
et al., 2017; Laversanne-Finot et al., 2018). Forestier et al. (2017) use this to firstly learn a
goal-parametrized policy and then use this policy to solve the given task. These approaches
have also been used with two-phases strategies to help separate the exploration process from
the exploitation of the possible discovered rewards Colas et al. (2018); Ecoffet et al. (2019).

Divergent-search algorithms are a family of EAs specifically designed to focus on
exploration, rendering them naturally suited to deal with sparse reward situations (Lehman
and Stanley, 2008; Cully and Demiris, 2017; Pugh et al., 2016). The first introduced method
of this family is NS, introduced by Lehman and Stanley (2008), that works by completely
ignoring any reward signal in order to generate a set of solutions as diverse as possible. Inspired
by NS, many other methods have been introduced that not only focus on the diversity of the
solutions, but also optimize their performances with respect to a given objective. This gave
rise to a new family of methods called Quality-Diversity (QD) (Cully and Demiris, 2017; Pugh
et al., 2016; Cully et al., 2015; Eysenbach et al., 2018; Lehman and Stanley, 2011; Paolo et al.,
2021; Mouret and Clune, 2015). Moreover, given the great exploration abilities provided by
divergent-search algorithms, some researchers combined them with RL methods to better deal
with sparse reward situations (Colas et al., 2018; Cideron et al., 2020).

2.2 Novelty Search
Novelty Search (NS) is an EA that drives the search by focusing on maximizing the diversity
of a set of solutions (Lehman and Stanley, 2008). To do this, the algorithm uses a metric called
novelty, calculated in an hand-designed behavior space B in which the behavior of each policy
is represented. This space, in the literature also called outcome space (Paolo, 2020), is at the
heart of NS and needs to be tailored to the problem at hand by using prior knowledge on the
system and the task.

The algorithm works by evaluating each policy, parametrized by a set of parameters θi ∈ Θ,

4

on the system for T time-steps. During this evaluation, the system traverses a set of states st
generating a trajectory of traversed states τs = [s0, . . . , sT]. These states are observed by
the agent through some sensors, generating a corresponding trajectory of observations τO =
[o0, . . . , oT], where ot ∈ O is the, possibly partial, observation of state st. These observations
can be generated in different ways, depending on the setting. If the states are known, the agent
can directly work with them, in which case ot = st. In other situations, the state needs to be
observed through sensors, in which case ot would be a, possibly partial, representation of st. The
trajectory of observations τO is then used to extract the corresponding behavior descriptor bi ∈ B
of the policy θi through an observer function OB : O → B. The whole process is summarized
by using a behavior function φ : Θ→ B that directly maps a policy to its behavior descriptor:

φ(θi) = bi. (1)

Once the behavior descriptors of all the policies in a population have been calculated, the
novelty of a policy θi in the population can be obtained by measuring the average distance of
its behavior descriptor with respect to the descriptors of its k closest policies. The higher this
distance, the more novel the behavior of a policy is considered. The novelty η(θi) is calculated
through the following equation:

η(θi) =
1

|J |
∑
j∈J

dist(bi, bj) =
1

|J |
∑
j∈J

dist(φ(θi), φ(θj)) (2)

where J is the set of indexes of the k closest policies to θi in the outcome space.
At each generation, the novelty of the policies is calculated and the ones with highest

novelty are selected to be part of the next generation population. At the same time NQ policies
are selected at each generation to be stored into an archive ANov. The function of the archive
is to keep track of the already explored areas of the search space, pushing the search towards
less visited areas. This is done by selecting the |J | policies used for the novelty calculation in
equation 2 not only from the current population but also from the archive.

2.3 Learning an outcome descriptor

At the core of many divergent search algorithms lies a hand-designed BS. The need to
hand-design this space poses strong limitations for the application of these methods to various
problems in which it is not clear what are the factors important for the exploration. To
overcome this problem, many approaches that use representation learning methods to learn
a low-dimensional representation of the behavior of the policy have been recently proposed
(Paolo et al., 2020; Cully, 2019; Liapis et al., 2013).

Cully (2019) uses the learned low-dimensional representation to describe the behavior
of the policy and select in which cell of the MAP-Elites grid the policy itself belongs. At the
same time, TAXONS (Paolo et al., 2020) selects the policies not only based on the novelty
calculated through the learned low-dimensional representation, but also on the reconstruction
error of the AE through a metric called surprise. The idea behind this is that the higher the
reconstruction error, the less often a behavior has been seen, thus the more novel it is. This
is similar to the approaches introduced by Burda et al. (2018) and Salehi et al. (2021). STAX
uses TAXONS to learn the low-dimensional representation of the behavior of a policy during
the exploration phase, thus removing the need to hand-design the BS. At the same time, rather
than selecting the policies according to only one of the two metrics, novelty or surprise, as done
by TAXONS, it uses the NSGA-II Multi-Objective optimization (MOO) approach (Deb et al.,
2002) to combine both objectives and select the most innovative policies.

5

2.4 Emitters
Notwithstanding its exploration capabilities, vanilla NS is not equipped to take advantage of
any reward that can be found during the search. This limits the power of the algorithm and
discards some important information on the task that can be used to steer and improve the
efficiency of the search. Many solutions have been proposed to address this problem (Lehman
and Stanley (2011); Mouret and Clune (2015); Cully et al. (2015); Cully (2020); Paolo et al.
(2021)), leading to the development of the QD family of algorithms (Pugh et al. (2016); Cully
and Demiris (2017)).

Among QD algorithms worth of notice are approaches using emitters. Introduced by
Fontaine et al. (2020) and later used by Cully (2020) and Paolo et al. (2021), emitters are in-
stances of reward-based EAs instantiated during the search performed by another EA to quickly
explore a small area of the search space while optimizing on the reward. There is no limitation
on the kind of algorithm to use as an emitter. In the work from Fontaine et al. (2020), the CMA-
ME algorithm uses MAP-Elites in conjunction with estimation-of-distribution emitters. The
algorithm works by sampling a policy θi from the MAP-Elites archive and using it to initialize
the population of an emitter Ei, that is then evaluated until a termination condition is met. The
policies discovered are added to the MAP-Elites archive according to a given addition strategy.
Once an emitter is terminated, another policy θj is selected from the MAP-Elites archive to
initialize another emitter. The cycle is repeated until the whole evaluation budget is depleted.

Another method using emitters is SERENE. Introduced by Paolo et al. (2021), the algo-
rithm is based on NS and targets explicitly sparse rewards problems. Contrary to CMA-ME,
SERENE works through an alternating two-stages process, one performing exploration, the
other exploiting the found rewards. Exploration is done through NS over the hand-designed
BS B. Once a reward is discovered, it is exploited in the exploitation step when emitters are
launched over the rewarding area of the search space BR ⊆ B. This allows the algorithm to
be more efficient in situations of sparse rewards in which, while the search can be global, the
optimization of the reward has to be local around the rewarding policy.

The method introduced in this work augments SERENE with the ability to autonomously
learn a BS through a strategy similar to TAXONS (Paolo et al., 2020). In the next sections we
will detail how STAX works and how, by taking advantage of emitters and the unsupervised
learning of the BS, it is possible to quickly explore an unknown search space while efficiently
optimizing any possible discovered reward.

3 Method

STAX deals with the limitations of NS for sparse rewards settings by separating the search
process in two alternating sub-processes: one performing exploration of the search space and
another performing exploitation of any discovered reward. This allows STAX to find different
high reward policies with minimal prior information about the task. The alternation between the
two processes is performed through a meta-scheduler whose task is to split the total evaluation
budget Bud in small chunks of size KBud and assign them to either one of the two sub-
processes, as in the SERENE algorithm (Paolo et al., 2021). At the same time, STAX reduces
the amount of prior information needed to solve the task by removing the need to hand-design
the behavior space (BS). This is achieved by learning a low-dimensional representation of this
space through an AE, directly from high-dimensional observations collected during the policy
evaluation, in a fashion similar to TAXONS (Paolo et al., 2020). The AE is trained online on
the data generated by the evaluation of the policies θi ∈ Θ. The encoder part of the AE can
then be used as observation function and its feature space F as behavior space B.

The algorithm starts with the exploration phase, in which exploration of the behavior
space B is performed. The search is driven by using the information extracted by the AE from

6

Algorithm 1: STAX
INPUT: evaluation budget Bud, budget chunk size KBud, population size M , emitter

population size ME , offspring per policy m, mutation parameter σ, number of
policies added to novelty archive Q, AE training interval TI , randomly initialized
AE;

RESULT: Novelty archive ANov, rewarding archive ARew, trained AE;
ANov = ∅;
ARew = ∅;
QEm = ∅;
QCand Nov = ∅;
QCand Em = ∅;
D = 0;
Initialized training counter TIC = 0;
Sample population Γ0;
Split Bud in chunks of size KBud;
while Bud not depleted do

if Γ0 then
Evaluate θi, ∀θi ∈ Γ0;
Calculate bi = φ(θi) ∈ B, ∀θi ∈ Γ0;

Exploration Phase (KBud, m, σ, ANov, QCand Em, Γg , Q, AE);
TIC = TIC + 1;
if TIC == TI then

DS = Extract dataset(ANov, ARew, Γg , Γmg);
Train Autoencoder (AE, DS);
Update descriptors (AE, Γg , Γmg , ANov, ARew, QEm, QCand Nov, QCand Em);
TI = TI + 1;
TIC = 0;

if QCand Em! = ∅ or QEm! = ∅ then
Exploitation Phase (KBud, QCand Em, λ, m, QEm, ANov, ARew, ME);

the observations collected during the evaluations of the policies. This same observations are
used to train the AE online in an unsupervised way after the exploration steps. The training
process allows STAX to learn a low-dimensional representation of the BS that is used to drive
the search. For the first iterations of the search, the AE representation is still immature, so the
training happens more frequently; but once few training iterations have been performed, the
AE can better represent the behaviors, so the training happens less and less frequently. Finally,
if a policy θi obtains a reward, it will be used during the exploitation phase to instantiate an
emitter in order to improve on the reward. The rationale being that behaviors similar to the
rewarding behavior f(θi) are likely rewarding too, with possibly even higher performances than
f(θi). These behaviors can be considered to belong to the subspace of rewarding behaviors
BRew ∈ B and their corresponding policies can be discovered by performing local search
around θi through emitters. Note that the reward exploitation performed during this phase does
not rely on any behavior descriptor. The quality of the BS learned representation then does not
interfere with the reward optimization process. This means that if a reward is discovered at the
initial stages of the search, when the BS has not been learned yet, STAX can still exploit it with
great efficiency thanks to descriptor-less emitters.

During its operation, STAX tracks the policies generated in the different phases of the
search through a set of buffers and containers:

7

• novelty archive ANov: a collection of policies with diverse behaviors found during the
exploration phase. This is one the two collections of policies returned as output of STAX;

• reward archive ARew: a set of the most rewarding policies found during the exploitation
phase. This is the other collection of policies returned as output of STAX;

• candidates emitter buffer QCand Em: a buffer in which the rewarding policies φ(θi) ∈ BRew
found during the exploration phase are stored before being used to initialize emitters in the
exploitation phase;

• emitter buffer QEm: a buffer in which the initialized emitters to be evaluated during the
exploitation phase are stored;

• novelty candidates buffer QCand Nov: an emitter specific buffer in which the most novel
policies found by the emitter are stored. Each emitter has its own novelty candidate buffer
from which policies are sampled to be added toANov at the termination of the emitter itself.

These sets are the same as the ones used by SERENE, and an high-level overview of their
interactions is shown in Fig. 2.

 Rewarding

Policies

TAXONS
Novelty

Archive

Reward

Archive

Dataset
Generation

Novelty
Calculation

AE

Training

Novel

Policies

 Sampled

Policies

Novelty

Candidates

Buffer

Novel

 Policies

Candidates

Emitter
Buffer

 Initialized

Emitters

Bootstrap

Step

Novel

 Policies

Best

Policies

Emitter

Step

 Selected

Emitters

Emitter

Buffer

Exploration Phase

Exploitation Phase

Figure 2: Overview of the containers used during the search by STAX to track the discovered
policies and the initialized emitters. The two collections returned as output of the algorithms are
highlighted in red.

The three main steps of STAX - exploration, training of the AE and exploitation of the
reward - are detailed respectively in sections 3.1, 3.2 and 3.3. The whole STAX algorithm is
illustrated in Fig. 1 and described in Alg. 1.

3.1 Exploration
Having minimal prior information about the task, STAX starts by performing the exploration
step. The first time this step is performed, the M policies θ ∈ Θ in the initial population Γ0 are
sampled from a normal distribution N (0, I). The AE used to drive the search is also randomly
initialized. 1 At each generation g, m policies θji are generated for each policy θi in the current
population Γg through a mutation operator. This will result in an offspring population Γmg of
size m×M whose policies are formed as:

∀j ∈ {1, . . . ,m},∀i ∈ {1, . . . ,M}, θji = θi + ε, with ε ∼ N (0, σI). (3)

1The initialization is done through the default Pytorch initialization.

8

The policies in the offspring population θ ∈ Γmg are then evaluated. During the evaluation of a
policy θi the system traverses a trajectory of states τ is = [si0, . . . , s

i
T] that are observed through

sensors, generating a corresponding trajectory of observations τ io = [oi0, . . . , o
i
T]. The policy is

then assigned a behavior descriptor obtained by using multiple observations sampled along τ iO.
The descriptor is generated by encoding the sampled observations thanks to the AE’s encoder
E(·) and then stacking their low-dimensional representations together. This can be described
according to Eq. (4):

f(θi) = [. . . , E(oitk), . . . , E(oitK)], (4)

where oitk is the observation generated by the policy θi at time-step tk. Using multiple
observations along the trajectory allows to remove the assumption, done by Paolo et al. (2020),
that the last observation contains enough information to describe the whole behavior of a policy.

The diversity of a policy is evaluated through two metrics: novelty and surprise. The first
one is similar to NS novelty from Eq. (2), in which φ(θi) is represented by f(θi). This can be
represented as in Eq. (5):

η(θi) =
1

|J |
∑
j∈J

dist(f(θi), f(θj)). (5)

At the same time, the surprise is calculated as the sum of the AE’s reconstruction error over
each one of the sampled observations generated by θi. A higher surprise implies that the AE has
not seen that area of the learned behavior space very often. This means that selecting policies
with high surprise leads the algorithm to increased exploration. Such metric is defined as:

s(θi) =
∑
k∈K

∣∣∣∣oitk −D(E(oitk)
)∣∣∣∣2, (6)

where K is the list of indexes of the selected time-steps along the trajectory.
The two metrics are used to select the policies that will form the population for the next

generation Γg+1 through the NSGA-II multi-objective approach (Deb et al., 2002). This is in
contrast to what done by Paolo et al. (2020) in TAXONS, in which only one among novelty and
surprise was sampled at each generation to be used for policy selection.

Finally, NQ policies are uniformly sampled to be added to the novelty archive ANov.
Moreover, all the rewarding policies found in this phase are added in the candidates emitter
buffer QCand Em to be used during the exploitation phase to generate emitters. The whole
exploration process is shown in Algorithm 2.

3.2 Training of the autoencoder
The exploration performed by STAX is driven by the AE. This means that the way the AE itself
is trained, and thus the quality of the learned low-dimensional representation, is fundamental
in order to obtain good exploration. In order to meaningfully look for diversity in the learned
behavior space B, the AE has to be trained on the data collected during the search for policies
itself. This data is collected into a dataset DS consisting in the observations used to generate
the behavior descriptor of the policies, as defined in Eq. (4). The policies whose observations
are added to DS are the ones contained in both the reward archiveARew and the novelty archive
ANov, with the addition of the observations from the population Γg and the offspring population
Γmg of the last evaluated generation g. The data of the archives provides a curriculum, stabilizing
the training process and preventing the search from cycling back to already explored areas. At
the same time, adding the observations from the most recent population to the training dataset
helps the AE to better represent the frontier of the explored space, towards which the search is
to be pushed.

9

Algorithm 2: STAX Exploration Phase
INPUT: budget chunk KBud, number of offspring per parent m, mutation parameter
σ, novelty archive ANov, candidate emitters buffer QCand Em, population Γg , number
of policies NQ, autoencoder AE;

while KBud not depleted do
Generate offspring Γmg from population Γg;
Evaluate θi, ∀θi ∈ Γmg ;
Calculate bi = φ(θi) = [. . . , E(oitk), . . . , E(oitK)] ∀θi ∈ Γmg ;
Calculate η(θi) = 1

|J|
∑
j∈J dist(bi, bj), ∀θi ∈ Γmg ;

Calculate s(θi) =
∑
k∈K

∣∣∣∣oitk −D(E(oitk)
)∣∣∣∣2 ∀θi ∈ Γmg ;

ANov ← NQ samples from Γmg ;
if φ(θi) ∈ BRew then
QCand Em ← θi

/* NSGA-II based policy selection */
Calculate non dominated fronts Fj , ∀θi ∈ Γmg

⋃
Γg;

Sort fronts according to non domination;
Generate Γg+1 from most non dominated solutions θi ∈ Fj ;
if If last front FJ is partially selected then

Calculate crowding distance ∀θi ∈ FJ ;
Complete filling up Γg+1 with less crowded solution θi ∈ FJ ;

Once the dataset DS has been collected, it is split into two sub-datasets: the training
dataset DSTrain and the validation dataset DSVal. For each training episode, the AE is trained on
theDSTrain. At the end of each training epoch onDSTrain, the model validation error is calculated
on DVal. The training episode is stopped if the error increases for 3 consecutive epochs.

As stated in Sec. 3, the AE is trained less frequently the longer the search is performed;
the same strategy employed in the AURORA method (Cully (2019)). This allows to adapt the
frequency of the training to the maturity of the learned BS, while saving time and computational
resources with respect to training the AE at fixed intervals. Moreover, by training less
frequently, the possible overfitting of the AE on the data present in the archives is limited. This
shifting training regime is obtained by performing the training process every TI exploration
steps. At the beginning of the search, STAX sets TI = 1. Its value is then increased by 1 every
time a training episode is performed.

Finally, at the end of each training episode, the behavior descriptor of all the policies
present in the archives and in the populations is updated with the new descriptors generated by
the retrained AE. This allows to keep the behavior descriptors and the novelty measurements of
the policies consistent and meaningful.

3.3 Exploitation

At the end of the exploration step, if the emitters candidate buffer QCand Em or the emitters
buffer QEm are not empty, the meta-scheduler assigns a budget chunk KBud to the exploitation
step. The objective of this phase is to evaluate the emitters to improve on the reward. This is
done through two sub-steps: the bootstrap step and the emitter step. During the bootstrap step,
the policies in the emitters candidate buffer QCand Em are used to initialize emitters that are
quickly evaluated to find the ones with potential to improve on the reward. The emitters with
such potential are then added to the emitter buffer QEm to be fully evaluated during the emitter
step. At the same time, the emitters not capable of improving on the reward are discarded. This
ensures that only promising emitters are considered for full evaluation in the emitter step, thus

10

ENCODING
+

STACKING

Figure 3: The behavior space generated by stacking the learned representations from multiple
observations generated during the search can contain multiple reward areas. Even if the original
ground-truth space contained only one.

preventing a waste of evaluation budget.
Using emitters allows to disjointly optimize multiple reward areas in an efficient way.

This is fundamental for an approach like STAX in which the BS is autonomously learned. In
hand-designed BS the engineer has total control over the BS itself, allowing him to reduce the
disjointedness of the reward areas. This is not the case when the behavior descriptor is generated
by stacking multiple learned representations extracted from high-dimensional observations, as
done by STAX. In this kind of settings there is no guarantee that the new BS will have the same
structure of the reward areas as the ground-truth hand-designed BS. Given the complex nature
of the learned BS, due to the stacking of the encoding of multiple observations, it can happen
that this space contains multiple reward areas, even if only one is present in the ground-truth
BS, as shown in Fig. 3. The effect is even more likely in the first phases of the search, when the
AE is not yet properly trained and its feature space not completely mature. For these reasons,
using an emitter-based approach as STAX capable of focusing on multiple reward areas can
give a strong advantage in situations where the BS representation is so complex.

In the following we will describe in detail how the two sub-steps of the exploitation
process work and how the reward is optimized.

Bootstrap step

The candidates emitters buffer QCand Em contains all the rewarding policies found during the
exploration phase. During the bootstrap step emitters are initialized from these policies starting
from the most novel ones with respect to the reward archive ARew. This allows STAX to focus
more on the less explored areas of the rewarding behavior space BRew.

An emitter is an instance of a reward-based EA. In this paper we use as emitters an elitist
EA, similarly to the work of Paolo et al. (2021). At each generation, the emitter selects the
population among the best performing policies θ̃j from the previous generation’s population and
offsprings, while the offsprings themselves are generated according to Eq. (3). Using an elitist
EA removes the need to estimate a covariance matrix from the emitter population. This estima-
tion can be unstable in situations in which the population size is lower than the dimensionality
of the space, as it can be often the case when working with neural networks. To prevent this
instability issue, methods like CMA-ES (Hansen, 2016) take into account information about
older generations when estimating the covariance. This can render the estimation of the quality
of an emitter from its initial generations less reliable, limiting the performance of a method like
STAX which discards less promising emitters according to their initial performance.

Each one of the emitters Ei used by STAX consist of a population Pγ of size ME of
policies θ̃i ∈ Θ, its offspring population Pmγ of size m × ME , a novelty candidates buffer
QCand Nov in which the most novel policies are stored, a generation counter γ, and a tracker
for the highest reward found until now Rγ . At the same time, the emitter also tracks two
novelties, ηγ , that is the novelty of the most novel policy found until generation γ, and the

11

Algorithm 3: STAX Exploitation Phase
INPUT: budget chunk KBud, candidate emitters buffer QCand Em, number of bootstrap

generations λ, emitter population size ME , number of offspring per policy m,
emitters buffer QEm, rewarding archive ARew, novelty archive ANov;
/* Bootstrap step */
while KBud/3 not depleted do

Select most novel policy θi from QCand Em;
Calculate σi;
Initialize: Ei, QiCand Nov = ∅, and P0;
for γ ∈ {0, . . . , λ} do

if P0 then
Evaluate θ̃j , ∀θ̃j ∈ P0;

Generate offspring population Pmγ from Pγ ;
Evaluate θ̃j , ∀θ̃j ∈ Pmγ ;
Generate Pγ+1 from best θ̃j ∈ Pmγ

⋃
Pγ ;

Calculate I(Ei);
if I(Ei) > 0 then
QEm ← Ei;

/* Emitters step */
Calculate pareto fronts in QEm;
while 2/3KBud not depleted do

Sample Ei from non-dominated emitters in QEm;
while not terminate(Ei) do

Generate offspring population Pmγ from Pγ ;
Evaluate θ̃j , ∀θ̃j ∈ Pmγ ;
ARew ← θ̃j , ∀θ̃j ∈ Pmγ | r(θ̃j) > Rγ ;
QiCand Nov ← θ̃j , ∀θ̃j ∈ Pmg | η(θ̃j) > ηi;
Generate Pγ+1 from best θ̃j ∈ Pmγ

⋃
Pγ ;

Update I(Ei) and Rγ ;
if terminate(Ei) then
ANov ← NQ samples from QiCand Nov;
Discard emitter Ei;

emitter novelty, η(Ei), corresponding to the novelty of the policy generating the emitter. The
emitter is initialized from the policy θi by sampling the ME policies in its initial population P0

from the distribution N (θi, σiI). To reduce the overlap of the emitter’s search space with the
ones of possible nearby emitters, STAX shapes N (θi, σiI) such that the distance between θi
and the closest θj corresponds to 3 standard deviations. This is done by initializing σi as:

σi =
minj(dist(θi, θj))

3
, ∀θ̃j ∈ Γmg ∪ Γ̃g. (7)

Once an emitter Ei has been initialized, it is executed for λ generations to evaluate its
potential for improving the reward. This potential is expressed through the emitter improvement
I(Ei), calculated as the difference between the average reward obtained during the most recent
and the initial generations of the emitter. A positive I(Ei) means that the emitter can improve on
its initial reward. On the contrary, I(Ei) ≤ 0 means that the chances for the emitter to find better
reward are low, so it is not worth to allocate more evaluation budget to it. For this reason only
the emitters with positive improvement are added to the emitter buffer QEm further evaluation

12

during the emitter step, while the rest are discarded. The improvement is expressed as:

I(Ei) =
1

λME

 T∑
γ=T−λ/2

ME∑
j=0

r(γ,j) −
λ/2∑
γ=γ0

ME∑
j=0

r(γ,j)

 , (8)

where T is the last evaluated generation, r(γ, j) is the reward of policy θ̃j ∈ Pγ and γ0 is the
generation at which the emitter is at the beginning of its evaluation. The whole bootstrap step
lasts Kbud/3 evaluation steps, at the end of which STAX switches to the emitter step.

Emitter step
During this step, STAX evaluates the emitters that, due to a positive emitter improvement, are
now present in the emitter buffer QEm. The step starts by calculating the Pareto front between
the improvement I(·) and the emitter novelty η(·) of the emitters in the buffer. The emitter Ei to
run is then sampled from the front of the non-dominated emitters. This allows STAX to focus
on the most promising and less explored areas of the rewarding search space BRew.

The policies θ̃i found during the evaluation of an emitter Ei can be stored either for
their novelty or for the reward they obtain. At every generation γ, the policies with a novelty
higher than the maximum novelty found by the emitter so far, ηγ−1, are stored in the novelty
candidates buffer QCand Nov. At the same time, the policies with a reward higher than the
maximum reward found until γ − 1, Rγ−1, are stored into the reward archive ARew. Once these
policies have been stored, both ηγ−1 and Rγ−1 are updated with the new maximum values.

The emitter Ei is run until either one of these two conditions happen: the 2/3KBud

evaluation budget chunk is depleted or a termination condition is met. The first case leads
STAX to update the improvement of Ei and store it again in the emitters buffer QEm for a
possible future evaluation. The algorithm then goes back to the exploration phase. In the second
case, the emitter is terminated and NQ policies from the emitter’s novelty candidate buffer
are uniformly sampled to be added to the novelty archive ANov. This allows STAX to save
particularly novel solutions toANov and prevent the search to go back to already explored areas.
Finally, a new emitter to be evaluated is selected from the front of non-dominated emitters.

There can be many termination criteria, depending on the kind of algorithm used as
emitter. In this work we use the termination criterion introduced by Paolo et al. (2021). This
criterion is directly inspired by the stagnation criterion used for the CMA-ES algorithm and
introduced by Hansen (2016). The emitter Ei is stopped if it cannot improve anymore on the
reward. This is calculated by tracking the history of the rewards obtained by the emitter over the
last 120 + 20 ∗ n\ME , where n is the size of the parameter space Θ and ME is the population
size of the emitter. The termination condition is met if the maximum or the median of the last
20 rewards is lower than the maximum or the median of the first 20 rewards.

The whole exploitation phase is detailed in Algorithm 3. The code repository is available
at: <url hidden for review process>.

4 Experiments

This section studies how STAX can discover highly rewarding policies while exploring an
outcome space learned on the fly. All of this with minimal previous information about the
environment and the task at hand. STAX will be compared against various baselines. Moreover,
multiple ablation studies will be performed to study which aspects of the method are the most
important ones. In order to perform this analysis, STAX is evaluated on 3 sparse rewards
environments, shown in Fig. 4.

Curling: it consists of a 2 Degrees of Freedom (DoF) arm pushing a ball over a table (Paolo
et al., 2021). The arm is controller by a 3 layers Neural Network (NN) with each layer of size 5.

13

Figure 4: The three testing environments. Row (a) shows the real environments with the reward
areas. Row (b) contains the 64 × 64 RGB observation of the environment as seen by the AE.
The behavior descriptors are generated by sampling 5 of these images along the trajectories.

The input of the controller is a 6-dimensional array containing the (x, y) ball pose and the two
joints angles and velocities. The controller outputs a 2-dimensional array containing the speeds
of the two joints at the next time-step. Each policy is run in the environment for 500 timesteps.
The reward is given only if the ball is in one of the two rewarding areas and is higher the closer
it is to the center of the area. The ground truth behavior descriptor used by methods that do not
learn the BS representation is the final (x, y) position of the ball. The environment, together
with the 64× 64 RGB image the AE sees during the algorithm execution, is shown in Fig. 4.

HardMaze: it consists of a 2-wheeled robot whose goal is to navigate a maze with the aid
of 5 distance sensors (Lehman and Stanley, 2008). The robot, in blue in Fig. 4, is controlled
by a 2-layers NN with each layer of size 5. The controller receives as inputs the reading of
the 5 distance sensors, shown in red in Fig. 4, and outputs the speed of the wheels for the next
timestep. The agent receives a reward if the robot reaches one of the 2 reward areas, with the
reward being higher the closer to the center the robot stops. Each policy is run in the environ-
ment for 2000 timesteps. The ground truth behavior descriptor used by methods that do not
learn the BS representation is the final (x, y) position of the robot. The environment, together
with the 64× 64 RGB image the AE sees during the algorithm execution, is shown in Fig. 4.

Redundant Arm: it consists of a 20-DoF arm moving on a 2 dimensional plane (Loviken
and Hemion, 2017). The arm is controlled by a NN with 2 layers, each one of size 5. The input
of the controller is the 20-dimensional vector of each joints’ positions, while the output consists
in the 20-dimensional joints’ torque vector. The policies are run for 100 timestep each, or until
the arm collides either with the wall or itself. The ground truth behavior descriptor used by
methods that do not learn the BS representation is the final (x, y) position of the end effector.
The reward is given if the end effector reaches one of the three highlighted areas, with the reward
being higher the closer the effector is to the center of the reward area. The environment, together
with the 64× 64 RGB image the AE sees during the algorithm execution, is shown in Fig. 4.

In all of these environments, STAX builds the behavior descriptors by stacking the low-
dimensional representations extracted by the AE from multiple high-dimensional observations.
To this end, 5 samples collected at regular intervals along the trajectories are used during the
experiments.

14

Baselines
STAX is compared against the following baselines:

• NS (Lehman and Stanley, 2008): vanilla NS, that performs pure exploration in the ground-
truth behavior space and does not attempt to improve on the reward;

• MAP-Elites (ME) (Mouret and Clune, 2015): vanilla MAP-Elites that uses a 50× 50 grid
to cover the ground-truth behavior space of every environment;

• MOO-NR (Deb et al., 2002): a multi-objective evolutionary algorithm optimizing both the
novelty in the ground-truth behavior space and the reward of the policies;

• TAXONS (Paolo et al., 2020): that performs pure exploration by learning the behavior
descriptor through an AE trained during the search process;

• SERENE (Paolo et al., 2021): that performs exploration through NS in the ground-truth
behavior space, exploiting any discovered reward through emitters.

For each experiment the given evaluation budget is Bud = 500000, with a chunk size of
KBud = 100. The population has a size of M = 100 and each policy generates m = 2 off-
springs. This is done by using a mutation parameter of σ = 0.5. At each generation, the number
of policies sampled to be added to the novelty archive isNQ = 5. The emitters have a population
size of ME = 6 with a bootstrap phase of λ = 6. For every experiment the policies parameters
are bounded in the [−5, 5] range. All approaches using an AE to represent the behavior descrip-
tor use the same structure. The AE consists of an encoder E(·) with 4 convolutional layers of
sizes [32, 64, 32, 16], followed by a linear layer projecting the 256-dimensional vector returned
by the last convolutional layer into the 10-dimensional feature space. Each convolutional op-
eration has a kernel of size 4, with a stride of 2 and a padding of 1. Every layer is followed
by a SeLU activation function (Klambauer et al., 2017), allowing the self-normalization of the
NN. On the contrary, the decoder D(·) starts with a linear layer projecting the 10-dimensional
feature vector into a 256-dimensional vector. Then it is followed by 4 convolutional layers of
sizes [32, 64, 32, 3], each one using a kernel of size 4, a stride of 2 and a padding of 1. Every
layer uses a SeLU activation function, with the exception of the last convolutional one using
a ReLU, in order to force the non-negativity of the output value. The AE is trained with the
Adam optimizer (Kingma and Ba, 2014) with an learning rate of 0.001. The statistical results
are computed over 15 runs for each experiment. Finally, in each plot, the performances of meth-
ods using the ground-truth BS are represented with dashed lines, while the methods learning the
BS are shown through a continuous line.

5 Results

In this section, the results obtained in the experiments are discussed.

5.1 Exploration
This section studies how well STAX can explore in situations of sparse rewards while having
minimal information about the environment and the task. This is done by measuring the
coverage metric obtained in the ground truth BS defined in Sec. 4 for each one of the tested
environments. The coverage metric is evaluated by dividing said ground truth space into a
50 × 50 grid and calculating the percentage of cells occupied during the search. A cell is con-
sidered occupied if a policy reaches it at the end of its evaluation. Note that, while the coverage
is calculated in the ground-truth space, STAX has no access to this space at search time. The
algorithm has to learn a representation from a collection of high-dimensional observations in

15

Evaluation steps x10^4

C
o
v
e
ra

g
e
 %

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0 STAX
NS

MOO-NR

ME
TAXONS

SERENE

Curling

Evaluation steps x10^4

C
o
v
e
ra

g
e
 %

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

STAX
NS

MOO-NR

ME

TAXONS
SERENE

HardMaze

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Evaluation steps x10^4

C
o
ve

ra
g
e
 %

STAX

NS

MOO-NR

ME

TAXONS
SERENE

Redundant Arm

Figure 5: Average coverage with respect to the given evaluation budget reached by STAX against
the different baselines. The shaded areas represent one standard deviation.

order to perform the exploration. This means that the method can also explore areas of the space
that are not considered by the coverage metric in the ground-truth space. An example of this is
the Curling environment, in which for a single final position of the ball - the one considered in
the ground-truth BS - can correspond multiple arm positions that are represented by STAX.

Fig. 5 shows the coverage reached by our method and all the tested baselines. It can be
seen that STAX can perform exploration on a level comparable with NS on all the environments,
except on the Redundant Arm, in which the coverage is lower. In this environment, STAX
learns to represent the whole arm configuration rather than only the end effector position, thus
maximizing diversity in dimensions not considered by the coverage metric. On the contrary,
the performance of STAX when the AE is shown only the end effector position, rather than
the whole arm (pink line in the Redundant Arm plot in Fig. 5), are comparable to the ones of
SERENE. The methods using the hand-designed ground-truth BS to drive the search - ME and
SERENE - reach high levels of coverage too. This is expected given that both method perform
the search in the same space in which the coverage metric is computed. The good performance
of STAX are instead obtained with minimal information about the task and the space in which
those would be measured. At the same time, MOO-NR struggles in all environments, likely
because once a rewarding solution is found, it will dominate all the non-rewarding solutions,
strongly limiting the exploration of the method.

TAXONS also obtains high coverage, with the notable exception of the Curling environ-
ment. The culprit of this loss of performance is likely the presence of the 2-Dof arm in the
image fed to the AE, as shown in Fig. 4, that can act as a distractors in situations in which only
the final position of the ball is interesting. At the same time, the presence of the arm is not an
hindrance to the performances of STAX. This is likely be due to both the higher amount of data
on which the AE is trained - the 5 frames sampled along the trajectory for STAX compared to
only the last frame for TAXONS - and the more efficient selection of new policies according to
the MOO based approach, performed by STAX. The effects of these factors on the performance
of STAX will be studied in Sec. 5.4.

5.2 Exploitation

The maximum reward achieved by the algorithms in all the reward areas is shown in Fig. 6.
Using emitters to exploit the reward allows STAX to reach almost the maximum reward in
few evaluations. These performances are similar to the ones obtained by SERENE, thanks to
the fact that the reward exploitation performed by the emitters does not rely on any behavior
descriptor. Among the other baselines performing reward improvement, the best performing
one is ME, capable of reaching high values on all reward areas, but with much slower pace than
STAX. This is not the case for the multi-objective approach MOO-NR, that can always find at
least one of the multiple reward areas, but then tends to extensively focus on it, instead of also
exploring other areas. For this reason only the easiest reward area is exploited to high values in
all environments, while the harder reward area is seldom exploited. On the contrary, while NS
and TAXONS can perform good exploration, they cannot reach high reward levels very quickly,

16

Max Reward: Area 1

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX

NS

MOO-NR
ME

TAXONS

SERENE

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX

NS

MOO-NR

ME

TAXONS

SERENE

Max Reward: Area 2

H
ar

d
M

az
e

Max Reward: Area 1

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX

NS
MOO-NR
ME

TAXONS

SERENE

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX

NS
MOO-NR

ME

TAXONS

SERENE

Max Reward: Area 2

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX

NS
MOO-NR

ME

TAXONS
SERENE

Max Reward: Area 3

R
ed

u
n
d
an

t
A
rm

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX

NS
MOO-NR

ME

TAXONS

SERENE
Max Reward: Area 1

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX

NS

MOO-NR

ME

TAXONS

SERENE

Max Reward: Area 2

C
u
rl

in
g

Figure 6: Average maximum reward reached in all the reward areas by STAX against the differ-
ent baselines. The shaded areas represent one standard deviation.

with TAXONS being consistently worse in this regard. This is due to the lack of any reward-
exploitation mechanism present in both methods. This is even more noticeable on the redundant
arm environment, where even if TAXONS can reach similar coverage levels than STAX, the
absence of any reward improving mechanism leads to very low performances on all reward areas.

5.3 Final archives distribution

The final distribution of the behaviors representations for the policies in the final archives is
shown in Fig. 7. Each point represents a policy. In blue are shown the policies present in the nov-
elty archiveANov, while in orange are the policies in the reward archiveARew. For the baselines
not using the double archives structure, the blue points represent the policies that did not receive
any reward, considered exploratory, while the orange points represent the rewarding policies.

The coverage of the reward areas for STAX and SERENE is similar, both approaches
using emitters to exploit the rewards. At the same time, STAX tends to cover the search space

17

less densely than SERENE and NS, due to not knowing the ground-truth BS at search time.
The coverage of the space for STAX more closely resembles the one obtained by TAXONS, the
other method learning the BS representation at search time, with the exception of the reward
areas, better covered by STAX. Similar coverage of the reward areas is obtained by MOO-NR,
but this comes at the cost of exploration of the rest of the search space. ME also obtains a
uniform distribution over the whole space, thanks to the a priori discretization of the BS.

5.4 Exploration ablation studies
This section studies the contributing factors to the exploration results obtained by STAX. The
study focuses on two aspects of the algorithm: the multi-objective approach for policy selection
and the multiple observations used to generate the behavior descriptor of a policy. Four ablated
variants of STAX are considered:

• STAX multi: it is the vanilla version of STAX. It uses both the multi-objective policy
selection between novelty and surprise and the 5 observations sampled along the policy
trajectory to generate the behavior descriptor;

• STAX single: this variant still uses the multi-objective policy selection strategy, but the
behavior descriptor is calculated only from the last observation;

• STAX-ALT multi: this variant uses the same strategy used by TAXONS to select between
novelty and surprise, sampling either one of the two at each generation. The behavior
descriptor is generated by using 5 observations sampled at regular intervals along the tra-
jectory;

• STAX-ALT single: as the previous variant, here the TAXONS policy selection strategy is
used. Moreover, the behavior descriptor is generated by only the last observation of the
trajectory.

Both the coverage and the maximum reward reached by each variant over each reward areas are
analyzed.

The average coverage is shown in Fig. 8. It is possible to see how the variants using
multiple observations of the trajectory perform consistently better on all environments. This
is also the case for the Redundant arm environment in which, while the final coverage of the
algorithms is equivalent, the two variants using multiple observations tend to reach higher levels
quicker. This is due to the AEs of these variants being trained on 5 times more data than the
ones of the variants using a single observation.

The improved performance provided by using multiple observations can be seen also when
analyzing the maximum reward reached in the environments, as shown in Fig. 9. In each of the
reward areas of all environments, STAX multi reaches the highest performances in the quickest
fashion. In general the methods using only the last observation to extract a description of the
behavior of a policy perform the worst. At the same time, the multi-objective policy selection
method, used by both STAX multi and STAX single, has a weaker but non negligible effect on
both exploration and the exploitation. It can be seen in fact that the version using both multiple
observations and the multi-objective policy selection strategy performs consistently better than
all the other variants.

5.5 Autoencoder training regime
This section analyzes how the way the BS is learned through the AE influences the search. In
this regard the study focuses on two aspects: how important it is to learn the representation
versus just using a random one and if retraining from scratch the AE at each training episode has

18

Hard Maze

Environment

STAX

Curling Redundant arm

NS

MOO-NR

ME

TAXONS

SERENE

Figure 7: Distribution of the behavior descriptors of the archived policies. On each column
are shown the results for an environment, while on each row is shown the distribution for each
experiment. The archive plotted are from the runs achieving highest coverage. In blue are the
policies with no reward, in orange the policies with a reward. For STAX and SERENE in blue
are the policies in the novelty archive and in orange the policies in the reward archive.

19

0 10 20 30 40 50

Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 %

STAX_multi

STAX_single
STAX-ALT_multi

STAX-ALT_single

Curling

0 10 20 30 40 50

Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 %

STAX_multi

STAX_single

STAX-ALT_multi
STAX-ALT_single

HardMaze

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
%

STAX_multi
STAX_single

STAX-ALT_multi
STAX-ALT_single

Redundant Arm

Evaluation steps x10^4

Figure 8: Average coverage with respect to the given evaluation budget reached by STAX against
the ablated versions of the algorithm. The shaded areas represent one standard deviation.

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX_multi
STAX_single
STAX-ALT_multi
STAX-ALT_single

Max Reward: Area 1

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX_multi

STAX_single

STAX-ALT_multi
STAX-ALT_single

Max Reward: Area 2

H
ar

d
M

az
e

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX_multi
STAX_single

STAX-ALT_multi

STAX-ALT_single

Max Reward: Area 2

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX_multi

STAX_single
STAX-ALT_multi

STAX-ALT_single

Max Reward: Area 1

C
u
rl

in
g

R
ed

u
n
d
an

t
A
rm

Max Reward: Area 3

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX_multi
STAX_single

STAX-ALT_multi
STAX-ALT_single

Max Reward: Area 2

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX_multi

STAX_single
STAX-ALT_multi

STAX-ALT_single

Max Reward: Area 1

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

STAX_multi

STAX_single
STAX-ALT_multi

STAX-ALT_single

Figure 9: Average maximum reward reached in all the reward areas by STAX against the ablated
versions of the algorithm. The shaded areas represent one standard deviation.

any influence on the search process. In STAX the AE is continuously trained across different
training episodes. This means that, similarly to what done by Paolo et al. (2020), the training of
the AE is resumed at every training episode. This produces a curriculum effect over the borders
of the explored space due to the training on the last generation of the population and offsprings.
The curriculum effect is also given by training the AE over the archives, even if this contribution
is small at the beginning of the search, when the archives contain only few elements.

To analyze these two aspects, STAX is compared against 3 variants:

20

Curling

0 10 20 30 40 50
Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 %

STAX
STAX_reset

STAX-NT
STAX-NT_reset

HardMaze

0 10 20 30 40 50

Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 %

STAX
STAX_reset

STAX-NT
STAX-NT_reset

Redundant Arm

Evaluation steps x10^4

0.0

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 %

0 10 20 30 40 50

STAX
STAX_reset

STAX-NT
STAX-NT_reset

Figure 10: Average coverage with respect to the given evaluation budget reached by STAX
against the other versions of the algorithm. The shaded areas represent one standard deviation.

• STAX-NT: in which the search is driven through an AE whose weights are randomly sam-
pled at the beginning of the search and not modified anymore;

• STAX-NT reset: in which the search is driven through an AE whose weights are randomly
sampled every TI exploration steps. This means that every time the vanilla version of
STAX would train the AE, this version randomly samples new weights for the AE;

• STAX reset: in which the weights of the AE are randomly resampled before each training
episode. This effectively removes any memory from previous iterations from the AE.

Thanks to the first two variants, it is possible to analyse if a random but constant representation
is better than a continuously changing random representation to drive the search. The last vari-
ant allows to study the importance of the curriculum effect given by the continuous training of
the AE. Note that the only change among all these versions of STAX is the AE training regime.
The behavior descriptor is still generated as described in Sec. 5.1. The coverage results for
the 3 tested environments are shown in Fig. 10. Not surprisingly, the results show that training
the AE rather than using a randomly generated one greatly helps the exploration process. The
random representations are not enough to discover all the areas of the ground truth BS, even
if said representations change during the search, as is the case for the STAX-NT reset variant.
At the same time, the continuous training of the AE does not have a big effect on the coverage
in any of the environments. This means that the archive can provide enough of a curriculum
when learning a representation of the BS. However, the retraining from scratch at every training
episode of the AE increases the execution wall-time of STAX reset compared to STAX.

The results show how the variants in which the BS representation is not learned really
struggle to explore a big part of the space. This effect is extreme in the Curling environment in
which, to obtain good exploration, it is not enough to randomly move the arm, but it is necessary
to properly hit the ball. In the HardMaze and the Redundant Arm environments the non trained
versions can explore the easier to reach areas of the space, but not reach high levels of coverage.

These experiments clearly show that each environment has different dynamics when it
comes to exploration. This strengthens our assumption that hand-designing a BS in order to
properly explore can be difficult and require adaptations to each single situation. For this
reason, it is important to design algorithms like STAX that can learn said BS online while
starting with minimal prior information. These algorithms should adapt to all environment
dynamics by taking advantage as much as possible of the data generated during the search.

5.6 Learned behavior space
This section studies how well the trained AE can represent the BS and how close these learned
representations are to the ground-truth one. Given that the results are comparable among
all the environments, the section will focus mainly on the harder to explore Redundant Arm
environment. Fig. 11 shows how well STAX’s learned AE can reconstruct the observations
collected during the evaluation of the policies. The first row shows the 64 × 64 RGB final
observation of the trajectories of a set of policies sampled form the final archives. In the second

21

O
ri

g
in

a
l

A
E
 r

e
co

n
st

ru
ct

io
n

Figure 11: Reconstruction of the AE trained during the search performed by STAX. The first
row shows the original 64 × 64 × 3 images. The second row shows the reconstructions of the
images produced by the AE.

Correlation

0.40936

0.50973

0.7329

Behavior Descriptors Relative Distances

0.54841

0.35452

0.40854

CorrelationBehavior Descriptors Relative Distances

Figure 12: Representation of the proximity between the learned BS and ground truth one. The
first column represents the points in the ground truth BS color coded according to the distance
in the learned BS. The red circle is the sampled descriptor for which the distance from the other
descriptors is calculated. The second column represent the distances in the learned space with
respect to the ground truth BS. Finally, on the third column is shown the correlation coefficient
calculated between said distances in the two spaces.

row are shown the reconstructions produced by the trained AE. While from this reconstruction
it is possible to understand the position of the arm, the image is not perfect. Nonetheless,
this level of reconstruction accuracy seems to be enough to push for good exploration in the
environment, as seen in Sec. 5.1.

From this observation, the question on how close the learned BS representation is to the
ground truth one arises naturally. This has been studied by sampling 6 policies from the archives
at 6 different positions in the ground truth BS. Then, the distance between the learned behavior
descriptors of the sampled policies and the ones of the other policies in the archives is calculated.
The results can be seen in Fig. 12. Each row shows the results with respect to one of the 6 sam-
pled policies, whose ground truth descriptor is highlighted in red in the plot in the first column.

The first column contains the policies’ ground-truth descriptors plotted by color coding
them according to their distance in the learned BS. Closer points in this space are represented in
darker colors, farther ones in lighter colors. The second column represents the distances in the
learned BS with respect to the distances in the ground-truth space, while on the third column it

22

is shown the Pearson correlation coefficient between these distances (Pearson, 1895).
From the figure it is possible to see that closer points in the learned BS are closer in the

ground-truth (GT) space, and the farther these points are in the GT space, the farther they
become in the learned space. This is also shown by analyzing the correlation between the
distances in the two spaces. From this, it is possible to see that there is moderate to high
correlation between these distances, confirming that closer points in the ground-truth space
tend to be closer in the learned space and vice-versa. This means that the AE has learned a
meaningful representation that can be used to push for exploration by calculating distances in
the learned space, proving the efficacy of this approach.

6 Discussion and Conclusion

This paper introduced STAX, a method that combines the representation learning ability of
TAXONS (Paolo et al., 2020) when dealing with unknown BS and the capacity to focus on
interesting areas of the search space of SERENE (Paolo et al., 2021) through emitters. In
addition to what TAXONS does when learning the BS, STAX uses multiple observations
sampled along the trajectory generated by the policies to extract their behavior descriptor. This
allows to overcome the requirement of the final observation needing to be descriptive enough
to distinguish between the policies. Moreover, by using a multi-objective approach to combine
the two metrics of novelty and surprise, STAX can perform better exploration compared to
TAXONS. As discussed in Sec. 3.3, performing reward exploitation through emitters can prove
extremely useful when exploring with a learned BS. This is due to the fact that there is no
guarantee that this learned BS will represent all the rewards in a single connected area.

The results on three different sparse rewards environments show how STAX can prove
effective in dealing with this kind of situations, reaching high performances both from the point
of view of exploration and exploitation of the rewards. These results are comparable to the ones
obtained by SERENE (Paolo et al., 2021) notwithstanding STAX being provided much less prior
information about the task to solve. Moreover, learning the outcome space while performing the
search allows to remove the main limitation of NS-based methods: the hand-design of the BS.

To properly study how the aspects of policy selection and BS learning of STAX influence
the exploration process, and the discovery and exploitation of rewards, multiple ablation
experiments have been performed. The results show that the combination of using multiple
observations collected during the trajectory and the multi-objective policy selection strategy
are important in obtaining good coverage of the ground-truth search space. Moreover, the
continuous training of the AE during the whole search is shown to provide an useful curriculum
effect, in addition to the one provided by training on the data from the archives. Finally, Sec.
5.6 showed how the learned BS has a similar structure to the ground truth BS, allowing the
algorithm to perform good exploration in both.

The introduction of STAX addresses the multiple shortcomings of the original NS algo-
rithm while at the same time opening multiple interesting avenues of research. As for SERENE,
STAX uses a simple scheduler to alternate between the exploration and the exploitation pro-
cesses. Applying more complex and adaptive approaches to perform the switch between the two
processes can be an interesting line of work in improving the method even more. Another pos-
sible direction of research is the one initiated by Cully (2020), where multiple kind of emitters
are combined through a multi-armed bandit approach.

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,

Abbeel, O. P., and Zaremba, W. (2017). Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058.

23

Aubret, A., Matignon, L., and Hassas, S. (2019). A survey on intrinsic motivation in reinforcement learn-
ing. arXiv preprint arXiv:1908.06976.

Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse models with intrinsically motivated goal
exploration in robots. Robotics and Autonomous Systems, 61(1):49–73.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016). Unifying count-
based exploration and intrinsic motivation. In Advances in Neural Information Processing Systems,
volume 29, pages 1471–1479.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C., et al. (2019). Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random network distillation.
arXiv preprint arXiv:1810.12894.

Cideron, G., Pierrot, T., Perrin, N., Beguir, K., and Sigaud, O. (2020). Qd-rl: Efficient mixing of quality
and diversity in reinforcement learning. arXiv preprint arXiv:2006.08505.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2018). Gep-pg: Decoupling exploration and exploitation in deep
reinforcement learning algorithms. In International Conference on Machine Learning, pages 1039–
1048. PMLR.

Cully, A. (2019). Autonomous skill discovery with quality-diversity and unsupervised descriptors. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 81–89.

Cully, A. (2020). Multi-emitter map-elites: Improving quality, diversity and convergence speed with
heterogeneous sets of emitters. arXiv preprint arXiv:2007.05352.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt like animals. Nature,
521(7553):503.

Cully, A. and Demiris, Y. (2017). Quality and diversity optimization: A unifying modular framework.
IEEE Transactions on Evolutionary Computation, 22(2):245–259.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2019). Go-explore: a new approach
for hard-exploration problems. arXiv preprint arXiv:1901.10995.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018). Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070.

Fontaine, M. C., Togelius, J., Nikolaidis, S., and Hoover, A. K. (2020). Covariance matrix adaptation
for the rapid illumination of behavior space. In Proceedings of the 2020 genetic and evolutionary
computation conference, pages 94–102.

Forestier, S., Mollard, Y., and Oudeyer, P.-Y. (2017). Intrinsically motivated goal exploration processes
with automatic curriculum learning. arXiv preprint arXiv:1708.02190.

Grillotti, L. and Cully, A. (2021). Unsupervised behaviour discovery with quality-diversity optimisation.
arXiv preprint arXiv:2106.05648.

Hansen, N. (2016). The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772.

Hare, J. (2019). Dealing with sparse rewards in reinforcement learning. arXiv preprint arXiv:1910.09281.

Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length and helmholtz free
energy. In Advances in neural information processing systems, pages 3–10.

Hu, Y., Wang, W., Jia, H., Wang, Y., Chen, Y., Hao, J., Wu, F., and Fan, C. (2020). Learning to utilize
shaping rewards: A new approach of reward shaping. arXiv preprint arXiv:2011.02669.

24

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). Self-normalizing neural networks. In
Advances in neural information processing systems, pages 971–980.

Laversanne-Finot, A., Pere, A., and Oudeyer, P.-Y. (2018). Curiosity driven exploration of learned disen-
tangled goal spaces. In Conference on Robot Learning, pages 487–504. PMLR.

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the search for
novelty. In ALIFE, pages 329–336.

Lehman, J. and Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty search
and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pages 211–218. ACM.

Liapis, A., Martı́nez, H. P., Togelius, J., and Yannakakis, G. N. (2013). Transforming exploratory creativity
with delenox,. In ICCC, pages 56–63.

Loviken, P. and Hemion, N. (2017). Online-learning and planning in high dimensions with finite ele-
ment goal babbling. In 2017 Joint IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob), pages 247–254. IEEE.

Mataric, M. J. (1994). Reward functions for accelerated learning. In Machine learning proceedings 1994,
pages 181–189. Elsevier.

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine, S. (2018). Visual reinforcement learning
with imagined goals. In Advances in Neural Information Processing Systems, pages 9191–9200.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transformations: Theory and
application to reward shaping. In Icml, volume 99, pages 278–287.

Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? a typology of computational ap-
proaches. Frontiers in neurorobotics, 1:6.

Paolo, G. (2020). Billiard. https://github.com/GPaolo/Billiard.

Paolo, G., Coninx, A., Doncieux, S., and Laflaquière, A. (2021). Sparse reward exploration via novelty
search and emitters. In The Genetic and Evolutionary Computation Conference 2021 (GECCO 2021).

Paolo, G., Laflaquiere, A., Coninx, A., and Doncieux, S. (2020). Unsupervised learning and exploration of
reachable outcome space. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 2379–2385. IEEE.

Pearson, K. (1895). Vii. note on regression and inheritance in the case of two parents. proceedings of the
royal society of London, 58(347-352):240–242.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, 3:40.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Wiele, T., Mnih, V., Heess, N., and Sprin-
genberg, J. T. (2018). Learning by playing solving sparse reward tasks from scratch. In International
Conference on Machine Learning, pages 4344–4353. PMLR.

Salehi, A., Coninx, A., and Doncieux, S. (2021). Br-ns: an archive-less approach to novelty search. arXiv
preprint arXiv:2104.03936.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Trott, A., Zheng, S., Xiong, C., and Socher, R. (2019). Keeping your distance: Solving sparse reward tasks
using self-balancing shaped rewards. In Advances in Neural Information Processing Systems, pages
10376–10386.

25

https://github.com/GPaolo/Billiard

	1 Introduction
	2 Background and related work
	2.1 Sparse Reward
	2.2 Novelty Search
	2.3 Learning an outcome descriptor
	2.4 Emitters

	3 Method
	3.1 Exploration
	3.2 Training of the autoencoder
	3.3 Exploitation

	4 Experiments
	5 Results
	5.1 Exploration
	5.2 Exploitation
	5.3 Final archives distribution
	5.4 Exploration ablation studies
	5.5 Autoencoder training regime
	5.6 Learned behavior space

	6 Discussion and Conclusion

