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ABSTRACT

Despite their ability to represent highly expressive functions, deep learning models trained with
SGD seem to find simple, constrained solutions that generalize surprisingly well. Spectral bias –
the tendency of neural networks to prioritize learning low frequency functions – is one possible
explanation for this phenomenon, but so far spectral bias has only been observed in theoretical
models and simplified experiments. In this work, we propose methodologies for measuring spectral
bias in modern image classification networks. We find that these networks indeed exhibit spectral
bias, and that networks that generalize well strike a balance between having enough complexity
(i.e. high frequencies) to fit the data while being simple enough to avoid overfitting. For example,
we experimentally show that larger models learn high frequencies faster than smaller ones, but many
forms of regularization, both explicit and implicit, amplify spectral bias and delay the learning of
high frequencies. We also explore the connections between function frequency and image frequency
and find that spectral bias is sensitive to the low frequencies prevalent in natural images. Our work
enables measuring and ultimately controlling the spectral behavior of neural networks used for image
classification, and is a step towards understanding why deep models generalize well.

1 Introduction

Two fundamental questions in machine learning are why overparameterized models generalize and how to make them
more robust to distribution shift. Resolving both of these questions requires understanding how complex our models
should be.

For instance, it is thought that overparameterized models generalize well because there are implicit regularizers that
constrain the complexity of the learned functions. However, the precise nature of these implicit regularizers, and
their importance in practice, remains unclear. As for how to achieve robustness, no consensus has emerged regarding
function complexity. On the one hand, Cranko et al. (2018) and Leino et al. (2021) argue that Lipschitz smoothness
of the learned function offers a guarantee of robustness; on the other, Madry et al. (2019) argues that a robust model
must actually be more complex than its non-robust counterpart.

One window into function complexity is spectral bias – the tendency of neural networks to learn low frequency (sim-
ple and smooth) functions early in training, gradually increasing the frequency (complexity) of the learned function
as training proceeds. Foundational work in this area has shown theoretical evidence of spectral bias by analyzing
convergence rates of neural networks towards functions of different frequencies and showing that they converge to low
frequency functions at a faster rate (Basri et al., 2019; Rahaman et al., 2019).

In practice, spectral bias is difficult to measure: the most direct method involves taking a Fourier transform with
respect to the input, which is expensive to compute due to the high dimensionality of images. Early experimental work
focused on low-dimensional synthetic data (Basri et al., 2019, 2020) or used proxy measurements of spectral bias by
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inserting label noise of various frequencies during training (Rahaman et al., 2019). However, the label noise method is
limited to binary classification/regression and involves modifying the training data, making it difficult to disentangle
how other changes to the training data (such as data augmentation) affect the spectral content of the learned function.
Thus, it remains an open question as to whether modern neural networks exhibit spectral bias and what role it plays in
generalization.

In this work, we investigate model complexity through the lens of spectral bias, by introducing experimental methods
to study the frequency decomposition of the functions learned by modern image classification networks. We find that
neither simplicity nor complexity is purely beneficial or detrimental to performance; rather, a task-appropriate balance
between the two is ideal.

Contributions. We extend the label noise procedure of Rahaman et al. (2019) to enable measuring spectral bias
in multi-class classification and apply this technique to understand the function frequencies present in high-accuracy
models on CIFAR-10 (Krizhevsky et al.). We also introduce a second method for measuring the smoothness of a
learned function via linear interpolation between test examples. This offers a proxy measurement of spectral bias
without the need to modify training labels, allowing us to probe the effects of the training data on the learned function
frequencies.

Using these experimental methods, we find that increasing the model size decreases spectral bias; larger models
learn high frequencies faster. However, we observe that more accurate models are not always higher frequency.
Several forms of explicit and implicit regularization, including weight decay, increasing the dataset size, and applying
Mixup (Zhang et al., 2018) data augmentation, increase spectral bias and produce a smoother learned function. Our
experiments suggest that an ideal function should include high enough frequencies to fit the data but avoid unnecessary
high frequencies that can harm generalization.

This perspective allows us to shed light on the mechanism behind self-distillation, in which a student model is trained
to fit the predictions of a teacher model. Using our linear interpolation methodology, we observe that self-distillation
produces a student model whose learned function is smoother than that of its teacher. This suggests that the teacher
model acts as a sort of low-pass filter on the target function, perhaps making it more accessible to the spectrally-biased
student.

Finally, we explore the relationship between image frequency and function frequency. By further extending the label
noise methodology of Rahaman et al. (2019) to study spectral bias in directions of interest through the input space, we
find that models are most sensitive to the low image frequencies common in natural images.

2 Related Work

Implicit bias. A common belief is that some form of implicit bias imposed by the training procedure may account
for the generalization ability of overparameterized neural networks, and accordingly much research has been directed
towards understanding these implicit biases (Soudry et al., 2018; Zhang et al., 2017; Keskar et al., 2017; Gunasekar
et al., 2019, 2020; Hardt et al., 2016; Hoffer et al., 2018; Belkin et al., 2018; Neyshabur et al., 2018).

For example, Neyshabur et al. (2015) observed that network capacity alone is insufficient to explain the generalization
of deep models, and pointed to some other implicit bias or regularization that enables generalization. In followup
work, Neyshabur et al. (2017) considered possible explanations for generalization of overparameterized networks,
including Lipschitz constants (which generally have upper bounds too large to explain generalization) and width or
flatness of optimization minima.

More recently, Mania et al. (2019) showed empirically that models make similar mistakes, more than we would
expect given just their capacity and training data, which suggests that different models share similar implicit biases.
Gunasekar et al. (2019) compared the biases of linear convolutional and fully connected networks, showing that
convolutional structure encourages the learned function to be sparse in the frequency domain, whereas fully-connected
networks seek only to maximize the margin. Nakkiran et al. (2019) studied a proxy for spectral bias, showing that the
function learned early in training is nearly linear, and becomes increasingly nonlinear as training proceeds.

Spectral bias. Spectral bias is a form of implicit bias. Basri et al. (2019) studied spectral bias using a linear model of
SGD training dynamics to show that models learn low frequency (simple) functions early in training and then gradually
learn higher frequencies as training proceeds. This work assumed training data that is distributed uniformly on the
hypersphere. Basri et al. (2020) extended the analysis to consider nonuniformly spaced training data, and found that
learning is faster where samples are denser; if sampling is nonuniform then at a given point in training the learned
function will be higher frequency in regions with denser samples. Rahaman et al. (2019) used a more direct analysis
to show the same spectral bias toward low frequency functions. This paper also suggested that, when training data
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lie on a manifold (as natural images are believed to), increasing the complexity of the manifold makes it easier for
models to fit high frequency functions over the data. Additionally, Rahaman et al. (2019) posited that high frequency
components of the learned function are most sensitive to perturbations in the model parameters, connecting back to
the idea of flat optimization minima (Neyshabur et al., 2017). This paper proposed experimental methods to study
spectral bias in image classification, but focused on a binary subset of the relatively simple MNIST dataset (Deng,
2012), with mean square error loss. Our work is a direct extension of this line of research on spectral bias, particularly
Rahaman et al. (2019), which we extend to a more complex multiclass classification dataset with the more common
cross-entropy loss.

Model sensitivity to image frequency. While we focus on function frequency in this work, prior research aimed to un-
derstand model sensitivity to image frequencies. Jo & Bengio (2017) found that CNNs are sensitive to Fourier statistics
of the training data, even those irrelevant to human viewers. Ortiz-Jimenez et al. (2020) argued that models are sen-
sitive primarily to discriminative Fourier directions in the training data, and have large margins in less-discriminative
directions. They posit that adversarial training induces large margins in orthogonal directions, thereby improving
robustness. Yin et al. (2020) introduced a procedure to measure the sensitivity of trained models to Fourier image
perturbations, and showed that adversarial training and Gaussian data augmentation increase robustness to high fre-
quency perturbations but increase sensitivity to low frequency perturbations. Our work adds to this line of research
a study of the interplay between two notions of frequency, the function frequency involved in spectral bias and the
image frequencies present in the data.

3 Methodology

The goal of our work is to measure the complexity of neural network functions through the lens of frequency. In
low dimensions, measuring the frequency decomposition of a function is straightforward and tractable: evaluate the
function at dense, uniform sampling positions and compute its discrete Fourier transform. However, the function of
interest in image classification is unavoidably high-dimensional, mapping images (with thousands of pixel values) to
object classes. It would be intractable even to collect sufficient samples of this function to compute a discrete Fourier
transform, let alone compute the transform itself. Instead, we employ two complementary approaches to measure
informative proxies of this frequency decomposition.

3.1 Label Smoothing

The core idea for measuring function frequency introduced by Rahaman et al. (2019) is to construct a sinusoid over
the space of images, and to use that sinusoid as a form of label noise during training. Let D = {(Xi,yi)}ntrain

i=1 be the
training examples and Dvalid = {(Xj ,yj)}nval

j=1 be the validation examples, with Xi an image and yi a one-hot class
encoding, where ntrain is the number of training examples, nval is the number of validation examples, d is the side
length of an image (assumed to be square for simplicity), c is the number of color channels, and k is the number of
classes, so Xi ∈ Rd×d×c and yi ∈ Rk.

To extend this procedure to the multi-class setting, we add noise of various frequencies to a multi-dimensional label
vector via label smoothing (Szegedy et al., 2015). Let S : Rd×d×c → [0, 1] be a target function that maps an
input image Xi to a scalar value between 0 and 1. We apply label smoothing to each label yi, mapping it to ȳi =
yi(1− S(Xi)) + 1

k . We then train from scratch using the original examples Xi and their smoothed labels ȳi. Finally,
we evaluate on the validation images Xj , comparing to both their original one-hot labels yj and smoothed labels
ȳj = yj(1 − S(Xj)) + 1

k . Our experiments use the CIFAR-10 dataset (Krizhevsky et al.), where ntrain = 50000,
d = 32, c = 3, and k = 10; however, our experimental setup is sufficiently general that it should transfer easily to any
image classification task.

As training proceeds, we see both the training loss (between predictions and smoothed labels ȳi) and smoothed vali-
dation loss (between predictions and smoothed labels ȳj) decrease. The clean validation loss (between predictions and
one-hot labels yj), however, initially decreases, but at some point in training, it plateaus or begins to increase. At this
point, the model has begun to learn the target function S. Accordingly, we introduce effective noise fitting, defined as
the difference between the validation loss on one-hot labels and the validation loss on labels smoothed with the same
function S that was applied to the training labels.

Effective noise fitting is illustrated using shake shake 96 in figure 1.

effective noise fitting = clean validation loss− noisy validation loss (1)

By choosing different functions S, we can probe nuances of spectral bias. Typically (inspired by Rahaman et al.
(2019)) we choose a radial wave: S(X) = sin(2πf(‖X‖−ED‖X‖)), where we can vary the frequency f to understand
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Figure 1: Effective noise fitting shows when a network fits a target frequency function. At roughly epoch 150,
effective noise fitting (Right), the difference between clean and perturbed validation loss, exhibits a clear “dip” when
the model begins to fit the target function: training (Left) and validation (Center Left) loss on the perturbed function
drop, while improvement stalls on clean validation data (Center Right). Here, we train a shake shake 96 with radial
wave label smoothing at frequency 0.04. For visual clarity, we apply exponential averaging to all curves.

spectral bias at this global scale. We can also choose more targeted functions S; for instance, if V is a direction of
interest through the space of images (i.e. V is an image-shaped vector of unit norm), we can construct S(X) =
sin(2πf 〈X,V〉). This allows us to vary both the frequency and direction of the target sinusoid, to understand model
sensitivity along different directions through image space.

However, label smoothing has a few limitations. It requires retraining each model from scratch, with substantial
investment of time and computational resources. Because it involves perturbing the training labels, questions about
the interaction between the training dataset and spectral bias, such as the effects of data augmentation, are not directly
answered by this technique. For the same reason, we cannot use this methodology to study the spectral decomposition
of existing trained models.

3.2 Linear Interpolation

To complement the label smoothing approach, we also propose a measurement methodology based on linear interpo-
lation between validation images. Although we cannot take dense, regularly-spaced samples of the learned function
throughout the input space, we can do so along specific paths through input (image) space, and thereby glean glimpses
into the spectral content of the learned function. We begin by choosing a random subset of the validation set Dvalid

according to some desired constraints (e.g. a specific class), and grouping the images into pairs. For each pair of
images we evaluate the model at fixed, regular intervals ∆ (in our experiments, ∆ = 1) along the linearly interpolating
path between them. Note that the interpolations are done between the normalized images; figure 2 (Bottom) shows
these interpolations rescaled to [0, 1] to be visually easier to interpret.

Using these sampled interpolating paths, we compute a one-dimensional statistic of the softmax predictions that serves
as a proxy for the local spectral content of the learned function. Let ŷt denote the softmax prediction at the t’th sample
along the path starting from one image and linearly interpolating towards another. For each value of t, we compute
the cumulative difference norm ‖ŷt − ŷ0‖. If we see rapid changes in the cumulative difference norm, this is proxy
evidence of high frequency components in the learned function, as shown in figure 2 (Top).

We aggregate across many paths based on the effective amount of interpolation: λ in the interpolation formula λX1 +
(1 − λ)X2, where X1 and X2 are the images being interpolated. Since paths may vary in length, we normalize the
contribution of each path based on its total number of samples so that each path is weighted equally in each λ bin.
When considering paths between images in the same class, we choose 200 random, distinct pairs of images from each
of the 10 classes and average over the paths defined by these pairs. When interpolating between classes, we choose
200 random, distinct image pairs from each of the 45 (10 choose 2) pairs of distinct classes, and average over the paths
defined by these pairs. To remove any unwanted artifacts from differing model accuracies, we exclude any of these
pairs for which the model predicts either image incorrectly.

3.3 Data and Models

Our experiments use the CIFAR-10 (Krizhevsky et al.) dataset of natural images from ten classes, a mixture of animals
and objects. Each image has 32 pixels per side and three color channels. There are 50000 training examples (5000 per
class) and 10000 test examples (1000 per class). Images are pixel-wise normalized by the mean and standard deviation
of the training images.
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Figure 2: Higher frequency functions exhibit more rapid changes in output. Top: Interpolation experiment be-
tween images of the same class on a toy function: the true one-hot label perturbed by radial wave label smoothing of
variable frequency. Bottom: Illustration of linear interpolation with a constant sampling distance 10× that used in our
experiments.

We consider six different convolutional neural networks that have achieved high accuracy on this task: two wide-
resnets (Zagoruyko & Komodakis, 2017) of different sizes (wrn 32 and wrn 160), three shake-shake regularized
networks (Gastaldi, 2017) of different sizes (shake shake 32, shake shake 96, and shake shake 112), and pyra-
mid net, which uses the even stronger shake-drop regularization (Yamada et al., 2019). Our implementations are
based on Cubuk et al. (2019a).

4 Results

Throughout this section we show representative examples from our experiments to highlight our main findings. Full
results (on all six models we tested) are included in section A.

4.1 Spectral Bias and Model Architecture

We begin by applying our label smoothing methodology to find that modern image classification CNNs exhibit spectral
bias, learning low frequency target functions early in training and learning higher frequency functions as training
proceeds. Note that figure 3 (Left) shows spectral bias over a small but illustrative range of frequencies; target functions
of sufficiently low frequency are fit almost immediately and target functions of sufficiently high frequency are never
learned during the 250 epochs of training we tested.

Although all models we tested exhibit spectral bias, we found that the precise nature of the bias depends on the choice
of model. For example, with all else fixed, increasing the width of a model decreases its spectral bias, enabling it
to fit target frequency functions faster. This trend is evident in figure 3 for the wide-resnet family (Center) and the
shake-shake family (Right). Results of our label smoothing experiment on all six models we tested are included in
section A.1.

4.2 Sensitivity to Natural Image Directions

Although label smoothing with a radial wave offers a convenient global picture of spectral bias, by replacing the radial
wave with other target functions we can use the same methodology to test more localized aspects of spectral bias. We
take a step in this direction by considering the family of target label smoothing functions S(X; k) = sin(2πf 〈X,Fk〉),
where Fk is a diagonal Fourier basis image with frequency k and the same dimensions as X, visualized in figure 4
(Bottom).
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(a) Varying frequency (b) Varying model width

Figure 3: Modern CNNs exhibit spectral bias toward low frequencies, but larger networks learn high frequencies
faster. Left: Effective noise fitting for a shake shake 96 model with radial wave label smoothing of varying frequency;
lower frequencies are learned first. Center: Effective noise fitting for wide resnets of variable width at frequency 0.039;
the larger model learns this frequency first. Right: Effective noise fitting for shake-shake models of variable width at
frequency 0.039; larger models learn this frequency faster.

Figure 4: Models are most sensitive to variations of low (but nonzero) image frequency, which are dominant in
natural images. Top: Effective noise fitting of a shake shake 96 model with label smoothing of frequency 0.038 in
various unit norm directions corresponding to Fourier basis images (Bottom) indexed by image frequency k (scaled to
[0, 1] for visualization).

We consider (a subset of) Fourier basis images because the Fourier spectra statistics of natural images are well studied
(see, e.g. Tolhurst et al. (1992)): natural images tend to be composed of Fourier basis images with amplitude propor-
tional to their inverse spatial frequency. Indeed, in figure 4 we find that shake shake 96 is more sensitive to label
smoothing in low image frequency directions dominant in natural images. This finding is consistent with theoretical
predictions of Basri et al. (2020) that models learn faster in regions of higher density of training examples: since low
image frequencies are more common in natural images, the effective sampling density enjoyed by a label smoothing
target is higher in these directions.

4.3 Spectral Bias and Regularization

We also found a relationship between regularization and spectral bias, which is explored in figure 5 and figure 6. Some
forms of regularization, like weight decay and dropout, are amenable to study by either of our methodologies; figure 5
demonstrates agreement between these methods in the context of varying weight decay. Further results showing
agreement between these two measurement methodologies are presented in section A.3.
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In total we consider 4 types of (explicit and implicit) regularization: weight decay, training set size, data augmentation
(Cubuk et al., 2019b,a; Zhang et al., 2018), and the strength of Mixup augmentation (Zhang et al., 2018). The latter
three types of implicit regularization involve changes to the training data and are therefore only directly investigated
via our interpolation methodology, which we use in figure 6.

(a) Label smoothing (b) Linear interpolation

Figure 5: Weight decay inhibits learning high frequencies. Results here are from shake shake 32 using the radial
wave label smoothing methodology at frequency 0.038 (Left) and linear interpolation within (Center) and between
(Right) classes. Both measurement techniques show that increasing the penalty on the norm of the weights produces a
stronger spectral bias, in the form of slower fitting of high frequency noise and a smoother learned function.

Weight Decay. Weight decay is a penalty on the square norm of the model parameters; a stronger penalty encourages
a model to learn smaller-norm weights. Figure 5 shows that increasing the weight decay also encourages a model to
learn high frequencies slower (Left) and to ultimately be smoother, both between examples of the same class (Center)
and between examples from different classes (Right). This result is consistent with the expectation that smaller-norm
weights yield a learned function with a smaller Lipschitz constant and thus smoother changes in output (as discussed
e.g. in Szegedy et al. (2014)). This experiment also demonstrates the nuanced relationship between the bandwidth
or smoothness of the learned function and its accuracy; shake shake 32 trained with weight decay 0.0005 or 0.001
achieves higher test accuracy compared to the same architecture trained with either more or less weight decay. Neither
complexity nor smoothness is, in itself, purely beneficial or detrimental: the trick is to balance them appropriately for
the dataset.

Training Set Size. As shown in figure 6 (Left) on wrn 160, we find that increasing the number of training examples
produces a lower-frequency learned function. Note that all models in figure 6 (Left) were trained for the same number
of epochs and with the same batch size, so the models trained with more examples were also trained for more gradient
steps (since each epoch contained more batches). The models trained with more examples therefore had ample oppor-
tunity to fit the high frequencies present in their counterparts trained with fewer examples, and yet did not. This result
supports the idea that additional examples serve as an implicit regularization by forcing the model away from more
complex solutions that would predict the added examples incorrectly.

Data Augmentation. Data augmentation is a common strategy to increase the effective training set size without the
expense of actually collecting additional examples. It also enables encoding some prior knowledge into the dataset,
such as invariance to small geometric or lighting transformations. In figure 6 (Center) we consider the effects of
RandAugment (Cubuk et al., 2019b), AutoAugment (Cubuk et al., 2019a), and Mixup (Zhang et al., 2018) data aug-
mentation strategies, each of which tends to improve the final accuracy of the trained model (with RandAugment
producing the most substantial benefits in our experiments). We find that training with RandAugment or AutoAug-
ment tends to make the learned function slightly less smooth between examples of the same class (Top). Mixup (at
strength 0.1) makes the learned function substantially smoother, both within-class (Top) and between-class (Bottom).
This experiment reinforces the nuanced relationship between function complexity and performance; a model can be
improved by the addition of necessary complexity (as in RandAugment and AutoAugment) or by the removal of
unnecessary complexity (as in Mixup).

Mixup Strength. Mixup augmentation (Zhang et al., 2018) perturbs each batch of training data as follows: each
example is matched with a partner based on a random permutation of the batch, and each example is then perturbed
towards its partner by an interpolation amount λ drawn from a symmetric beta distribution (with the same λ used for
all examples in the batch). We refer to the parameter of this beta distribution as the Mixup strength or amount of
Mixup, as it controls the degree to which the augmented images tend to lie close to an original training image or close
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(a) Varying training set size (b) Varying data augmentation (c) Varying Mixup strength

Figure 6: Implicit regularization in the form of dataset size and Mixup augmentation generally produces a lower-
frequency learned function, but RandAugment and AutoAugment can increase function frequency between
examples from the same class. Left: Interpolation experiment for wrn 160 trained with varying training set sizes:
training with more examples produces a lower-frequency learned function, both within-class (Top) and between-class
(Bottom), although returns are diminishing with dataset size. Center: Training with Mixup (Zhang et al., 2018) makes
wrn 160 lower-frequency both within-class (Top) and between-class (Bottom), whereas training with RandAugment
(Cubuk et al., 2019b) or AutoAugment (Cubuk et al., 2019a) makes it slightly less smooth within-class (Top). Right:
Modestly increasing the Mixup strength produces lower-frequency learned functions, but further increasing the Mixup
can reintroduce high frequencies, particularly within-class (Top).

to the average of two training images. A parameter of 0 corresponds to no augmentation (λ = 0 or λ = 1, always using
the original images), a parameter of 1 corresponds to the uniform distribution over λ ∈ [0, 1], and a parameter of∞
corresponds to λ = 0.5, the exact midpoint between a pair of training images. Figure 6 (Center) uses Mixup strength
0.1 (one of the values recommended by Zhang et al. (2018)). Figure 6 (Right) shows that, as expected, increasing the
strength of the Mixup augmentation generally makes the learned function smoother, particularly between examples
from different classes (Bottom), but that Mixup that is too strong can induce high frequencies within-class (Top).
Here again we find the nuanced relationship that, while some smoothness (or spectral bias toward low frequencies) is
beneficial in preventing overfitting, too much causes detrimental underfitting.

4.4 Self-Distillation

In a sense another form of regularization, we finally consider the effect of self-distillation on the smoothness of the
learned function. In self-distillation, a ‘teacher’ model is trained with some form of strong regularization, in our case a
combination of weight decay and early stopping based on training loss. A ‘student’ model with the same architecture
is then trained from scratch to fit the pseudolabels produced by the teacher, instead of the original one-hot training
labels (alternatively, an interpolation between the pseudolabels and the original labels may be used). Prior research
(Furlanello et al., 2018) found that this procedure can train student models that outperform both their teachers and a
baseline (the same architecture trained to completion on the one-hot labels).

Prior research has also sought to understand the mechanism behind knowledge distillation and self-distillation in
particular. Mobahi et al. (2020) finds that self-distillation acts as a regularizer by limiting the basis functions available
to the student to learn. We complement their theoretical work with our interpolation experimental methodology in
figure 7, where indeed we find that the student model learns a lower-frequency function than its teacher, when both
have the same training loss. We conjecture that this effect is analogous to low-pass prefiltering common in digital
signal processing: a high-frequency target function that we cannot adequately sample is first smoothed (in this case by
being approximated by a regularized teacher) and then it can be modeled via samples without further loss in fidelity.
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Without this prefiltering step, our samples are inadequate to capture the true complexity of the target function, so we
reconstruct an imperfect version corrupted by aliasing.

(a) Within-class (b) Between-class

Figure 7: Self-distillation produces a student model with a lower-frequency learned function than its teacher.
The teacher shake shake 96 model is trained on one-hot labels and stopped early when training loss reaches a thresh-
old. The student is trained to fit the pseudolabels produced by the teacher until the same training loss threshold is
achieved, at which point it has higher validation accuracy than the teacher.

5 Conclusions

In this paper, we introduced two methods to measure spectral bias in modern image classification neural networks, and
applied these methods towards the central question:

What kinds of function frequencies are needed for modern neural networks to generalize?

Specifically, we applied these methods to examine the impact of a variety of training choices on the learned fre-
quencies. Among training choices that improve validation accuracy, using a larger model, training longer, and using
RandAugment (Cubuk et al., 2019b) or AutoAugment (Cubuk et al., 2019a) tend to increase the frequency of the
learned function. However, regularizing with modest weight decay, training with more examples, using modest Mixup
augmentation (Zhang et al., 2018), and performing self-distillation all improve validation accuracy while decreasing
the frequency of the learned function. Our findings support the common wisdom that, while some complexity is nec-
essary to fit the data, unnecessary complexity can harm generalization. Our experimental methods offer a valuable
window into precisely what kind of function complexity we should strive for.

Reproducibility Statement

Our code will be released upon publication. Our work uses the publicly-available CIFAR-10 dataset (Krizhevsky
et al.).

Ethics Statement

Since our work is foundational rather than applied in nature, we do not anticipate any direct ethical concerns. However,
as with any foundational research in machine learning, our work has the potential to improve the performance and
controllability of machine learning models, particularly in the domain of image classification. These improvements in
turn may find use in ethical (e.g. medical diagnostics, autonomous vehicles) or ethically questionable (e.g. surveillance)
applications.

As for direct ethical impacts of our work, we acknowledge the energy costs of training and evaluating the models
used in our experiments. One of our key contributions is proposing a method (via linear interpolation) to measure
the frequency content of a learned function without retraining, which should enable future experimental research in
spectral bias to be less energy-intensive.
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A Appendix

A.1 Label Smoothing

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

Figure 8: All six models we tested exhibit spectral bias. Here we show effective noise fitting when training each
model with different frequencies of radial wave label smoothing.
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A.2 Sensitivity to Natural Image Directions

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

Figure 9: All six models we tested exhibit sensitivity to variations of low (but nonzero) image frequency, which
are dominant in natural images. Here we show effective noise fitting when training each model with label smoothing
of frequency 0.038 in various unit norm direction corresponding to Fourier basis images indexed by frequency k.
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A.3 Agreement Between Label Smoothing and Linear Interpolation

A.3.1 Varying the frequency of the radial wave label smoothing

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(A) Within-class

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(B) Between-class

Figure 10: Spectral bias is evident via interpolation when training with radial wave label smoothing at various
frequencies. Results here parallel those in figure 8 but using the linear interpolation methodology.

When the frequency of the radial wave used for label smoothing increases, models take more time to fit the smoothing
noise. Figure 3 (Left) and figure 8 show this using label smoothing (relative dip position); the corresponding interpo-
lation experiment is shown in figure 10. The target frequencies between 0.035 and 0.04 are close enough that, were
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the model to fit each perfectly, the interpolation curves would be nearly visually indistinguishable, as we can tell from
figure 2. However, the model is actually smoother when trying to fit higher frequency label smoothing noise, because
it fits this noise less well (in addition to fitting it later in training). We can see this effect, for instance, by noting that
wrn 32, wrn 160, and shake shake 32 fail to fit frequency 0.04, both in figure 8 and figure 10.

It is also worth noting that, in this experiment and repeatedly across our interpolation experiments, the learned function
is smoother (has less variation between examples) within-class and less smooth between-class, as evidenced by the
relative scaling of the top and bottom sub-figures of figure 10.
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A.3.2 Learning low frequencies first

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(A) Within-class

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(B) Between-class

Figure 11: Spectral bias is evident via interpolation when training as usual and comparing checkpoints at dif-
ferent epochs.

The dip experiment presented in figure 3 (Left) and figure 8 shows that low frequency target functions are learned
earlier than higher frequency targets; we can also confirm this finding using interpolation with model checkpoints
saved at different epochs throughout training (without any label smoothing). We see that indeed in the early stages of
training low frequencies predominate, with higher frequencies entering as training proceeds. Surprisingly, we also see
that towards the end of training low frequencies again predominate; the reason for this is an interesting question for
further research.
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A.3.3 Weight Decay

Figure 5 shows on shake shake 32 via both label noise and linear interpolation that increasing the weight decay results
in a smoother (lower frequency) learned function. Figure 12 shows the same result across all six models we tested.

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(A) Radial wave label smoothing
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(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(B) Within-class linear interpolation

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(C) Between-class linear interpolation

Figure 12: Weight decay increases spectral bias, producing a lower-frequency learned function.
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A.4 Training Set Size

Figure 6 (Left) shows the regularization (frequency reduction) effect of increasing dataset size for wrn 160. Figure 13
shows the same effect on all six models we tested.

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(A) Within-class

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(B) Between-class

Figure 13: Increasing the number of training examples reduces the frequency of the learned function.
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A.5 Data Augmentation

Figure 6 (Center) uses linear interpolation to study the effect of common data augmentation procedures on the learned
frequencies for wrn 160. Figure 14 shows the same experiment on all six models we tested.

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(A) Within-class

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(B) Between-class

Figure 14: Mixup augmentation produces a lower-frequency learned function on all models tested. On some
models, RandAugment and AutoAugment produce a learned function with higher frequencies between exam-
ples from the same class.
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A.5.1 Mixup Strength

Figure 6 (Right) uses linear interpolation to show that training with stronger Mixup data augmentation (Zhang et al.,
2018) causes wrn 160 to learn a lower-frequency function. Figure 15 repeats the experiment on all six models we
tested. For some models sufficiently strong Mixup augmentation produces a higher-frequency learned function be-
tween examples from the same class. The reason for this is an interesting direction for future work.

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(A) Within-class

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(B) Between-class

Figure 15: Training with stronger Mixup augmentation produces a lower-frequency learned function, partic-
ularly between examples from different classes. Within-class, Mixup that is too strong can induce higher fre-
quencies.
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A.6 Self-Distillation

Figure 7 uses linear interpolation to show that self-distillation with shake shake 96 produces a student model that is
lower-frequency than its teacher, even though both are trained to the same training loss and the student has higher
validation accuracy than the teacher. Figure 16 shows the same result across all six models we tested.

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(A) Within-class

(a) shake shake 32 (b) shake shake 96 (c) shake shake 112

(d) wrn 32 (e) wrn 160 (f) pyramid net

(B) Between-class

Figure 16: Self-distillation produces a lower-frequency student compared to its teacher.
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