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Single-particle tracking (SPT) is a key tool for quantitative analysis
of dynamic biological processes and has provided unprecedented
insights into a wide range of systems such as receptor local-
ization, enzyme propulsion, bacteria motility, and drug nanocar-
rier delivery. The inherently complex diffusion in such biological
systems can vary drastically both in time and across systems,
consequently imposing considerable analytical challenges, and
currently requires an a priori knowledge of the system. Here
we introduce a method for SPT data analysis, processing, and
classification, which we term “diffusional fingerprinting.” This
method allows for dissecting the features that underlie diffu-
sional behavior and establishing molecular identity, regardless of
the underlying diffusion type. The method operates by isolat-
ing 17 descriptive features for each observed motion trajectory
and generating a diffusional map of all features for each type
of particle. Precise classification of the diffusing particle identity
is then obtained by training a simple logistic regression model.
A linear discriminant analysis generates a feature ranking that
outputs the main differences among diffusional features, pro-
viding key mechanistic insights. Fingerprinting operates by both
training on and predicting experimental data, without the need
for pretraining on simulated data. We found this approach to
work across a wide range of simulated and experimentally diverse
systems, such as tracked lipases on fat substrates, transcription
factors diffusing in cells, and nanoparticles diffusing in mucus.
This flexibility ultimately supports diffusional fingerprinting’s util-
ity as a universal paradigm for SPT diffusional analysis and
prediction.

fingerprinting | single-particle tracking | machine learning |
fluorescence microscopy | stochastic processes

S ingle-particle tracking (SPT) has enabled the quantitative
analysis of dynamic biological processes with nanometer

spatial and millisecond temporal resolution, revealing dynamic
behaviors previously masked in ensemble averaging (1, 2). By
direct detection and spatiotemporal localization of biomolecules,
SPT provides molecular trajectories for dynamic biological pro-
cesses with nanometer spatial and millisecond temporal reso-
lution. These trajectories have offered key insights into recep-
tor dynamics (3), clathrin-mediated endocytosis (4), molecular
motors (5), transcription factor motion (6), viral entry (7), and
efficient drug delivery (8). More generally, they have offered
new insights into the complex interplay between the struc-
ture, function, and environment of biomolecules through the
characteristics of their diffusion.

The characteristics of diffusion often correlate with func-
tional traits of interest. For example, enzyme diffusion might
increase with catalysis (9); G-protein–coupled receptors display
altered diffusion upon ligand binding (3) or dimerization (10);
and nanoparticle coatings alter drug-delivery efficiencies that

are measurable as changed diffusion (11, 12). Single-particle
tracking thus holds promise as a source of diffusional data
for future advanced screening studies in a broad range of
systems (13–16).

The rich information inherent in SPT data imposes direct
analytical challenges: Biological motion is highly heterogeneous
and displays a variety of diffusion types that may vary dras-
tically across both systems and time and are dependent on
regulatory cues or spatial localization, as we and others have
shown (17–20). Dealing with such heterogeneity is challenging,
as there is no one-model-fits-all solution. Depending on the phe-
nomenon under investigation, most groups have developed their
own methodologies for estimating both the diffusion type and the
parameters of specific diffusion models analytically (21–29) or
using machine learning (30–37). If the motion changes over the
course of a trajectory, tools have also been developed to segment
the trace into regimes that are consistent with a model of interest
(35–41). These methodologies rely on identifying or compar-
ing against a specific type of diffusion model and thus are not
general, but rather are dependent on the complex phenomenon
under investigation.
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Here we address the challenge of providing a general method
for SPT analysis, processing, and classification by implementing
a diffusional fingerprint: a unique identifier for each observed
SPT particle that allows for easy comparisons and precise entity
prediction. Fingerprinting has been employed in fields as diverse
as signal processing (42), proteomics (43–46), genetics (47),
and MRI (48). The main benefit of a fingerprinting approach
compared to model-based analysis is that it does not require
an a priori assumption of the type of diffusion. Previously
developed classification methods train on simulated data and
assume the transferability of the results to experimental data.
In contrast, diffusional fingerprinting both trains and predicts
on experimental data. This allows the fingerprint to agnostically
describe a wide range of diffusional systems and diffusional trait
classifications using a simple machine-learning classifier. Fur-
thermore, it allows the use of representation learning, offering
automatic identification of the representation that best supports
the discriminate task at hand. By ranking the predicted fea-
tures of relevance, the diffusional fingerprint offers mechanistic
insights into the differences among the diffusing particles under
investigation.

We assessed the ability of diffusional fingerprinting to identify
particles in both simulated state-shifting and anomalous dif-
fusion and across multiple diverse experimental systems (e.g.,
lipases diffusing on native substrates, transcription factors dif-
fusing in cells, or nanoparticles diffusing in mucus on a lipid
membrane). We found that diffusional fingerprinting accu-
rately assigned diffusional traits to conditions, allowing for both
identification and extraction of key insights, regardless of the
underlying diffusion type. By relying on the same 17 features
for all classifications, the fingerprint provides a unifying way
of mapping a wide range of diffusional phenomena over a
common space.

Results
As input to our method, we consider the output generated
by a particle tracker: a set of localizations for each parti-
cle yielding a dataset of trajectories (Fig. 1A). These trajec-
tories can display a variety of diffusion behaviors that the
fingerprint needs to capture, including confinement effects,
state-shifting diffusion, anomalous diffusion, or non-Brownian
displacement.

The fingerprint is based on 17 features chosen to capture
most of these phenomena. They consist of 8 features recently
proposed in the literature, several features classically used for
diffusion analysis, and a set of features based on fitting the dis-
placement trajectories with a four-state hidden Markov model
(HMM) with Gaussian emissions. The fitted HMM provides
a representation learning platform with improved descriptive
power on heterogeneous state-shifting diffusion. The states and
transition probabilities are fitted globally across all trajectories.
The Viterbi path is computed for each trace, allowing for com-
putation of the residence times in each state (T0, T1, T2, and T3,
respectively), along with the average residence time (<tau>).
Apart from the HMM features, the feature set includes clas-
sical features that are used to describe anomalous diffusion.
We fitted a power law to the single-molecule mean-squared
displacement (MSD), yielding two estimates of the anomalous
diffusion exponent: a diffusion constant and a P value (alpha,
MSDratio, D, and Pval). To capture the persistence of motion
and confinement, we computed four features based on the tra-
jectory shape (kurtosis, dimension, efficiency, and trappedness)
and a single feature to capture non-Brownian displacements
(Gaussianity). Finally, to describe general trends in the tra-
jectory, we included the average speed, track duration, and
MSD value (meanSL, meanMSD, and N). Each of these 17
features’ values is computed for each trajectory. While some
of these descriptors have overlapping interpretations, they col-
lectively contribute to a nuanced description of the diffusional
process (Fig. 1B).

A population of identically diffusing entities will have a diffu-
sional fingerprint with a distribution of features. To compare the
distributions, we trained a simple logistic regression classifier to
predict the identity (i.e., which experimental condition produced
the trajectory) and rank the most relevant features in the predic-
tion by linear discriminant analysis (LDA) projection (Fig. 1C).
Logistic regression was chosen, as it performed the best across
classification tasks while training rapidly and without the need
for hyperparameter optimization (SI Appendix, Fig. S1). Based
on the prediction’s accuracy, one can quickly decide whether two
diffusion processes are inherently different and use the ranked
features to infer important differences in microscopic motion,
thus making it possible to extract key mechanistic information
about the systems under investigation.
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Fig. 1. The concept of diffusional fingerprinting for analyzing and classifying molecular identity based on SPT data. (A) A typical input consists of SPT data
obtained by tracking particles in a recorded movie, visualized here as the horizontal planes in the cartoon. Zoom-in: Three typical trajectories (note the
different diffusional behaviors). (B) Each trajectory is analyzed and 17 descriptive features underlying SPT diffusional behavior are extracted. The feature
values are shown with a gray color code in the horizontal lines of the matrix; these values contain information on the confinement effects, state-shifting
diffusion, anomalous diffusion, and non-Brownian displacements. The procedure is repeated for all particle types and conditions, as shown by the color
next to the feature matrix. (C) The diffusional fingerprint is composed of the combined feature distributions for each particle type, here shown as a
dimensionality-reduced plot, where the surfaces encapsulate 1σ of the data points. The diffusional fingerprint of each variant contains information on
all observed trajectories. New, unknown trajectories are classified with high accuracy in terms of the known fingerprints, using a simple logistic regression
model. (D) Ranking of features offers deconvolution of the most relevant differences between fingerprints and gives key mechanistic insights into diffusional
differences between measured conditions and particles.
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Concept Validation: Fingerprinting on Simulated Data
To assess the effectiveness and generality of our fingerprinting
method, we initially compared fingerprints on simulated data.
Since diffusional differences can manifest themselves in terms of
state-shifting diffusion (19), different diffusion rates (49), or par-
ticle confinement (50), we chose to evaluate the method’s ability
to identify all three. We generated two datasets: one to assess
fingerprinting on speed-switching trajectories with different dif-
fusion rates and one to assess fingerprinting on different degrees
of confinement.

Two types of speed-switching trajectories were generated
using an HMM with four normal diffusion states, 10% tran-
sition probability, and two sets of occupation probabilities,
yielding both a fast-moving and a slow-moving variant. Three
different degrees of confinement were generated by simu-
lating fractional Brownian motion with three different MSD
scaling coefficients, giving a subdiffusive variant (α=0.5), a
normally diffusive variant (α=1), and a superdiffusive vari-
ant (α=1.5). We chose the states, timescales, and number
of frames to mimic the experimental systems found in single-
molecule cell studies, in which the traces are rather short,
states can overlap, and diffusion constants are in the microme-
ter regime. For each variant, 5,000 trajectories were generated
at 0.1-s intervals, where each trajectory was 40 frames long
(SI Appendix).

The two speed-switching variants had step-length distributions
with a high degree of overlap due to their occupancy in sim-
ilar HMM states (Fig. 2A). Of the 17 descriptive features, we
readily identified those with the greatest discernibility to be T0,
T1, and T2 (residence times in the three slowest Markov states
obtained by fitting an HMM across each trajectory) and meanSL
(average step length) from their weights in a one-dimensional
(1D) LDA projection (numbers next to histograms in Fig. 2B).
Interestingly, the fractal dimension, which indicates whether a
trajectory is linear, space filling, or confined, also ranked in the

top five features, even though all of the HMM states were Brow-
nian and thus should have had an identical fractal dimension
equal to 2 (SI Appendix, Figs. S2 and S3). However, the mean
prediction accuracy was unaltered despite training on only the
top four ranking features (SI Appendix, Fig. S4), meaning that no
other features were required. The key discerning features there-
fore appear to be readily identified through feature ranking for
simulated speed-switching diffusion.

To realize a visual and qualitative representation of the diffu-
sional fingerprint we performed a principal component analysis
(PCA), taking the 17 original features and condensing them into
three principal components. We plotted the surfaces containing
1σ of the data from the mean (Fig. 2C), and the distribu-
tions looked surprisingly separable compared to the step-length
distributions (Fig. 2A). Training a logistic regression classifier
on the original 17 features resulted in an F1 score of 95.7
± 0.4, with classification accuracies of 98.4 ± 0.3% for the
fast variant and 93.6 ± 0.4% for the slow variant. We evalu-
ated classification accuracy using the discordance between the
ground truth and predicted labels using the confusion matrix,
where rows refer to ground truth and columns refer to pre-
dicted labels (Fig. 2D). A gradient boosted decision tree did
not lead to improved accuracy (SI Appendix, Fig. S5), sug-
gesting that the optimal separation boundary in this case was
linear. Moreover, the relatively high prediction accuracy was a
strong indication that the fingerprint allowed accurate classifica-
tion of particles that were transiently shifting between different
speeds.

The step-length distributions for the simulated data with a sub-
diffusive, a superdiffusive, and a normally diffusive variant were
identical for all as they were generated with the same HMM state
(Fig. 2E). The highest-ranked features in the LDA projection all
described trajectory shape or directionality and had discernible
multimodal distributions (Fig. 2F and SI Appendix, Fig. S6).
Even though the variants had identical diffusion states, their
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Fig. 2. Feature ranking and machine-learning prediction for data were simulated using a four-state diffusion model with two different HMM occupation
probabilities (A–D) and again using the same HMM occupation probabilities but with three different persistences of motion: HMM diffusion with subdiffusive
states (α= 0.5), HMM diffusion with normal diffusion states (α= 1), and HMM diffusion with superdiffusive states (α= 1.5) (E–H) (see SI Appendix for
simulation method). (A and E) Histogram of step lengths for each variant and distribution for the entire dataset (dotted line). The overlaid trajectories are
100 randomly chosen traces for each variant. The scale bar is the same for both groups of traces (n = 10,000 for A and n = 15,000 for E). (B and F) Normalized
distribution of the four most descriptive features in the diffusional fingerprint based on a ranking of components in a one-dimensional LDA projection
(numbers to the right). Histogram bins are colored based on the variant with highest value for that bin. (C and G) Three-dimensional PCA projection of the
data with convex hull polygons surrounding 1σ of the data points from the mean for each variant. (D and H) Confusion matrix for prediction with a logistic
regression model trained to separate the fingerprints. The uncertainty is obtained from a stratified fivefold cross-validation with prediction on 20% of the
data and training on 80%.
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trajectories could be classified based on trajectory shape, with an
F1 score of 91.1 ± 0.4% and respective accuracies of 93.7 ± 0.5%
for the subdiffusive variant, 94.0 ± 0.4% for the superdiffusive
variant, and 86.5 ± 0.3% for the normally diffusive variant (Fig.
2H). The slightly lower prediction accuracy for the normally dif-
fusive variant most likely originated from normal diffusion lying
between sub- and superdiffusion in its highest-ranked features,
leading to error for traces whose features overlapped between
the three variants. This error was removed by increasing the
trajectory duration and resulted in similar classification accura-
cies across all variants (SI Appendix, Fig. S7). Thus, diffusional
fingerprinting accurately classified simulated particles exhibiting
different, yet overlapping speeds with varying degrees of con-
finement, while correctly identifying the relevant features for
prediction.

Finally, we generated a stress test to further support per-
formance improvement and benchmark the approach against
algorithms currently employed in diffusion classification. Since
diffusional fingerprinting employs a different classification set-
ting than do the current methods, a direct comparison is gen-
erally not possible. However, in the special case of simulated
datasets, where the two classification settings are identical, such a
comparison can be made. We compared diffusional fingerprint-
ing against a feature-based classifier containing no HMM-based
features and against a convolutional neural network (CNN)
previously employed for diffusion classification (32). A bench-
mark was made for both high and low localization errors and
for short traces, using the traces obtained from low signal-to-
noise movies with high particle densities. Across all cases, we
found that our features outperformed the currently used fea-
ture sets (F1 scores of 88% vs. 82%, 76% vs. 67%, and 79%
vs. 66%) and performed on par with a state-of-the-art CNN
(on par for low localization error data, slightly better for high
localization error, and slightly worse for high background with
short traces; SI Appendix, Table S2 and Figs. S8–S10), while
at the same time outputting feature rankings for mechanistic
insights.

Fingerprinting Allows for Precise Identification of Enzymes
with Identical Catalytic Efficiency
To evaluate the utility of fingerprinting on real data, we initially
analyzed a subset of our published SPT data on two fluores-

cently labeled variants of Thermomyces lanuginosus lipase (TLL)
(19). TLL is an interfacially activated hydrolase that contains
an amphipathic helix known to tightly regulate its function.
Here we investigated two TLL variants, native TLL and L3.
The L3 variant differs from the native TLL by having a lid
region that is mixed between TLL and Aspergillus niger fer-
ulic acid esterase (FAEA) (51). The native and L3 lipases
display practically identical catalysis rates in uninhibited con-
ditions (19, 51, 52), and given that enzymatic turnovers have
been found to correlate to diffusion (49, 53–55), one might
expect a similar diffusion for variants of similar catalytic effi-
ciency and size. This is confirmed by the two variants’ signif-
icant overlap in step-length distribution (Fig. 3A). The native
variant, in general, displays slower diffusion, but distinguish-
ing the two variants by step-length distribution alone would be
challenging.

Computation of the diffusional fingerprint and LDA projec-
tion resulted in two quite separable distributions (Fig. 3 B and C).
Using a logistic regression and stratified fivefold cross-validation,
we predicted L3 with an accuracy of 81.8 ± 1.1% and native with
an accuracy of 84.9 ± 0.8%, for an F1 score of 65.7 ± 0.4% (the
score was lower than the accuracies due to label imbalance) (Fig.
3D). The diffusional fingerprint was thus found to deconvolute
the two overlapping, and otherwise indiscernible, step-length
distributions. Furthermore, fingerprinting allowed us to deci-
pher the underlying differences behind the distinctly different
motions. The highest-ranked features were the residence times
in each of the HMM diffusion states, with L3 spending more time
in the faster states (T2 and T3) and native spending more time
in the slower states (T0 and T1) (Fig. 3E and SI Appendix, Fig.
S11). Such difference indicates that L3 displays longer sequences
of larger jumps during a trajectory compared to the native
variant.

The differences brought forth by this analysis show that L3
and native’s similar catalysis is realized by means of differ-
ent diffusional strategies: L3 stochastically makes large jumps,
whereas native diffuses more unimodally. This suggests that L3
turnovers fuel leaps that allow the enzyme to step away from
product regions, indicating antichemotaxis (56). An antichemo-
tactic behavior could make L3 less prone to product inhibition
compared with native TLL; indeed, L3 has been found to display
limited bulk product inhibition (19). This mechanistic conclusion
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Fig. 3. Diffusional fingerprinting of SPT data for two functionally similar TLL variants, L3 and native (19). (A) Distribution of steps between frames of 100
ms for tracked particles of the two variants (n = 3,016,313). (B) One-dimensional LDA projection of features for the two variants (n = 68,200 for L3 and
n = 5,630 for native). (C) Three-dimensional PCA projection of diffusional fingerprint features. Spheres represent the convex hull containing 1σ of the data
from each group’s mean. (D) Confusion matrix for a stratified fivefold cross-validation with 20% validation and 80% training data for a logistic regression
classifier. Uncertainties denote standard deviation across the five cross-validation runs. The F1 score is lower than the accuracies, due to the strong data
imbalance between the two classes (68,200 L3 and 5,630 native). (E) Differential histograms of the five features with the highest LDA projection matrix
components used to make B. Histograms are colored based on the variant with the highest value in each bin; feature values have been normalized for visual
comparison. Numbers denote the normalized vector component in the LDA projection (n = 73,830).
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was reached in a fast, agnostic, and intuitive manner, highlighting
the strength of the diffusional fingerprint.

Logistic regression is a rather simple classifier, and we there-
fore tested whether further improvement could be made to
its prediction accuracy by applying a more complex model. To
investigate this, we tested two neural network architectures: a
CNN previously proposed for diffusion classification (32) and a
long short-term memory (LSTM) bidirectional neural network
(a method previously employed by our laboratory for classifying
fluorescence resonance energy transfer [FRET] time series) (57).
The LSTM was trained to classify the variants based on their raw
step lengths and position data, and the CNN was trained on raw
positions. The LSTM and CNN classifiers led to F1 scores of
97 and 95% for LSTM and CNN, respectively. The L3 variant
was classified with an accuracy of 93 and 95% for LSTM and
CNN, respectively, and the native variant was classified with an
accuracy of 89 and 87% for LSTM and CNN, respectively (SI
Appendix, Fig. S12). A slight increase in prediction accuracy is
expected, as the set of 17 features might never be completely
optimal. Further improvement on the network architecture may
result in increased accuracy relative to the fingerprint, but this
extends beyond the scope of the current work. However, since
the modern neural network led only to marginal improvement
in classification accuracy, at the expense of mechanistic insights,
the descriptive power inherent in the few chosen features of the
fingerprint is surprisingly strong.

Universal Application of Fingerprinting on Multiple Diverse
Systems
Finally, we tested whether diffusional fingerprinting generalizes
across systems by evaluating its efficiency on three significantly
different biomolecular entities and conditions: L3 lipase diffus-
ing on two different substrates, transcription factors diffusing on
DNA in live cells, and differently coated nanoparticles diffusing
in mucus on a lipid membrane.

The first dataset consists of the TLL variant L3 measured
on two distinctly different substrates, trimyristin and lard (SI
Appendix). The diffusional fingerprint allowed for an F1 score

of 85.1 ± 0.7% and classification accuracies of 90 ± 1% for pre-
dicting the trimyristin surface and 78 ± 3% for predicting the
lard surface (Fig. 4A and SI Appendix, Fig. S13A). It appears,
as expected, that interchanging the substrate leads to significant
changes in lipase movement. The most important feature was the
fractal dimension, with a higher fractal dimension for diffusing
on lard than on trimyristin (Fig. 4B). The other important fea-
tures (meanSL, T1, T0, and T2) originated from L3 diffusing
faster on trimyristin than on lard (SI Appendix, Fig. S14). This
result may be interpreted as lard forcing a slower and more con-
fined diffusion on the enzyme than trimyristin, an effect that is
also evident in the raw trajectories (Fig. 4C). The fact that this
prediction was based on features different from those separating
the L3 and native TLL variants highlights the generality of the
fingerprinting method.

We next tested our method on published results for tran-
scription factors diffusing in cells (58, 59). Here, the transition
between bound and free diffusion led to different trajectories,
depending on the affinity for the DNA and the free diffusion
constant. Hansen et al. (58) characterized the trajectories using
a two-state model with both a bound state and a freely dif-
fusing state. We looked at two of the four variants studied by
Hansen et al. (58): Sox2, a largely freely diffusing protein found
in mouse embryonic stem cells that has an intermediate diffusion
constant, and nuclear localization signal (NLS) in human U2OS
cells, which has a lower binding affinity to DNA than does Sox2
and displays a faster diffusion constant. Using the fingerprinting
methodology, we attained an F1 score of 72.7 ± 0.1% and pre-
dicted NLS motion with 91 ± 2% accuracy and Sox2 motion with
52 ± 2% accuracy (SI Appendix, Fig. S13B).

Inspecting the projected features revealed that the asymmetry
between classification accuracies was due to the existence of two
distinct populations within the NLS feature distributions (Fig.
4D). This overlap can be visualized as the appearance of fast
traces for NLS that were not seen for Sox2 (Fig. 4F). Train-
ing with a bidirectional LSTM or a CNN on the step length
and coordinates showed no further improvement, suggesting
that this overlap is inherent in the diffusional dynamics of the
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Fig. 4. Diffusional fingerprinting applied to three widely diverse systems. A, D, and G display the one-dimensional LDA projection showing a threshold
that maximizes the sum of sensitivity (proportion of correctly identified positives) and specificity (proportion of correctly identified negatives). B, E, and H
display the features ranked by their components in the LDA projection. C, F, and I display 30 exemplary traces from the respective dataset used to construct
B, E, and I. (A–C) Diffusional fingerprinting of the TLL L3 variant measured on two different substrates, lard and trimyristin (n = 6,270). (D–F) Diffusional
fingerprinting of the two halo-tagged transcription factors Sox2 in mouse embryonic stem cells and NLS in human U2OS cells from a study by Hansen et al.
(58) (n = 8,937). (G–I) Diffusional fingerprinting of differently coated nanoparticles diffusing in mucus on top of a lipid membrane (n = 2,286). The confusion
matrix from a fivefold stratified cross-validation of a logistic regression classifier for each dataset is shown in SI Appendix, Fig. S13.
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system and that fingerprinting precisely resolved the difference
(SI Appendix, Fig. S15). The most relevant feature for predic-
tion was the average step length (meanSL), and Hansen et al.
(58) found similar diffusion constants to those obtained from the
meanSL histogram (12 µm/s for the NLS peak and 3µm2/s for
Sox2), confirming that diffusional fingerprinting readily identifies
the key discerning diffusional properties for identification (Fig.
4E and SI Appendix, Fig. S16).

Finally, we tested the ability of diffusional fingerprinting to
accurately predict and annotate particles in a completely differ-
ent system: nanoparticles with two different types of coatings
diffusing in mucus on top of a lipid membrane. The effect of
polymer coating to increase mucus permeability was investigated
by directly comparing the mobility of pure polylactic-co-glycolic
acid (PLGA) nanoparticles to specially designed mucus inert
particles with an enzymatically cleavable shell of d-α-tocopheryl
polyethylene glycol 1000 succinate (TPGS) (12). Here, the uni-
versality of diffusional fingerprinting was manifested by its ability
to classify TPGS particles with a prediction accuracy of 93 ± 1%
and PLGA particles with an accuracy of 91 ± 1% (Fig. 4G and
SI Appendix, Fig. S13C).

Feature ranking revealed the high prediction accuracy to be
due to the mechanistic origin of varying diffusion speeds and
differing confinement. Particles coated with TPGS displayed a
greater average step length than did raw PLGA particles and
had a lower occupancy in the fastest Markov state. Not only
were the TPGS particles faster than the raw particles, but also
their motion was less confined and more Brownian, as seen by
the increased alpha centered around 1, a higher meanMSD, and
an estimated fractal dimension close to 2 (Fig. 4 H and I and
SI Appendix, Fig. S17). Since subdiffusion can be related to dif-
fusion on a fractal (60), it is possible that the PLGA particle
was constrained by mucus interactions to move on a lower-
dimensional manifold defined by channels in the mucus and
that this constraint was lifted by the TPGS coating, allowing the
particle to diffuse in a Brownian fashion. While previous analy-
ses of these trajectories also identified the increase in diffusion
speed (12), the observation that TPGS coating acts by lifting a
subdiffusive-like state is completely different.

Discussion
Here we introduced the concept of diffusional fingerprinting, an
approach that enables classifying and describing SPT trajecto-
ries regardless of underlying diffusion type. We demonstrated
how a trained classifier can be used to predict variants and how
1D LDA projection allows for precise outputting of the diffu-
sional traits that sets variants apart. By relying on the same 17
features for each classification, single-particle diffusional finger-
printing provides a unified way to map a wide range of diffusional
phenomena to a common space.

Since the fingerprint is a distribution of features, the degree
of overlap in feature values decides the separability of diffu-
sional fingerprints. The simulated data were deliberately chosen

to be short (40 frames per trajectory) to faithfully represent chal-
lenging SPT in cells (Fig. 2). Increased imaging time greatly
suppresses error, and we found accordingly that the increased
imaging time and decreased localization error greatly improved
the separability of the fingerprinting distributions, and thus
the classification accuracy, across all simulated datasets (SI
Appendix, Figs. S7, S9, and S10). While most of the feature distri-
butions may be explained from this, it is possible that part of the
spread in the fingerprint originates from a suboptimal selection
of features. This was suggested from the observation that a bidi-
rectional LSTM neural network and a CNN slightly improved the
fingerprinting prediction accuracy on the native and L3 datasets
(SI Appendix, Fig. S12). Features can always be improved, and
as better features and classifiers are employed in the future,
our implementation of diffusional fingerprinting may be further
extended. However, no improvement was found when training
on the transcription factor dataset (SI Appendix, Fig. S15) and
the method performed on par with a CNN on the stress test
dataset (SI Appendix, Table S2). These comparisons suggest that
while slight improvements to the features might be possible, most
of the relevant information is captured in the 17 chosen features.

We have focused on the case of labeled data in our investi-
gation, but the descriptive power of the features used for the
diffusional fingerprint naturally extends to unlabeled data, as the
features do not need a label for computation. Dimensionality
reduction and clustering techniques could be used to identify
traces in a dataset with distinct diffusion characteristics and
extract their diffusional fingerprints in an unsupervised fashion
from fingerprinting clusters. The fact that the diffusional fin-
gerprint precisely outputs features in a common space across
a range of diverse biomolecular systems strongly supports that
the proof-of-principle uses of diffusional fingerprinting outlined
here are only a few of the many possibilities for this technique.
We envision its application across systems or laboratories, gen-
erating libraries of conditions for diverse types of motion. The
optimal number of HMM states could be iteratively updated
using a variational approach as more data are added (61). Once
a dictionary of diffusional traits is generated, a pattern recogni-
tion algorithm based on machine learning may output the feature
classification and output identity. This may be type of parti-
cle, biomolecular recognition, ligand-mediated conformational
change, topographical or geometrical variation in the diffusion
medium from high-throughput screening analysis, or a theoreti-
cal diffusion model, as well as different mechanisms or pathways
for the cellular entry of viruses or nanocarriers.

Data and Code Availability. All tracked data used for fingerprint
generation and single-particle tracking data have been deposited
in ERDA, University of Copenhagen (https://sid.erda.dk/cgi-
sid/ls.py?share id=ctvcZhDnE7) (62). Previously published data
were used for this work [Wan et al. (12), Bohr et al. (19), and
Hansen et al. (58)]. Code for computing the fingerprints and
plotting feature projections is available on GitHub (63).
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