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Robust topological designs 
for extreme metamaterial 
micro‑structures
Tanmoy Chatterjee1*, Souvik Chakraborty2, Somdatta Goswami3, Sondipon Adhikari1 & 
Michael I. Friswell1

We demonstrate that the consideration of material uncertainty can dramatically impact the optimal 
topological micro-structural configuration of mechanical metamaterials. The robust optimization 
problem is formulated in such a way that it facilitates the emergence of extreme mechanical 
properties of metamaterials. The algorithm is based on the bi-directional evolutionary topology 
optimization and energy-based homogenization approach. To simulate additive manufacturing 
uncertainty, combinations of spatial variation of the elastic modulus and/or, parametric variation 
of the Poisson’s ratio at the unit cell level are considered. Computationally parallel Monte Carlo 
simulations are performed to quantify the effect of input material uncertainty to the mechanical 
properties of interest. Results are shown for four configurations of extreme mechanical properties: (1) 
maximum bulk modulus (2) maximum shear modulus (3) minimum negative Poisson’s ratio (auxetic 
metamaterial) and (4) maximum equivalent elastic modulus. The study illustrates the importance 
of considering uncertainty for topology optimization of metamaterials with extreme mechanical 
performance. The results reveal that robust design leads to improvement in terms of (1) optimal mean 
performance (2) least sensitive design, and (3) elastic properties of the metamaterials compared to 
the corresponding deterministic design. Many interesting topological patterns have been obtained for 
guiding the extreme material robust design.

Metastructures are metamaterial induced concepts implanted in structural design. The exploration of metama-
terials was heavily steered by the path-breaking investigation of electromagnetic metamaterials, which exhibited 
properties like, negative permittivity and permeability1. This paved the way for mechanical metamaterials2. 
These metamaterials are engineered to derive their fundamental mechanical properties from the geometry of 
their structural building blocks (periodicity or translational symmetry), instead of the constituting materials3,4. 
Mechanical metamaterials have gained wide popularity in engineering applications due to their superior proper-
ties compared to conventional materials found in nature. It has been found that by varying one or more material 
constants such as, bulk modulus, shear modulus, Poisson’s ratio and elastic modulus, extraordinary materials 
such as, ultra light weight and high strength aerospace shells, functionally graded electromagnetic sensors and 
energy absorbing dampers can be secured5,6.

For exploring such exciting possibilities of discovering new materials with extreme properties, determining 
their optimal configuration at the very conceptual micro-structural design stage is indispensable7. A recent 
works with multi-material lattices8, pre-stressed materials9 and piezo-embedded damped lattice metamaterials10,11 
show some ways of achieving extreme homogeneous properties. In this scenario, topology optimization (TO) is 
well-known to be an effective computational analysis tool which renders greater design freedom and yields the 
best material layout given a prescribed design domain and boundary condition12. Depending on the algorithm’s 
performance and versatility, various successful TO methods have emerged to the present13, few popular ones 
being the solid isotropic material with penalization (SIMP), evolutionary structural optimization (ESO), level 
set method (LSM), and moving morphable components (MMC). In fact, the popularity of TO has even led to its 
integration with relatively newer numerical discretization schemes (compared to finite element method) such 
as, isogeometric analysis14. A simple illustration of multi-scale design and topology optimization of the micro-
structure of metamaterial is presented in Fig. 1a and b, respectively.
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Figure 1.   An illustrative visual tool guide of the key aspects of the proposed design paradigm. The focus is on 
optimizing the topology of the periodic unit cell as shown in (a) and determine robust micro-structural designs 
against uncertainties. Note that the objective of the deterministic topological design in (b) is to maximize 
the bulk modulus (refer Table 1 for details). The negative ordinate indicates the maximization problem. The 
3D computer aided design (CAD) geometries of the robust micro-structural configurations shown in (c) are 
obtained using Autodesk Fusion 360 software (version 2.0.9930) (https://​www.​autod​esk.​co.​uk/​campa​igns/​educa​
tion/​fusion-​360). These geometries can be directly exported for 3D printing. The four different geometries 
shown here correspond to robust topologies exhibiting extreme mechanical properties (for example, maximum 
bulk modulus, maximum shear modulus, minimum Poisson’s ratio and maximum equivalent elastic modulus).

https://www.autodesk.co.uk/campaigns/education/fusion-360
https://www.autodesk.co.uk/campaigns/education/fusion-360
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The success of TO is clearly evident from its extensive applications for material micro-structural design in 
recent years. In this regard, few note-worthy literatures have been discussed as follows. Gibiansky and Sigmund15 
investigated multi-phased elastic composites and obtained topological design corresponding to extreme bulk 
and shear modulus. For obtaining maximum bulk and shear modulus, the optimal topology of cellular micro-
structures was determined using ESO16. A compact code in MATLAB based on the SIMP and energy-based 
homogenization method (EBHM) was developed for extreme material multi-scale structural design17. Clausen 
et al.18 designed and fabricated 3D auxetic material micro-structures undergoing large deformations. Long 
et al.19 performed topology optimization to maximize the effective Young’s modulus, so as to obtain the optimal 
distribution of 3D material micro-structures whose constituent phases consist of non-identical Poisson’s ratios. 
A novel TO method was presented based on the independent point-wise density interpolation to obtain a bi-
material chiral metamaterial20. Chen and Huang21 designed 3D chiral metamaterials based on the couple-stress 
homogenization and maximized the chiralty (the coupling effects between tension/compression and torsion) 
of the cellular structure. Xu et al.14 achieved designs of ultra-lightweight architected materials along with extre-
mal properties such as, maximum bulk and shear modulus by using isogeometric TO. Petal-shaped auxetic 
metamaterials were designed where a back-propagation neural network was coupled with isogeometric TO to 
evaluate their macroscopic equivalent properties22. Zheng et al.23 proposed two numerical schemes within the 
evolutionary optimization framework to obtain 2D auxetic metamaterials with favourable characteristics, and 
experimentally validated their special properties. Ye et al.24 proposed a method for the simultaneous adaptive 
design of gradually stiffer mechanical metamaterials along with auxetic property.

Although the above published articles related to micro-structural TO explore multiple potent research pros-
pects to achieve extreme material properties, they are restricted to the deterministic optimization framework. In 
this regard, the literature is found to be scarce in studies addressing uncertainties in manufacturing processes. 
The following few works highlight the importance of considering manufacturing variability and their effect on 
the structural design. Most nano, micro and macro structures fabricated using e-beam lithography, etching and 
milling processes, respectively are vulnerable to manufacturing uncertainties. Even the structures meticulously 
designed and optimized may experience inferior performance or in an extreme scenario, lose their functional-
ity due to the wear of machining tools, under or over-etching, or malcalibrated e-beam equipment. To address 
few of the above aspects, robust topology optimization (RTO) for structural design was presented accounting 
for manufacturing errors in25–27. Specifically, the effect of over-etching (erosion) and under-etching (dilation) 
was modelled for structures produced by milling or etching, which may cause the structural parts to become 
thinner or thicker than intended. For the works25,26, the problem was posed as a worst case design formulation 
and the error effects were simulated by a Heaviside projection threshold. While they considered only uniform 
manufacturing errors (i.e. constant in magnitude over the entire design domain), the method was extended to 
account for non-uniform manufacturing errors (i.e. with spatially varying magnitude)27. For doing so, a proba-
bilistic approach was followed where the projection threshold was represented by a (non-Gaussian) random field. 
Jansen et al.28 developed an RTO framework which incorporated the spatially varying geometric imperfections 
due to misalignment and misplacement of material often encountered in slender (civil engineering) structures. 
These imperfections should be accounted for in accordance to the provision recommended in the Eurocode for 
design of steel structures and by the Joint Committee on Structural Safety. Note that the misplacement errors 
cause a perturbation in the spatial location of the material, whereas the errors due to etching, add or remove 
material at the structural surface. An ESO based RTO framework was developed for multi-material structures 
considering interval loading uncertainty in29. Efficiency was enhanced by (1) orthogonal decomposition of the 
loading uncertainty which decoupled the stochastic problem from the optimization loop and (2) sensitivity 
analysis. Material uncertainty modelled as imprecise probability was integrated with the multi-scale concurrent 
ESO based TO framework in30. The RTO methodology adopted the type I hybrid random interval model. An 
ESO based RTO framework was developed for multiscale 2D and 3D structures considering multiple random 
loading conditions in31. Decoupled sensitivity analysis was observed to improve the computational efficiency. An 
ESO based RTO methodology was proposed for actuator-coupled structures considering hybrid uncertainties 
in32. The hybrid random interval model simulated the stochastic mechanical and piezoelectric parameters and 
perturbation analysis was employed to evaluate the statistical quantities.

While the above works simulated manufacturing uncertainties numerically and investigated their effect on 
the structural topology, the following studies have carried out experimental analysis to probe manufacturing 
uncertainties. It has been shown that the emission rate of a 3D printer based on fused deposition modeling prin-
ciple increased significantly with the increase in the extrusion temperature33. Melenka et al.34 found that the per 
cent infill has a significant effect on the longitudinal elastic modulus and ultimate strength of the test specimens, 
whereas print orientation and layer thickness fail to achieve significance. Dimensional analysis of test specimens 
also showed that the test specimen varied significantly from the nominal print dimensions. The manufacturing 
tolerances of metamaterial samples produced by a selective laser sintering process were obtained to simulate 
the manufacturing uncertainty in mass-produced industrial applications35. It was found that even small levels of 
variability, given by less than 1 % for the mass and less than 3 % for the elastic modulus, has a significant effect 
on the overall vibration attenuation performance.

While the first of the above three paragraphs discusses works on deterministic TO for extreme metamate-
rial design, the second paragraph illustrates the numerical simulation of manufacturing uncertainty and robust 
topological design. Finally, the above paragraph highlights a few instances of experimental exploration of manu-
facturing uncertainties. Motivated by the need to consider manufacturing uncertainties for metamaterial design, 
this work attempts to bridge the above points. Thus, we integrate these aspects to present an RTO formulation 
specifically for extreme metamaterial design by minimizing the effect of potential material uncertainties. To the 
best of the authors’ knowledge, this is one of the first applications of robust micro-structural design for obtain-
ing extreme mechanical properties of metamaterials. Few instances of ready-to-print robust micro-structural 



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15221  | https://doi.org/10.1038/s41598-021-94520-x

www.nature.com/scientificreports/

topologies of extreme metamaterials achieved as a part of this study have been presented in Fig. 1c for illustrative 
purpose and the interest of readers.

Methodology
The work integrates the material uncertainty model (simulated by in-house developed codes) with deterministic 
topology optimization36 to develop a parallel Monte Carlo based robust topology optimization framework. A 
flow-diagram of the proposed RTO framework is presented in Fig. 2.The main intent is to illustrate the effect of 
material uncertainties on the micro-structural topologies and derive robust configurations for extreme material 
design. As shown in Fig. 2, the entire methodology comprises of three steps: (1) the user-defined input module 
where the system and the optimization parameters are initialized, (2) the analysis module where the expensive 
computations take place involving uncertainty quantification nested within the optimization loop. To reduce the 
computational cost, a parallel version of Monte Carlo simulation is employed to simulate the randomness within 
each optimization iteration. The details of this step regarding the optimization algorithm, finite element model, 
energy-based homogenization and sensitivity computations are presented subsequently. (3) The post-processing 
module is where the resulting robust micro-structural topologies with extreme properties are exported to a CAD 
software for 3D printing.

Homogenization.  Considering linear elastic behaviour, the equivalent constitutive behaviour of periodic 
structures can be determined by homogenization technique. This work employs the energy-based homogeniza-
tion approach to predict the macroscopic equivalent elastic properties of micro-structures36. The approach is 
based upon energy conservation with respect to stress and strain. The homogenized stiffness tensor EHijkl can be 
expressed in terms of mutual energies as

where Y represents the base cell, Epqrs is the elasticity tensor in index notation, εA(ij)pq  and εA(kl)rs  denote the super-
imposed strain fields. When the base cell is discretized into N finite elements, Eq. (1) can be approximated as

(1)EHijkl =
1

|Y |

∫

Y
Epqrsε

A(ij)
pq εA(kl)rs dY

Figure 2.   Flowchart of the proposed framework. The three modules, namely, (1) user-defined initialization, 
(2) topology optimization under uncertainty analysis and (3) post-processing unit for additive manufacturing, 
are bordered by dotted lines which constitute the approach. A square-shaped void region at the centre of the 
150 × 150 unit cell is adopted as the initial design (as shown in the right side of the user-defined module block). 
The robust optimal topology obtained (corresponding to maximum shear modulus subjected to the spatial 
variability of the elastic modulus (refer Table 2)) is shown as a 20 × 30 periodic arrangement of the unit cell in 
the post-processing module. The 3D fabrication-ready object is obtained after extruding and material rendering 
in Autodesk Fusion 360 software (version 2.0.9930) (https://​www.​autod​esk.​co.​uk/​campa​igns/​educa​tion/​fusion-​
360). The abbreviations RTO and UQ represent robust topology optimization and uncertainty quantification, 
respectively.

https://www.autodesk.co.uk/campaigns/education/fusion-360
https://www.autodesk.co.uk/campaigns/education/fusion-360
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where uA(kl)e  are the element displacement solutions corresponding to the unit test strain fields ε0(kl) and ke 
denotes the element stiffness matrix. It is to be noted that for 2-D problems, 11 ≡ 1 , 22 ≡ 2 , and 12 ≡ 3 . Thus, 
Eq. (2) can be concisely represented as

where Qij is given by

In Eq. (3), q(ij)e  are the element mutual energies and can be expressed as

Periodic boundary conditions.  The displacements on a pair of opposite boundaries of a 2-D base cell

where notations k− and k+ represent the pair of two opposite parallel boundary surfaces perpendicular to the 
kth direction. One can remove the unknown periodic fluctuation term u∗i  by using the difference between the 
displacements as,

For a given unit cell, the quantity (yk+j − yk−j ) is constant. Thus, the right side of Eq. (7) is a constant for a 
specified ε0ij . This boundary conditions can be incorporated within the finite element model by restraining the 
corresponding pairs of nodal displacements. Note that this boundary configuration satisfies the periodicity and 
continuity conditions in terms of displacement and stress employing displacement-based finite element analysis37.

Optimization approach.  The unit cell is discretized into N finite elements, resulting into equal number 
of density design variables ρ ∈ R

N . The element level elastic modulus can be defined by the modified SIMP 
method38 as

where Emin denotes the elastic modulus of the Ersatz material, an approximation for void material to prevent 
singularity of the stiffness matrix, 0 < ρe < 1 , limits corresponding to Ersatz and solid materials, p is a penaliza-
tion factor for driving the density towards the black and white solution and E0 denotes the elastic modulus of 
solid material.

The deterministic optimization problem can be expressed as

where the objective function c(EHijkl) is a function of the homogenized stiffness tensors, K is the global stiffness 
matrix, uA(kl) and f kl are the global displacement and external force vectors of the test case (kl), respectively, 
d, ve and v denote the spatial dimension, element volume and upper limit of the volume fraction, respectively.

The motive of this work is to determine the extreme properties of material micro-structures, such as maxi-
mum bulk modulus, maximum shear modulus, minimum Poisson’s ratio and maximum equivalent elastic modu-
lus. The corresponding objective functions can be defined as

•	 Design of maximum bulk modulus: 

•	 Design of maximum shear modulus: 

(2)EHijkl =
1

|Y |

N∑

e=1

(u
A(ij)
e )Tkeu

A(kl)
e

(3)Qij =
1

|Y |

N∑

e=1

q
(ij)
e

(4)

�
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

�
=
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EH1111 EH1122 EH1112
EH2211 EH2222 EH2212
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(ij)
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(6)
uk−i = ε0ijy

k−
j + u∗i

uk+i = ε0ijy
k+
j + u∗i

(7)uk+i − uk−i = ε0ij(y
k+
j − yk−j )

(8)Ee(ρe) = Emin + ρ
p
e (E0 − Emin)

(9)

minimize
ρ

c(EHijkl(ρ))

subject to KuA(kl) = f kl , k, l = 1, . . . , d

N∑

e=1

veρe/|Y | ≤ v, 0 ≤ ρe ≤ 1, e = 1, . . . ,N .

(10)c = −(E1111 + E1122 + E2211 + E2222)
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•	 Design of minimum Poisson’s ratio: 

•	 Design of maximum equivalent elastic modulus: 

Note that the topological design of minimum and negative Poisson’s ratio (E1122/E1111) has always been a 
difficult issue. It is observed from the literature that auxetic properties can be obtained by imposing additional 
constraints on isotropy or bulk modulus36. An equivalent expression in the form of Eq. (12) is used for this pur-
pose and adopted from23. Selection of the term δ in Eq. (12) is discussed later in the numerical illustration section.

The solution scheme for solving the equilibrium equation in Eq. (9) adopted here can be found in Xia and 
Breitkopf36. After obtaining the finite element displacement solution, the optimization problem in Eq. (9) is 
solved by using optimality criteria method. The heuristic updating criterion13 is expressed as

where m is the step size, η is the damping coefficient and Be can be determined by using the following optimality 
condition

where � is the Lagrange multiplier. It imposes the satisfaction of the material volume fraction constraint. The 
numerator ∂c

∂ρe
 which is the sensitivity of the objective function can be determined by using the adjoint method as

where k0 represent the element stiffness matrix with unit elastic modulus. For a uniform mesh, the element vol-
ume ve = 1 and hence, ∂V

∂ρe
= 1 . To ensure convergence of the optimization problem Eq. (9), filtering techniques 

are used which are illustrated next.

Filtering.  To eliminate the formation of a checkerboard pattern and resolve the mesh-dependent issue, a 
filter is applied either to the sensitivities or the densities38,39. The sensitivity based filtering modifies the sensitivi-
ties ∂c

∂ρe
 (Eq. (16) as,

where γ = 10−3 is a small positive number incorporated to avoid the denominator becoming zero. Hei is a 
weight term defined in Eq. (18). Ne represents the set of elements i whose centre-to-centre distance to element 
e, �(e, i) , is less than the filter radius rmin . The size of the filter radius can be used to control the minimum size 
of the emerging features in the design domain.

The density based filtering converts the original densities to the filtered densities ρe as,

The sensitivities with respect to ρj can be obtained as,

Note that ∂c
∂ρ̃e

 can be evaluated by Eq. (16) upon replacing ρe with ρ̃e.

Robust topology optimization.  The objective function considered for the robust topology optimization 
is
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where µc and σc are the mean and standard deviation of the deterministic objective function c, respectively.

Sensitivity calculation.  Differentiating cRTO , we obtain

Now considering the first term of Eq. (22) and expanding it, we obtain

where we have represented the expectation based on Nsimu number of samples. From Eq. (23), we can see that the 
first term of Eq. (22) can be computed based on the expectation of the topological derivatives in the deterministic 
case. For the second term in Eq. (22), we have

where var (•) indicates the variance operator. Considering the first term in Eq. (24) and expanding it similar to 
Eq. (23), we have

Finally, considering the second term in Eq. (24) and using Eq. (23), we have

Substituting Eqs. (26) and (25) into Eq. (24), we obtain

Finally, substituting Eqs. (27) and (23) into Eq. (22), we obtain

From Eq. (28), it is obvious that the topological derivatives for RTO can be computed based on conventional/
deterministic topological derivatives.

Numerical illustration: results and discussion
Implementation details.  In this work, the design domain is considered to be square and discretized into 
square plane stress elements. The volume fraction is taken to be 0.5. The unit cell is discretized into 3× 3 ele-
ments. The influence of an initial design can affect the final optimal topology significantly. For this work, a 
square shaped void region at the center of the unit cell is adopted as the initial design40 as shown in Fig. 2. The 
small void is generally inserted in the initial design to stimulate the evolutionary optimization process.

It has been reported in multiple studies that topology optimization for the design of extreme material proper-
ties is prone to multiple local minima. The final optimal solution is found to be extremely sensitive to the initial 
topology, shape of the unit cell, filter radius (rmin) , penalization factor (p), filtering approach (sensitivity filtering 
or density filtering) and others. Therefore, for selecting the appropriate parameter values, few rules of thumb have 
been followed. The optimization problem Eq. (9) is non-convex for p ≥ 1 . Although the high values of penaliza-
tion factor will result in more distinct topologies, the algorithm is likely to get trapped in a local minima17. A 
smaller filter radius value generally results in a better solution (in terms of a detailed micro-structure) as higher 
frequency details are visible through low-pass filter. Compared to sensitivity filtering, density filtering is observed 
to yield less sensitive designs and hence preferable for material micro-structure design.

Parametric study has been carried out by considering various combinations of stochastic material parameter 
models such as, spatial variation via random field and random parametric models. The stochastic models assumed 
are in line with the literature (discussed in the introduction section) where spatially varying and parametric 
models simulate non-homogenous and uniform manufacturing errors, respectively. For stochastic simulations, 
the elastic modulus and Poisson’s ratio are considered to be random and follow log-normal distribution with 5 % 
variability. It is practical to assume that all realizations corresponding to these random parameters will be posi-
tive and therefore, they are assumed to be log-normally distributed. In doing so, 1000 MCS is performed within 
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every optimization iteration to simulate the material variability. This has been carried out in a cost-effective 
manner using parallel computing (employing all 8 cores of an Intel Xeon processor). Four case studies have 
been undertaken to obtain extreme properties of material micro-structures, such as maximum bulk modulus, 
maximum shear modulus, minimum negative Poisson’s ratio (auxetic metamaterials) and maximum equivalent 
elastic modulus.

The initial design is the same for all the following cases studied (except type III). The nominal values of the 
elastic modulus and Poisson’s ratio at the element level are adopted as 1 and 0.3, respectively. For the stochastic 
cases, their mean values are same as that of the nominal values. The length scale used for discretizing the random 
field model is taken as 0.2. The results are represented by reporting the optimal unit cell, 3× 4 periodic arrange-
ment, equivalent elastic matrices and robust optimal solutions for each of the extreme material configurations.

Maximum bulk modulus (Type I).  Table 1 illustrates the optimal solutions for the case of type I. To obtain 
these results, density based filtering and the following parameter values are considered: p = 5 and, rmin = 2.
It can be observed from Table 1 that uncertainty affects both the topological configuration and the equivalent 
elastic matrix. The stiffness terms Q11 and Q22 are observed to increase for all types of uncertainty models com-
pared to the deterministic case. Specifically, the greatest rise is observed for the random field cases. The term Q33 
decreases due to uncertainty. The off-diagonal term Q12 reduces for all uncertainty models and the deterministic 
model achieves the maximum value. Interestingly, for the hybrid input uncertainty modelling case, the resulting 
structure shows non-zero (negative) Q13 and Q23 terms. This indicates coupling of axial and shear deformations/
stress states. Although there is a slight difference between the terms Q11 and Q22 for the deterministic and ran-

Table 1.   Optimal solutions for maximum bulk modulus (Type I). Results from four case studies are shown. 
They include, (1) deterministic design, (2) robust design considering parametric uncertainty models for elastic 
modulus and Poisson’s ratio, (3) robust design considering random field model for elastic modulus and (4) 
robust design considering a combination of random field and parametric uncertainty models for the elastic 
modulus and Poisson’s ratio, respectively. Note that the terms of the equivalent elastic matrix (given by Eq. (4)) 
represent their mean values. The standard deviation of the matrix terms is consistent with the level of input 
uncertainty and is observed to be within 5% bounds. The objective functions of the deterministic and robust 
optimization have been evaluated by Eqs. (10) and (21), respectively.
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dom field models, the difference is significant for the hybrid uncertainty model, exhibiting strong anisotropic 
behaviour. In terms of mean value of the objective function, the random field cases lead to higher value of bulk 
modulus compared to the deterministic and parametric uncertainty cases. Also, the random field cases result 
in a more robust topological design indicated by lower values of the standard deviation of objective function.

Maximum shear modulus (Type II).  Table  2 illustrates the optimal solutions for the case of type II. 
To obtain these results, density based filtering and the following parameter values are considered: p = 5 and, 
rmin = 2.It can be observed from Table 2 that uncertainty affects both the topological configuration and the 
equivalent elastic matrix. The stiffness terms (diagonal entries) Q11 , Q22 and Q33 and the off-diagonal term Q12 are 
observed to increase for the random field and hybrid input uncertainty models compared to the deterministic 
case. These terms achieve lower values for the parametric uncertainty model compared to the deterministic case. 
Interestingly, for the random field and hybrid input uncertainty models, the resulting structure show (1) non-
zero values of Q13 and Q23 terms and (2) Q11  = Q22 . (1) indicates coupling of axial and shear deformations/stress 
states and (2) illustrates anisotropic behaviour. In terms of mean value of the objective function, the random field 
and hybrid input uncertainty models lead to higher value of shear modulus compared to the deterministic and 
parametric uncertainty cases. The parametric stochastic model results in the minimum value of shear modulus. 
Also, the random field and hybrid input uncertainty models result in a more robust topological design indicated 
by lower values of the standard deviation of objective function.

Table 2.   Optimal solutions for maximum shear modulus (Type II). Results from four case studies are shown. 
They include, (1) deterministic design, (2) robust design considering parametric uncertainty models for elastic 
modulus and Poisson’s ratio, (3) robust design considering random field model for elastic modulus and (4) 
robust design considering a combination of random field and parametric uncertainty models for the elastic 
modulus and Poisson’s ratio, respectively. Note that the terms of the equivalent elastic matrix (given by Eq. (4)) 
represent their mean values. The standard deviation of the matrix terms is consistent with the level of input 
uncertainty and is observed to be within 5 % bounds. The objective functions of the deterministic and robust 
optimization have been evaluated by Eqs. (11) and (21), respectively.
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Minimum Poisson’s ratio (Type III).  Density based filtering and the following parameter values are con-
sidered: p = 5 and, rmin = 5 , for the type III case. The unit cell is discretized into 200 elements along both the 
horizontal and vertical directions. As the term δ (refer Eq. (12)) causes significant sensitivity to the topological 
design of auxetic metamaterials23, a parametric study is performed in Table 3 to investigate the effect of δ on 
the resulting topologies with minimum Poisson’s ratio.It can be observed from Table 3 that out of the adopted 
δ values, only δ = 0.5 and 1 lead to negative mean Poisson’s ratio corresponding to the deterministic and each 
of the stochastic models. δ = 0.5 has been selected as lower Poisson’s ratios are obtained compared to the case δ 
= 1. The corresponding row has been highlighted to indicate the best and the most consistent performance in 
Table 3 for clarity. Table 4 illustrates the optimal solutions for the case of type III, corresponding to δ = 0.5.It can 
be observed from Table 4 that uncertainty affects both the topological configuration and the equivalent elastic 
matrix. Although the overall resulting topologies from the deterministic and parametric uncertainty models 
are very similar with fine differences at the boundary. The stiffness terms Q11 and Q22 are observed to increase 
for the random field and hybrid uncertainty models and decrease for parametric uncertainty compared to the 
deterministic case. The stiffness term Q33 is observed to increase for all stochastic models compared to the 
deterministic case. The off-diagonal term Q12 is negative for all the cases reported and observed to increase for 
the parametric stochastic model and decrease for the random field and hybrid uncertainty cases than that of the 
deterministic one. Interestingly, for the random field and hybrid input uncertainty models: (1) the terms Q13 
and Q23 are non-zero (negative), which illustrates coupling of axial and shear deformations/stress states and (2) 
Q11  = Q22 , which indicates anisotropic behaviour. The random field and hybrid input uncertainty models lead 
to lower values of the mean objective function compared to the deterministic and parametric uncertainty cases. 
Specifically, the parametric and hybrid stochastic models result in the maximum and minimum value of Pois-
son’s ratio, respectively. The deterministic, random field and hybrid input uncertainty models result in the same 
level of robustness of the topological design indicated by the standard deviation of the objective function. The 
parametric uncertainty model achieves the most robust design by a small margin. The results in Table 4 illustrate 
that negative Poisson’s ratio (given by Q12/Q11 ) has been achieved for all the case studies undertaken. This is 
worth mentioning as the design of auxetic metamaterials by topology optimization is a challenging task on its 
own and even more difficult with uncertainties.

Maximum equivalent elastic modulus (Type IV).  Table 5 illustrates the optimal solutions for the case 
of type IV. To obtain these results, density based filtering and the following parameter values are considered: 
p = 5 and, rmin = 2.It can be observed from Table 5 that uncertainty affects both the topological configuration 
and the equivalent elastic matrix. The resulting topologies obtained from the random field and hybrid random 
input models are the same. The stiffness terms (diagonal entries) Q11 , Q22 and Q33 are observed to increase for 
the random field compared to the deterministic case. The stiffness terms Q11 and Q33 are observed to increase 
for the hybrid random input model compared to the deterministic case. These terms achieve lower values for 
the parametric uncertainty model compared to the deterministic case. The off-diagonal term Q12 is observed 
to be higher for all the stochastic models than that of the deterministic one. Interestingly, for the hybrid input 

Table 3.   Parametric study to determine δ in Eq. (12) to achieve minimum negative Poisson’s ratio (Type III). 
Results from four case studies are shown. They include, (1) deterministic design (column 3), (2) robust design 
considering parametric uncertainty models for elastic modulus and Poisson’s ratio (column 4), (3) robust 
design considering random field model for elastic modulus (column 5) and (4) robust design considering a 
hybrid combination of random field and parametric uncertainty models for the elastic modulus and Poisson’s 
ratio (column 6). Note that the mean Poisson’s ratio is computed by (E1122/E1111) from the mean equivalent 
elastic matrix. The objective functions of the deterministic and robust optimization have been evaluated by 
Eqs. (12) and (21), respectively.

δ Response statistics Deterministic
Robust (parametric 
uncertainty) Robust (random field)

Robust (hybrid 
uncertainty)

0.5

Mean of objective function − 0.0392 − 0.0336 − 0.0950 − 0.1024

SD of objective function 0.0019 0.0017 0.0019 0.0019

Mean of Poisson’s ratio − 0.4915 − 0.4791 − 0.5895 − 0.5908

1.0

Mean of objective function − 0.0405 − 0.0355 − 0.1098 − 0.1110

SD of objective function 0.0020 0.0018 0.0025 0.0025

Mean of Poisson’s ratio − 0.4168 − 0.3293 − 0.5468 − 0.5518

1.5

Mean of objective function − 0.0559 − 0.0508 − 0.1260 − 0.1249

SD of objective function 0.0028 0.0025 0.0028 0.0029

Mean of Poisson’s ratio 0.0965 0.0831 − 0.6120 − 0.5376

2.0

Mean of objective function − 0.0912 − 0.0828 − 0.1304 − 0.1336

SD of objective function 0.0045 0.0041 0.0030 0.0031

Mean of Poisson’s ratio 0.1423 0.1553 − 0.5269 − 0.5318

2.5

Mean of objective function − 0.1190 − 0.1142 − 0.1274 − 0.1260

SD of objective function 0.0059 0.0065 0.0029 0.0029

Mean of Poisson’s ratio 0.1552 0.1769 − 0.3299 − 0.3872
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uncertainty models, the resulting structure shows anisotropic property indicated by Q11  = Q22 and illustrates 
coupling of axial and shear deformations/stress states indicated by non-zero Q13 term. In terms of mean value of 
the objective function, the random field and hybrid input uncertainty models lead to higher value of equivalent 
elastic modulus compared to the deterministic and parametric uncertainty cases. The parametric stochastic 
model results in the minimum value of equivalent elastic modulus. Also, the random field and hybrid input 
uncertainty models result in a more robust topological design indicated by lower values of the standard devia-
tion of objective function.

Conclusions.  This section summarizes the results obtained from the numerical investigation. Few critical 
points have been enumerated below:

•	 It has been observed that the material uncertainties affect the resulting micro-structural topologies and 
mechanical performance significantly.

•	 Out of the input stochastic material models, the random field model followed by the hybrid one lead to desir-
able performance in terms of (1) optimal mean performance, (2) most robust performance and (3) elastic 
property, indicated by the mean value of objective function, standard deviation of objective function and 
stiffness terms of the equivalent elastic matrix, respectively, for types I, II and IV.

•	 For type III, the hybrid uncertainty model followed by the random field leads to desirable output perfor-
mance (based upon combination of the above points (1)–(3)). This point along with the above are indicative 

Table 4.   Optimal solutions for minimum Poisson’s ratio (Type III). Results from four case studies are shown. 
They include, (1) deterministic design, (2) robust design considering parametric uncertainty models for elastic 
modulus and Poisson’s ratio, (3) robust design considering random field model for elastic modulus and (4) 
robust design considering a combination of random field and parametric uncertainty models for the elastic 
modulus and Poisson’s ratio. Note that the terms of the equivalent elastic matrix (given by Eq. (4)) represent 
their mean values. The standard deviation of the matrix terms is consistent with the level of input uncertainty 
and is observed to be within 5 % bounds. The objective functions of the deterministic and robust optimization 
have been evaluated by Eqs. (12) and (21), respectively.
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of the degree of sensitivity of input stochastic models on the optimal micro-structural topology. Thus, these 
observations have a practical relevance as one needs to be more cautious in fabricating the metastructures 
which follow a more sensitive input stochastic model.

•	 The robust design leads to improved material properties compared to the deterministic design.
•	 Multiple interesting topological patterns have been found for guiding the robust metamaterial design. Impor-

tantly, all of the resulting topologies have tessellating property, which make them feasible for 3D printing. 
Thus, there can be a possible extension of the present computational work as the resulting robust topological 
configuration of materials with extreme properties are practically realizable.

•	 In addition to the few resulting micro-structural configurations showing isotropic properties, interestingly, 
the others yielded configurations which showed anisotropic property. Some cases led to positive and nega-
tive coupling of axial and shear deformations/stress states. These phenomenon were primarily observed for 
the random field and hybrid uncertainty cases. This observation may be attributed to the fact that the spatial 
variability (inhomogeneity) in the micro-structure induces anisotropy and coupling phenomena in the mate-
rial. Although this requires further investigation and achieving this was unintentional but will prove to be 
useful for designing material micro-structures with dual/simultaneous properties.

•	 Considering the fact that the design of auxetic metamaterials by topology optimization is a challenging task 
on its own and even becomes more difficult to obtain robust designs with micro-structural uncertainties, it 
is worth noting that negative Poisson’s ratio was achieved for all the undertaken cases of type III using the 
proposed framework by adopting appropriate parameters (Table 4). However, one should be careful in choos-
ing the parameters considering their high sensitivity on the resulting topologies (for example, δ of Eq. (12)) 

Table 5.   Optimal solutions for maximum equivalent elastic modulus (Type IV). Results from four case studies 
are shown. They include, (1) deterministic design, (2) robust design considering parametric uncertainty models 
for elastic modulus and Poisson’s ratio, (3) robust design considering random field model for elastic modulus 
and (4) robust design considering a combination of random field and parametric uncertainty models for the 
elastic modulus and Poisson’s ratio, respectively. Note that the terms of the equivalent elastic matrix (given by 
Eq. (4)) represent their mean values. The standard deviation of the matrix terms is consistent with the level of 
input uncertainty and is observed to be within 5 % bounds. The objective functions of the deterministic and 
robust optimization have been evaluated by Eqs. (13) and (21), respectively.
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as evident from Table 3. It is also recommended to thoroughly scrutinize the existing equivalent expressions 
for minimizing the Poisson’s ratio and is highly sensitive to the problem type or application in hand.

•	 The effect of uncertainties on the material micro-structures is so high that even considering the accuracy and 
high precision of additive manufacturing techniques, accounting nominal amount of uncertainty for mate-
rial design is recommended, at least in the conceptual design stage before the manufacturing. In fact, there 
is nothing at stake, as it is shown in this study that robustness improves the design in terms of mechanical 
performance.

Data availability
All relevant data are available from the corresponding author upon reasonable request, and/or are included 
within the main part and Supplementary Information.
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