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Abstract
Inferring the properties of a scattering objective by analyzing the optical far-field responses within the framework of
inverse problems is of great practical significance. However, it still faces major challenges when the parameter range is
growing and involves inevitable experimental noises. Here, we propose a solving strategy containing robust neural-
networks-based algorithms and informative photonic dispersions to overcome such challenges for a sort of inverse
scattering problem—reconstructing grating profiles. Using two typical neural networks, forward-mapping type and
inverse-mapping type, we reconstruct grating profiles whose geometric features span hundreds of nanometers with
nanometric sensitivity and several seconds of time consumption. A forward-mapping neural network with a
parameters-to-point architecture especially stands out in generating analytical photonic dispersions accurately,
featured by sharp Fano-shaped spectra. Meanwhile, to implement the strategy experimentally, a Fourier-optics-based
angle-resolved imaging spectroscopy with an all-fixed light path is developed to measure the dispersions by a single
shot, acquiring adequate information. Our forward-mapping algorithm can enable real-time comparisons between
robust predictions and experimental data with actual noises, showing an excellent linear correlation (R2 > 0.982) with
the measurements of atomic force microscopy. Our work provides a new strategy for reconstructing grating profiles in
inverse scattering problems.

Introduction
Inverse scattering problems (ISPs) arise in many fields of

science and engineering such as computed tomography1,2,
fiber Bragg gratings3, and optical metrology4–7. A typical
ISP, is composed of three parts: a set of scattering objec-
tives, a set of light responses and a measurement operator.
For scattering objectives, one should make a parameter
space whose elements are arrays of parameters, describing
the scatters’ geometries and components; for light
responses, a data space is needed whose elements corre-
spond to the measured optical responses of scatters in the
far field, such as reflectance spectra. As the connection of

these two sets, a measurement operator characterizes
the mapping from parameter space to data space. To solve
ISPs, namely inferring an element of the parameter space
from that of the data space, it executes the inversion of
the measurement operator—inversion operator. Two key
properties of the inversion operator are its injectivity and
stability8. Injectivity requires the acquired data to uniquely
characterize the parameters, and stability is closely related
to the measurement noises.
Many algorithms and measuring techniques have been

developed to solve ISPs with good injectivity and stability.
In terms of algorithms, the genetic algorithm9 and library
approach10 stand out with their understandability and
feasibility. However, the existing algorithms are usually
time-consuming due to the global optimization of a huge
parameter space. Recently, neural networks11,12 (NNs)
have offered a new perspective to solve inverse pro-
blems13–17; for instance, by inverse structure design18–27.
But when applied to practical ISPs, the performance of
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NN-based algorithms suffers from inevitable measuring
noises, showing low stability. As for measuring techni-
ques, high-throughput measuring methodologies such as
Mueller matrix ellipsometry28 are of great practical
importance to provide adequate information for mapping
algorithms. Redundant information ensures the injectivity
of mapping, but it brings in sort of extra vibration
instability when detecting multi-dimensional signals by
mechanical modules. Thus, it is still a challenge to per-
form a rapid stable high-throughput measurement by a
single-shot imaging technique.
To obtain a technique with both injectivity and stability,

we develop a high-throughput Fourier-optics-based
angle-resolved imaging spectroscopy (ARS) embedded
with robust NN-based algorithms to solve ISPs. Our
solving strategies are experimentally applied to a parti-
cular ISP of reconstructing the silicon-on-insulator (SOI)
grating profiles with nanometric-scale precision. We dis-
cuss two kinds of NN-based algorithms: One is the
inverse-mapping algorithm, and the other is the forward-
mapping-based optimization algorithm—forward-map-
ping algorithm. We first train an inverse-mapping NN to
learn the inversion operator, directly mapping from data
space to parameter space. On the other side, the forward-
mapping NN is trained to learn the measurement
operator from parameter space to data space, and a
gradient-based optimization is further performed on the
parameter space to find the optimal solution. Both algo-
rithms are able to reconstruct the SOI grating profiles in
the parameter space, whose size is orders of magnitude
larger than those of the traditional methods (whose cov-
ered ranges of considered parameters are usually no more
than 20 nm). The consumed mapping time is at the level
of seconds, in which the inverse mapping costs < 1 s while
forward mapping costs around 20 s. Considering the
performance on experimental data, the forward-mapping
algorithm shows more robustness to actual measurements
and enables a real-time comparison of the responses after
the solving process. In addition, we propose that the
dispersions of a scattering objective can be used as the
elements of data space. The structure information is
contained in the shapes of dispersion curves labeled by
wavelength (λ) and angle (θ), besides the absolute quantity
of the reflection intensity, offering multi-dimensional
information. Using the home-made ARS, we experimen-
tally obtain the dispersion patterns with the all-fixed light
path by single shot imaging. When armed with the NN-
based algorithms, the reconstructed geometric parameters
achieve a strong linear correlation (R2 > 0.982) with the
measurements of atomic force microscopy (AFM).

Results
In this section, we mainly discuss the key technical

innovations in both mapping algorithms and measuring

methodology, and our feasible strategy is further per-
formed to reconstruct the SOI grating profiles from
detected dispersions. For the algorithms, we focus more
specifically on the details of the method using the forward-
mapping algorithm in the main text, and those for the
inverse-mapping algorithm are given in Supplementary
Information.

Overview of the algorithms
For ISPs, the discussions are usually expanded between

the parameter space and the data space, as illustrated in
Fig. 1a. Each representative point (ball) in the parameter
space stands for a group of geometric parameters and
components; each representative point (block) in the data
space stands for the detected responses corresponding to
a ball in the parameter space. The aim of solving ISPs is
to try to establish an inverse mapping from data space to
parameter space, inferring the parameters of the scat-
tering objectives from the given detected (light) respon-
ses. Since the core of the inverse problems is to
characterize the inversion of the measurement operator,
it is natural to train a NN as a recognizer performing the
inverse mapping directly, called inverse-mapping algo-
rithm as shown in the left panel of Fig. 1a. Once the NN
recognizer is trained as an inverse operator, the inverse
mapping can solve ISPs in a straightforward way. The
solving process is quite intuitive for the inverse-mapping
algorithm: a detected response of the scattering objective
(red block) enters the inverse-mapping NN that is pre-
viously trained on the simulated data sets, and the pre-
diction of the parameters is further output by NN (red
ball). To practically train an inverse-mapping NN is a
challenge, because in most ISP cases the objective
response can be viewed as the theoretical response
superimposed with a measurement noise. Although the
noise compared with signals is weak, it could be amplified
by the inverse-mapping NN, leading to enormous
deviations of predictions.
To show such noise influence, we start with an inverse-

mapping NN trained on the simulated examples without
noises. On a noise-free test set, 98.7% predicted para-
meters had deviations of < 1 nm after 400 epochs of
training. However, the performance on the test set with
Gaussian noises (μ= 0, σ= 0.1) became unsatisfactory
(Fig. S1). A direct method to overcome that is to augment
the data set during the training period, practically by
adding some types of random noises, including Gaussian
noise, to the theoretical responses. At this time, perfor-
mance on the same noisy test set was improved greatly
such that 97.8% predicted parameters had deviations of <
5 nm. It means that the robustness of inverse-mapping
NNs can be enhanced by data set augmentation with
the corresponding type of noise. But unfortunately, some
unexpected noises in measurements still lead to unstable
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results. In this regard, due to the intrinsic architecture of
the inverse-mapping NN, it has no ability to further tune
the predicted parameters subtly.
For another way, the NN can be trained as a generator

to generate responses, called the forward-mapping algo-
rithm, as shown in the right panel of Fig. 1a. Once the
NN generator is trained as a substitute for simulation
algorithms, the whole architecture of the forward map-
ping can be entirely analytical, enabling us to calculate the
gradients of the input parameters directly with the back
propagation algorithm. Specifically, the optimization
process starts from a random point (blue ball) in the
parameter space. Entering the NN generator along the
blue arrow, the array of random initial parameters is
mapped to the corresponding response (blue block).
The difference between the generated response Rg and the
detected response Rd (red block) is described with a cost
function, for instance, mean square error C= ∑|Rd - Rg|2,
reflecting in the fluctuations in parameter space. The
gradient can therefore be defined as ∇pC, where P stands
for the parameters, as depicted by the green dash
line in Fig. 1a. With the calculated gradient, the para-
meters (green ball) can be updated along the red arrow
using some advanced gradient descent algorithms.

After repeating the above steps for a few times, the opti-
mization process will finally find the optimal point (red
ball) in the parameter space. To prevent converging to a
locally optimal solution, the optimization process descri-
bed above usually starts simultaneously from several initial
points in the parameter space, and the candidate solution
is picked out with the smallest C. So far, the gradient
descent algorithm plays to its rapid convergence ability to
approach the globally optimal solution. Gradient-free
algorithms, such as the search algorithm or greedy algo-
rithm, are finally performed to search for the final solution
starting with the selected candidate solution. Considering
the actual response with measurement noises, the
gradient-free algorithm enables the forward-mapping
algorithm to finely tune the parameters in parameter
space to find a solution whose corresponding response is
nearest to the measured one. The detailed results of the
forward-mapping algorithm applied to ISPs are given in
the following sections.

Data space element: photonic dispersion
Many kinds of light responses can be chosen as the

elements of the data space. As an instance, Mueller matrix
is usually used to describe the modulations of polarization
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Fig. 1 Two NN-based algorithms for solving ISPs. a Schematic overview of the solving process of two NN-based algorithms. The top space is the
data space; the bottom space is the parameter space. The arrows are flow paths to describe the steps of algorithms. The fluctuations in parameter
space stand for the difference between the detected response and theoretical response at a local point. b Upper panel: Each representative point
(block) in the data space stands for a theoretical dispersion corresponding to the parameter space. The corresponding electric field distributions of
the points in the dispersion are shown together with their angle-resolved spectra. Lower panel: Each representative point (ball) in the parameter
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bottom line width w2, pitch a and height h
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states of an objective. Though almost all of the structure
information is contained in the elements of the Mueller
matrix, yet it needs to meet tough conditions such as
stable rolling cantilevers and superhigh signal-to-noise
ratio. Here, we experimentally propose a new kind of light
response for solving ISPs: the photonic dispersions of the
grating, characterized by the wavelength–angle (λ–θ)
mapping. A tremendous number of researches in nano-
photonics have revealed that wealthy accessible informa-
tion lies in photonic dispersions29–32 such as photonic
band structures and iso-frequency contours. Solving
inverse problems in photonic crystals with photonic band
structures has been reported by recent works: Wei et al.16

established an inverse-mapping algorithm with a con-
volutional NN to predict the Zak phase of 1D photonic
crystals precisely from input Hamiltonians. Christensen
et al.33 trained a convolutional NN and generative
adversarial networks to predict and design inverse pho-
tonic crystal band structures with orders of-magnitude
speedup. In our case, a measured photonic dispersion that
contains both abundant band structures features and
reflectance information is used to solve ISPs. A typical
dispersion of an SOI grating with s-polarized light exci-
tation is shown in Fig. 1b. The dispersion bands depicted
by the observed stripes stem from different physical
mechanisms. For example, one broad dispersion band,
marked as a blue dashed curve, can be interpreted as the
thin-film interference, while one Fano-shaped dispersion
band, marked as a red dashed curve, is caused by the
coupling between guided resonances and thin-film oscil-
lations34,35. The various kinds of dispersive information
can be further understood by their corresponding field
distributions: Fields represented by the red point are
extremely enhanced at the gratings, while those repre-
sented by the blue point are almost evenly distributed in
the space. In this way, the grating structures can somehow
injectively be in accordance with the dispersions labeled
by (λ, θ), since the labeled detected intensities as well as
the stripe-formed shapes could be regarded as the ruler
measuring how strongly detected lights can interact with
the grating structures. Thus, in this work, we use photonic
dispersions as our data space elements. Besides, the
grating profile can be modeled as isosceles trapezoids with
four parameters: top line width w1, bottom line width w2,
pitch a and height h. These geometric parameters vary in
a range of hundreds of nanometers, constituting a para-
meter space of huge sizes. Specifically, we consider the
line widths between 130 nm and 330 nm with the bottom
line width longer than the top, pitch between 350 nm and
550 nm, and height between 160 nm and 270 nm.

Forward-mapping NN
We observe sharp features and concretely abrupt

changes at several wavelengths on the reflectance spectra,

which are quite general in scattering problems. Then the
first and foremost step in the forward-mapping algorithm
is to train a NN that enables to generate such sharp fea-
tures with high degrees of precision. Using a NN to
generate high-quality factor resonance has essential
implications, since it is one of the crucial properties in
nanostructure and has attracted attention to the
enhancement of light–matter interactions36. We firstly
train a NN with the typical parameters-to-spectrum
architecture, namely forward mapping the input geo-
metric parameters to the whole spectrum in one time, to
generate the dispersions. However, because of the corre-
lations between two neighboring neurons in the output
layer, we find such a NN that can only generate thin-film-
interference features but fail in sharp Fano-shaped ones in
a large–wavelength region (Fig. S3).
To overcome this deficiency, we develop a parameters-

to-point forward-mapping NN with a different generating
process, as illustrated in Fig. 2b. The word point here
stands for a pixel (the ball connected with NN in Fig. 2a)
on a dispersion pattern (reflectance at a single certain
wavelength λ and a single certain angle θ). Besides the
grating parameters, the NN inputs also include the labeled
coordinates (λ, θ) of the dispersions and the output gives
the corresponding reflectance. Such NN is realized by a
residual fully-connected network with 21 layers: 60 neu-
rons per layer in the former 19 layers, and 120 neurons
and 600 neurons in the last two layers. Curving arrows
between layers stand for the shortcuts of the residual
blocks37. Batch normalization is applied before each
nonlinear layer38. We use a rigorous coupled-wave ana-
lysis39 (RCWA) method to simulate the reflectance of
5 × 107 points to set up a training set (see the Supple-
mentary Information). Labels (w1, w2, a, h, λ, θ) of these
samples form a six-dimensional space, where the reflec-
tance data can be sampled with the Monte Carlo method.
We have then trained the NN with an Adam optimizer40

on the training set, with the training error plotted in the
inset of Fig. 2a. After training, the generation process of a
complete dispersion pattern is realized by the pixel-by-
pixel strategy: varying generating point coordinates (λ, θ)
making NN scan on the generation region to calculate the
reflectance of each pixel. (In practice, the scanning pro-
cess is performed in parallel.) With desired resolutions,
the intervals of (λ, θ) can be tuned finely.
To verify the performance of our proposed NN, we did a

comparison between the simulated and NN-generated
dispersions (Fig. 2c). The slices of two dispersions are
further compared in Fig. 2d, showing a high accuracy of
the NN generation capability. It also should be pointed out
that our NN does indeed perform well in generating sharp
spectra with Fano-shaped features. For instance, when
moving from point 1 towards point 2 within 10 nm along
the green spectrum, the reflectance has an abrupt fall with
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a change of almost one. To explore why the new NN was
able to generate such sharp features, we checked the
changes in activation states of the neurons. We use three
colors to present the state changes [Fig. 2e]: blue stands for
neurons switching from active states to inactive states,
yellow for an inverse way, and green for those keeping the
same states. We chose four points on the green spectrum
for interpretation: Each of the groups (1,2) and (3,4) is
10 nm away from the other for its wavelength label, with
(1,2) accounting for Fano-shaped dispersions and (3,4) for
thin-film dispersions. In (1,2), small wavelength change
makes more and more neurons switch their states of
activation along the data flow, like the falling dominoes.
For the layer next to the output, 25.7% of the neurons
switch their states, resulting in an abrupt output change.
As a contrast, with only fragmentary neurons switching
the states, the outputs of (3,4) have only few changes.
The parameters-to-point forward-mapping NN has

advantages on several aspects. First, it has less time-
consumption in generating photonic dispersions com-
pared to the available electromagnetic simulation algo-
rithms. For example, it will cost almost 10 min for the
RCWA method to simulate only one photonic dispersion
of an SOI grating with 200 × 51 pixels (interval wave-
length is 3 nm) while just 2.82 s are needed to generate
equally sized dispersions for 200 samples by our proposed
NN. The second advantage lies in that it can be trained
with very few data sets. The inverse-mapping NN usually
needs a data set containing 60,000 dispersions (14 GB),
still a quite small-volume set in comparison with the

library approach. As for our proposed NN case, a 3 GB
data set has been already enough. Lastly, the parameters-
to-point forward-mapping NN is 200 times smaller than
the inverse-mapping one due to its slender architecture,
taking up only 1MB of memory.

Technology platform
In this section, we introduce the developed measuring

methodology to measure the dispersions of SOI gratings.
These grating structures are fabricated by using electron-
beam lithography on the device layer of an SOI wafer (the
thicknesses of the device layer and the buried oxide layer: ~
270 nm and ~1 μm) with nominally geometric parameters
(line widths: 175–300 nm, periodicity: 400–500 nm). The
structure areas (400 μm× 400 μm) are much larger than the
periodicity, which shield the influence of the grating
boundary. The surface topography of an SOI grating mea-
sured by AFM is plotted in the top right inset of Fig. 3a.
Taking the angle-resolved reflectance spectra as a hol-

istic characterization of the photonic band dispersion
requires both broad spectral imaging and full angular
incidences of the incident light. To meet such harsh
requirements, we build our ARS based on Fourier analy-
sis, as shown in Fig. 3a. Using Köhler illumination,
the sample is illuminated at the front focal plane of the
microscope by a halogen lamp. Passing through the
incident linear polarizer and focused by an objective lens,
the incident beam is convergent and linearly polarized.
Then, the reflected beam is Fourier transformed by the
same objective lens and imaged to an imaging
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spectrometer. We can finally observe the dispersions
through the two-dimensional charged-coupled-device
camera. Here, the objective is 0.95 NA with × 100 mag-
nification, achieving incident angles of up to 50° in near-
infrared light. The spot diameter is approximately 100 μm,
and measuring range of the spectrometer is from 1 to
1.6 μm. The measured dispersions with p/s-polarized
incidence are shown in Fig. 3b, where distinct dispersion
bands including sharp Fano-shape features can be clearly
observed. The multi-angle detection can be practically
realized by the objective lens instead of a mechanical
module, enabling us to obtain a dispersion pattern by a
single shot31.The short measurement procedure and
informative dispersions make ARS as a high-through put
measuring methodology. In addition, all the optical ele-
ments are fixed during the measurement, avoiding addi-
tional mechanical noises, which is indispensable since the
static light paths offer feasibilities for further calibrations.

Reconstruction results
To validate our forward-mapping algorithm, we first

reconstruct SOI grating profiles from their simulated
dispersions. 1,000 p/s-polarized pairs of dispersions with
different geometric parameters are calculated by RCWA
simulation, making the data set. Following the procedure
explained in the subsection ‘Overview of algorithms’, we
note that in the parameters-to-point NN, the gradient of
parameters can be expressed as ∇pC ¼ P

i
∇pCi=m, where

i stands for a pixel on the dispersion and m for the

number of pixels. To test the robustness of our algorithm,
reconstructions are performed on both noise-free and
noisy data, where noisy data are generated by adding
Gaussian noises (μ= 0, σ= 0.2) to simulate noise-free
ones. Statistically, deviations δ between ground truths and
obtained optimal parameters are shown in Fig. S6. We see
that the δ for every geometric parameter tends to gather
around zero, giving nanometric sensitivity. Results on
noise-free and noisy data are similar, validating our
algorithm’s robustness. Meanwhile, the 20-s time costs
per sample reconstruction makes it commercially avail-
able to in-line measurements. Here, deviations in noise-
free data are mainly caused by the tiny differences
between generated and simulated data. Reconstruction
results of other noises are shown in Fig. S7.
We next turn to the experimental data acquired by ARS.

A comparison can be immediately made just after the
solving process. One of the reconstruction results is
shown in Fig. 4a: Slices of the measured dispersions
considered as optimization targets are marked as black
lines, in comparison with the corresponding generated
dispersions plotted as colored square markers. To verify
the generated results, we further use RCWA to simulate
the dispersions based on the parameters from AFM
measurements, given by yellow ring markers. A good
agreement among these three lines tells an excellent
performance of our algorithm on the measured data. The
complete dispersions and more comparisons of slices are
shown in Fig. S9.
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Correlations between our forward-mapping NN pre-
dicted and AFM measured geometric parameters are
shown in Fig. 4b. The reconstruction results of three geo-
metry parameters (the pitch, the top and bottle line widths)
for seven SOI gratings are plotted versus the corresponding
AFM measurement data, while those of the height are
separately shown due to the nearly same height for sample
fabrications. NN predictions of the first three parameters
achieve a strong linear correlation (R2 > 0.982) with the
AFM measurements, and those of the height are also well
reconstructed with mean deviation < 2.46 nm. It should be
noted that the AFM measurements are an average within
the local regions, since the volume of the probe in AFM is
not negligible.
As for the inverse-mapping algorithm, despite its high

solving speed (< 1 s) and excellent accuracy (98.7% pre-
dicted parameters with the deviation < 1 nm) on simulated
data set, the performance on the experimental data is
indeed inferior to that of the forward-mapping algorithm
(see the Supplementary Information). Given it is impossible
to make a data set involving all possible kinds of noises,
inverse-mapping NN will always face some unexpected
noise. Therefore, experiments are most likely to be mapped
to some deviated parameters near the optimal solution,
which could not be further finely tuned due to a lack of
optimization process. In a word, the inverse-mapping
algorithm has its limited advantages. However, if a para-
meter space is extremely large, forward mapping and
inverse mapping may complement mutually as follows:
Inverse-mapping NN is able to map the experimental
responses to a point in the parameter space near the opti-
mal solution at a high speed, which can be utilized as the

initial parameters for the forward-mapping NN to further
finely tune to find the optimal solution. At this time, the
inverse-mapping NN helps to give a rational starting point
instead of a random one, and the forward-mapping NN
ensures a robust optimization process in turn.

Discussion
In this section, we are going to discuss four issues.

Firstly, having no contribution to the far field, rapidly
attenuated near-field signals are a typical barrier in
reconstruction of sub-wavelength structures. Although
directly solving for the surface topography without near-
field information is hard, alternatively, we can determine
grating structures by searching for at solution with a
minimum cost function value in parameter space with
prior knowledge of the suitable model. As to the para-
meter space, the more the information obtained in one
measurement, the more distinct the difference that
appears in the parameter space. A distinct difference in
parameter space is helpful for the algorithm to find the
minimum cost function, since the large gradient guides
the algorithm to reach the unique optimal solution
effectively. Due to a large NA objective lens, we can
acquire the spectrum information from multiple-angles in
one measurement. It is shown that with the wider angle
range considered, the topography of the parameter
space goes from flat to steep (see the Fig. S11). Besides,
with the prior knowledge of the model, potential non-
unique solutions are excluded which makes the parameter
space have a unique optimal point.
Secondly, we discussed the influences of the noise.

Identical noises were generated in the Fano region and the
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non-Fano region to view the difference in reconstruction
results (Fig. S8). It is interesting to compare the pertur-
bation caused by Gaussian blur and bias Gaussian blur.
Large parameter deviations only occur when the Fano
region is convoluted with a bias Gaussian kernel. For a
Gaussian kernel, the convolution only smoothed the peak
but did not change the peak position. It shows that Fano-
shape dispersion has robustness to the perturbation on
the amplitude of the peak. For a bias Gaussian kernel, it
led to a shift in peak position, which led to a large var-
iation in the cost function. Note that the location of these
peaks is determined by our well-calibrated spectrometer.
Thus, the peak position shift should be viewed as a
measurement error instead of noises. From another per-
spective, it shows a high sensitivity of Fano-shape dis-
persion since only a little parameter deviation will cause a
large peak shift.
Thirdly, parameter separation can be visualized by

mapping the parameter space.The topography of a pitch-
height plane is bowl-like which is easy for the gradient
descent algorithm to find the minimum value.The topo-
graphy of the w1–w2 space is canyon-like, whose separation
is not good as the pitch-height plane. A gradient descent
with momentum and a search algorithm were introduced
in the algorithm to improve the convergence behavior
which yeilded the same result every time with no more
than 0.1 nm deviation from different initial parameters.

In measurement, changing the azimuth and increasing the
acceptance angle may be two feasible schemes to directly
change the topography of the w1–w2 space (Fig. S12).
Finally, due to the pixel-by-pixel generation strategy of

parameters-to-point architecture, the proposed NN can
be flexibly migrated to other models for solving multiple
ISPs. To demonstrate its migration ability, we trained
forward-mapping NNs on data sets of 2D gratings41 and
3D plasmon-ruler structures42 for reconstruction, as
shown in Fig. 5. In Fig. 5a, we fabricated a 2D grating on
the polymethyl methacrylate layer and measured its
photonic dispersion patterns with p- and s-polarized
incident light. Reconstruction results obtained by using
the forward-mapping algorithm are shown in the lower
panel of Fig. 5a. In Fig. 5b, we demonstrate the recon-
struction of 3D plasmon-ruler structures from simulated
transmittance spectra using the forward-mapping algo-
rithm. (Details of 2D grating and 3D plasmon-ruler
structure reconstruction are shown in Fig. S14 and
Fig. S15.) Since the plasmon-ruler structure has wide
potential applications in monitoring macromolecular
transformations, the combination of 3D plasmon rulers
and the proposed algorithm will pave the road to usage of
plasmon rulers in biological and soft-matter systems42.
In brief, we have developed a new feasible strategy

containing an NN-based algorithm and high-throughput
ARS for solving ISPs. It reconstructs SOI gratings with
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nanometric sensitivity and seconds-level time consump-
tion, covering a wide-range parameter space. Through
adopting a parameters-to-point architecture, forward-
mapping NN is able to generate photonic dispersions
containing sharp Fano-shaped features with high preci-
sion, strong robustness, and small volume, which ensures
the injectivity and stability for grating reconstructions. It
also shows high efficiency when combining the hybrid
optimization algorithms, making it available for the
industrial in-line data process. The proposed algorithm
can also be flexibly migrated to solve ISPs with other
models. Furthermore, the ability to acquire the experi-
mental dispersions in a single shot by the Fourier-based
ARS is another unique technique for increasing the
detecting efficiency. Our strategy has made good predic-
tions against actual noises in accord with the AFM mea-
surements, but with nondestructive nature, which means
it could provide a versatile methodology to reconstruct
grating profiles as well as other ISPs.

Materials and methods
Training and simulations
The training of NN was performed using a single server

with a NVidia Tesla V100 graphics card and Intel(R) Xeon
(R) Gold 6230 central processing unit. It costs ~ 10 h for
generating the data set of a forward-mapping NN and
~5 days for that of an inverse-mapping NN. The training
process of forward-mapping NN costs ~ 8 h and that of an
inverse-mapping NN costs ~ 6 h.

AFM measurement
Samples were measured with a commercial AFM

(Dimension Icon, Bruker) in tapping mode. The AFM was
calibrated using the standard artifacts. A high-aspect-ratio
tip probe (TESPA-HAR, Bruker) was used to characterize
the trench on the sample. The profile is scanned with
512 pixels/line. For each grating on the sample, the geo-
metrical parameters were analyzed to obtain the average
from five different scanned profiles with SPIP software.
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