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Snapshot Space–Time Holographic 3D Particle Tracking
Velocimetry

Ni Chen,* Congli Wang, and Wolfgang Heidrich

Digital inline holography is an amazingly simple and effective approach for 3D
imaging, to which particle tracking velocimetry is of particular interest.
Conventional digital holographic particle tracking velocimetry techniques are
computationally separated in particle and flow reconstruction, plus the
expensive computations. Usually, the particle volumes are recovered first,
from which fluid flows are computed. Without iterative reconstructions, This
sequential space–time process lacks accuracy. This paper presents a joint
optimization framework for digital holographic particle tracking velocimetry:
particle volumes and fluid flows are reconstructed jointly in a higher
space–time dimension, enabling faster convergence and better reconstruction
quality of both fluid flow and particle volumes within a few minutes on
modern GPUs. Synthetic and experimental results are presented to show the
efficiency of the proposed technique.

1. Introduction

Since its invention in 1948, inline holography[1] offers an
easy means of measuring 3D information. Many variants have
been proposed, including off-axis holography,[2] phase-shifting
holography,[3] optical scanning holography,[4] and many others.
However, the simplicity and high space-bandwidth product of in-
line holography remain attractive and competitive. Particle imag-
ing velocimetry (PIV) and particle tracking velocimetry (PTV)
allow fluid velocities to be measured quantitatively across volu-
metric regions (typically at cm scales), and is an important tech-
nique for fluid visualization and understanding. Current widely-
used 3D particle velocimetry acquisition setups include scanning
PIV,[5] defocusing PIV,[6] tomographic PIV,[7] Rainbow PIV,[8]

and single-camera structured light PTV.[9] These photometric
techniques inevitably suffer from the tradeoff between depth of
field and exposure for fast motions, which in turn increases the
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uncertainty for depth localization. To
overcome these limitations, holographic
PTV has been proposed.[10] Digital
holography[11] offers a new alternative
to the time consuming development
process of the exposed hologram and the
evaluation of the particle distribution,
where holograms are recorded with an
image sensor followed by numerical
reconstruction of the object wave. Com-
pared to digital inline holographic PTV
(DIH-PTV),[12] off-axis holography[13]

offers a smaller depth of focus by separat-
ing the twin and DC terms in the recon-
structions. However, DIH-PTV remains
attractive because of its simple and com-
pact setup (only laser illumination with a
bare sensor), single-view measurement

(low-cost), and the ability for depth-resolved particle reconstruc-
tion. This technique allows direct integration with a microscopic
setup,[14] and provides superior resolution for 3D flow measure-
ments with the relevant scales ranging from μm to sub-mm.[15,16]

Despite the drastic improvements in hardware, the software
for domain-specific, application-oriented numerical reconstruc-
tion algorithms has remained mostly untouched. First, conven-
tional algorithms are separate, in that particle and fluid flow re-
constructions are sequential, with possible error accumulations
throughout the computation pipeline. Second, there are works
pushing forward for a better holographic particle/volume recon-
struction by hand-crafted or trained priors, including depth-of-
field extension with wavelet transform,[17] depth-resolved recon-
struction with 3D deconvolution,[18] compressing sensing ap-
proach with fused lasso regularization[19] or sparsity,[20] digital
filtering followed by one-pass 3D deconvolution,[21] and the deep
learning approaches,[22–24] but little has been done in improving
the fluid flow reconstruction.
Here we present a joint optimization scheme for particle flow

reconstructions, outlined in Figure 1. Instead of reconstructing
the particle volume and flow velocities sequentially,[19,21,25] the
proposed method recovers 3D particle volumes and flow veloc-
ities in a joint fashion, that is, flow velocities are utilized as a
regularization prior for 3D particle reconstructions, and reversely
flow velocities are further estimated given the previously updated
3D particles, with additional physically plausible priors incorpo-
rated, including particle sparsity, flow smoothness and Tikhonov
regularization. These two computational processes keep iterating
in alternation until convergence. No segmentation[25] or further
post-processing is needed.
Compared to conventional approaches, our proposed tech-

nique improves in both particle reconstruction quality (in terms

Laser Photonics Rev. 2021, 15, 2100008 2100008 (1 of 12) © 2021 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

http://www.lpr-journal.org
mailto:ni.chen@kaust.edu.sa
https://doi.org/10.1002/lpor.202100008
http://creativecommons.org/licenses/by-nc/4.0/


www.advancedsciencenews.com www.lpr-journal.org

Figure 1. Overall pipeline of our DIH-PTV space–time particle-flow reconstruction algorithm. Given single-shot hologram images, we obtained simulta-
neously spatial particle volumes and temporal fluid flows by solving the challenging inverse problem Equation (6) via alternating optimization of custom
solvers with domain-specific priors.

Figure 2. Hologram reconstruction of a single particle. Diffraction PSF
spans across more regions in z than in x, y.

of reducing particle reconstruction uncertainties) and flow veloc-
ities. In addition to the algorithmic contributions, our method is
highly parallelizable. The computational speed has increased sig-
nificantly, reducing reconstruction times from typically hours on
CPUs down to seconds on a single modern GPU. The applica-
bility of our proposed numerical approach has been further val-
idated using both synthetic and experimental flow fields. Such
improvements will substantially enhance the implementation of
DIH-PTV for 3D flow measurements and enable the potential
commercialization of this technique.

2. Numerical Verification

In this section, we evaluate our proposed approach based on syn-
thetic holograms for ground-truth comparisons.

2.1. Uncertainty of Holographic Particle Reconstruction

According to the Abbe diffraction limit, the resolution of an op-
tical imaging system is fundamentally limited by the nature of
diffraction.[26] The extent of the diffraction-limited point spread
function (PSF) along the optical axis is much larger than in the
traversal direction. Figure 2 shows a back-propagation of a sin-
gle particle reconstruction. The long-tail PSF distribution along
z-axis defines the uncertainty of conventional particle recon-
structions, deteriorating particle reconstruction qualities in back-
propagation.

2.2. Uncertainty Improvement with Holo-Flow

Previously mentioned uncertainty could be greatly reduced us-
ing the proposed Holo-Flow framework. Figure 3 shows a re-
construction of a single particle, numerically performed by back-

propagation, FASTA deconvolution,[19,37] and the proposed Holo-
Flow reconstruction, respectively. Lateral and axial resolution
were set to 5 μm, with particle diameter being 20 μm, corre-
sponds to two lateral and one axial voxels. We performed 50 itera-
tions for FASTA, and 5 (alternating iterations) and 10 (inner loop
FASTA) for Holo-Flow reconstruction, with the total inner loop
iterations being equal to a single-run FASTA. Figure 3 visualizes
the overall reconstruction quality (a), along x-axis (b) and z-axis
(c). The ground-truth (GT), back-propagation (BP) and FASTA
reconstructions are presented for comparison. From Figure 3b,
We conclude both FASTA andHolo-Flowmatch the ground-truth
perfectly, whereas our approach (Holo-Flow) outperforms FASTA
in the z-axis.
It should be mentioned that noise-level affects the uncertainty

of the particle reconstruction. Figure 4 shows the uncertainty
with respect to noise-level. Considering readout noise of the im-
age sensor that would exist in real experiments, we added Gaus-
sian white noise to the holograms. Figure 4a shows that the re-
constructed particles along the x axis changes slightly according
to varying noise level for both the conventional FASTA method
and the proposed Holo-Flow. In Figure 4b, the reconstructed
particle along the z axis with the FASTA performance degrades
as the noise level increases, while for Holo-Flow it maintains
the same. From this synthesis experiment we conclude that in
comparison with alternative methods, Holo-Flow is more robust
against noise.

2.3. Particle-Flow Joint Improvement with Holo-Flow

For a quantitative assessment, in Figures 5 and 6, we gener-
ated synthetic particle volumes and the measurement holograms
(t = 1, 2) with two known fluid flows v(x, y, z) = (−y, x, 0) and
v(x, y, z) = (0, z,−y), that is, two vortexes with the rotation axes
aligned or orthogonal with the optical axis z. The particle vol-
umes are of voxel number 128 × 128 × 128, with a physical voxel
size of 5 μm × 5 μm × 5 μm. We generated uniformly random-
distributed single-voxel sized particles with a density of particles
per pixel (ppp) at 2 × 10−2, at wavelength 660 nm with the sensor
located at z1 = 1 mm away from the volume of interest. The re-
sults of Figures 5b and 6b are consistent with ground-truth flows
in Figures 5c and 6c.
Compared to a sequential flow reconstruction following

the state-of-the-art hologram deconvolution method using
FASTA,[19] our joint Holo-Flow optimization framework per-
forms a better particle and flow reconstruction. The particle and
flow reconstruction error comparisons are shown in Figures 7
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Figure 3. Single particle reconstruction uncertainty comparison using different methods.

Figure 4. Single particle reconstruction uncertainty comparison under varying noise-level.

and 8. Figure 7a shows a general increase of particle localization
(i.e., decreasing of axial size) with respect to the increase of iter-
ations. Figure 7b contains particle size distribution and location
errors for the above two simulations. The reconstructed particles’
lateral sizes are with amean value of one, which is the same as the
ground-truth in both conventional and the Holo-Flow methods,
refer to Supporting Information. In Figure 7b, the axial length of
the reconstructed particles is no larger than three pixels in both
simulations, comparing to five pixels in the conventional recon-
structions. In the right column of Figure 7b, the number of par-
ticles with location error of zero in the Holo-Flow reconstruction
is larger than in the conventional method, in other words, the lo-
cation error of the Holo-Flow reconstruction is more concentrate
around zero, indicating a more accurate particle localization for
the Holo-Flow method. These results verify that the Holo-Flow
method achieves a better particle reconstruction than the con-
ventional way.

The joint Holo-Flow optimization method also improves in
terms of flow reconstructions. We make use of two quantitative
evaluationmetrics for the assessment of the proposed Holo-Flow
method. The metrics are the flow average angular error (AAE)[27]

and the average endpoint error (EPE),[28] defined as:

AAE(vg , ve) = arccos

⎛⎜⎜⎜⎝
vg ⋅ ve + 1√

(‖vg‖22 + 1)(‖ve‖22 + 1)

⎞⎟⎟⎟⎠
EPE(vg , ve) = ‖vg − ve‖2

(1)

where vg and ve are the ground-truth and estimated velocity,
respectively. The AAE measure is convenient because it han-
dles both large and very small speeds without the amplification
inherent in a relative measure of vector differences. Although

Figure 5. b) The reconstructed velocity vector fields from a) two holograms, c) induced by rotating the particle volume with a vector flow of v(x, y, z) =
(−y, x, 0).

Laser Photonics Rev. 2021, 15, 2100008 2100008 (3 of 12) © 2021 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Figure 6. b) The reconstructed velocity vector fields a) from two holograms, c) induced by rotating the particle volume with a vector flow of v(x, y, z) =
(0, z,−y).

Figure 7. Particle size and localization comparisons of the reconstructed particle with ground truth for conventional and the proposed Holo-Flow
methods.

the AAE is prevalent, it is unclear whether errors in a region
of smooth non-zero motion should be penalized less than er-
rors in regions of zero motion. The AAE also contains an arbi-
trary scaling constant (1.0) to convert the units from pixels to
degrees. Hence, we also compute the EPE[29]. Figure 8 shows
the AAE and EPE with respect to the iterations for the conven-
tional and Holo-Flow methods. In both error metrics, Holo-Flow
achieves a better performance than the conventional sequential
reconstructions.

2.4. Synthetic Turbulent Flow with Holo-Flow

We further verified the proposed method to a 3D turbulent flow,
which is more challenging as it involves velocity fluctuations
across a broad dynamic range of scales. Here we take a homo-
geneous isotropic turbulent flow as an example. Figure 9a shows
the turbulence flow that was queried from by the forced isotopic
turbulence data from the JohnsHopkins Turbulence Database[30]

with the default parameters of the direct numerical simulations

Figure 8. Flow reconstruction comparison in terms of angular errors (degrees) and end point errors (pixels).
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Figure 9. d) The reconstructed velocity vector fields from c) two hologram frames of b) particle volumes induced by a) a ground-truth turbulence flow.

Figure 10. a) Schematic experimental setups for ground-truth (a), b) small-scale and c) larger-scale. The black arrow-headed lines show the flow direc-
tions in each case. In (a) flow 1 and flow 2 represent the flows along the x axis and z axis respectively, in (b) and (c), the arrow-headed lines represent
injection and spinned flow respectively.

(DNS) data. The volume resolution of the turbulence flow is
256 × 256 × 128, scaled to 1.28 × 1.28 × 0.62 mm3. Particles with
a radius of 2.5 μm were randomly spatially seed throughout the
volume, with their positions at subsequent timewere determined
by the turbulence flow, as shown in Figure 9b. The number of
particles in the volume was 1310, which corresponds to a concen-
tration of 1250mm−3. A padding in each dimension was applied
to the particles to ensure that the number of objects in the field
of view is constant. Figure 9c shows the two corresponding holo-
gram frames with a resolution 256 × 256 pixels, simulated at a
wavelength of 660 nm.
Compare the Holo-Flow reconstruction that shown in Fig-

ure 9d to the ground-truth of Figure 9a, the AAE and EPE were
5.736 and 0.1495, respectively. This indicates that the proposed
method can also perform very well for a turbulence flow.

3. Experimental Results

We have conducted three experimental setups, as shown in
Figure 10. In Figure 10a, particles weremounted on amicroscopy
slide that translates in fixed directions serving as ground truth
flow. Figure 10b,c are the experimental capture setups with dif-
ferent field-of-view (FOV) configurations to image fluids at differ-
ent scales. Particles are white micro-spheric polyethylene micro-
spheres with diameters of ≈ 45–53 μm and ≈ 150–180 μm. The
black arrow-headed lines the coordinates of the figures show the
flow directions. The light source is a laser diode of wavelength
660 nm, and the camera is a CMOS sensor with a pixel pitch of
3.45 μm (PointGrey GS3-U3-51S5C in gray mode). The acquisi-
tion image resolution as well as the frame rate of the image sen-
sor can be configurated to different values via inbuilt operational
modes. In Figures 10(a,b), the FOV is with the same size as the
camera sensor, while in Figure 10c, the focal lengths of the first f1

and second lens f2 can be changed to adjust the FOV. Specifically,
the FOV equals to f1∕f2 multiplied by the sensor area.

3.1. Experiments with Ground-truth

To evaluate our proposedmethod’s effectiveness on real captured
data, we conduct the experiments with a microscopy slide with
particles stuck in it. The particle size is 45–53 μm. The slide was
put on a two-axis linear translation stage (ThorLabs XYT1/M)
such that the proposed reconstructions can be compared with
ground truth movements. The scheme of the experimental setup
is shown in Figure 10a. Two independent tests were performed:
1) Two holograms were acquired while a translation of 50.8 μm
in the x direction (perpendicular to the optical axis) was applied.
2) Two holograms were acquired while a translation of 101.6 μm
in the z direction (along the optical axis and far away from the
camera) was applied.
Before processing the captured holograms, we subtract the

background image, then downsample them by a factor of 8. The
downsampled image pixel size is 27.6 μm. We discretize the vol-
ume of interest (≈15–60 mm) into 80 z-layers equivalent to a
depth interval of 100 μm.
The reconstructed velocity vector fields and the corresponding

holograms are visualized in Figure 11. The reconstructed flow’s
overall structures in both cases reveal that a significant part of the
real flow structures is reproduced. We can further analyze the re-
constructed results with respect to the ground truth movements.
In the experiments, the x-axis and z-axis translations move 50.8
μm and 101.6 μm in one step, which corresponds to 1.8 and 1
pixels in the reconstructed images. The mean of the norm of the
velocity in Figure 11a is 1.73 pixel sizes with a standard devia-
tion of 0.16, while the mean of that in Figure 11b is 0.98 pixel
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Figure 11. The reconstructed velocity vector fields from the hologram frames induced by moving the particle volume with a translation stage.

Figure 12. Comparison without noise and with noise (induced by adjust the gain of the CMOS sensor).

sizes with a standard deviation of 0.02, demonstrating a closely
matched quantity compared to the theoretical values.
Particles with diameters of≈ 45–53 μmand≈ 96–605 μmwere

adhered to two glass slides in varying layers. Compared to the
previous example, different particle densities have also been ap-
plied. To compare the reconstruction flow, we had made a flow
from the reconstructed particles with the known flowmagnitude.
Figure 12 shows the EPE for the conventional and Holo-Flow
method are 0.38 and 0.36, and AAE are 18.47 and 16.98, respec-
tively. These quantitative values may suffer from misalignment
errors or setup systematic errors, but at least provide a sense of
the improvements that Holo-Flow has achieved compared to the
prior conventional approach.

3.2. Experiments without Ground-truth

We also tested the proposed technique on three real practical
flows. Parameter details are listed in Table 1.
In the first experiment, a tank containing seeded particles in

high viscosity liquid was illuminated by a laser beam, as shown
in Figure 10b. We injected water from the top of the tank and
captured hologram image sequence at a frame rate of 38 Hz. In
the flow reconstruction, we downsampled the holograms by a fac-
tor of 8 from an original resolution of 2048 × 2048 to 256 × 256.

The depth was discretized into 201 layers (0.15 mm per layer),
completing the final grid resolution at 256 × 256 × 333, with a
corresponding voxel size of 27.6 μm × 27.6 μm × 150 μm. The
path-line visualization of the recovered flow field is shown in
Figure 13a. In the part of the tank that near the camera, the flow
direction is downward, which is induced by the downward wa-
ter injection. On the contrary, in the tank’s portions that are far-
ther away from the camera, the flow is upward. This is due to the
bounces when the particles approach the bottom of the tank.
In the second experiment, we spun thewater clock-wisely from

top of the tank and captured hologram sequences through a 4f
system that consists of two achromatic lenses (focal length of 200
and 60mm), as shown in Figure 10c. Holograms were downsam-
pled by the same factor as in the previous experiment. The depth
was discretized into 301 layers (0.1 mm per layer with a voxel
resolution of 55.2 μm × 55.2 μm × 100 μm. Figure 13b shows the
path-line visualization of the reconstructed vector flow. As ex-
pected, the swirl rotates clock-wisely along the y axis. The recon-
struction only shows a part of the swirl because of the limited
FOV of the experiment (around 23.6 mm), about one half of the
total tank width.
We further made a more complicated flow in the third experi-

ment. We injected water with a needle from themiddle bottom of
the tank. The water bounced back from the water surface of the
tank makes a vortex-like flow. Holograms were downsampled by
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Table 1. Parameters of the experiments.

Injection flow Spuned flow Vortex-like flow

Holography system Setup Figure 10b Figure 10c Figure 10c

Specifications — f1 = 200mm, f2 = 60mm f1 = 300 mm, f2 = 60 mm

FOV 7.1 × 7.1mm2 23.67 × 23.67mm2 35.5 × 35.5mm2

Frame rate 15Hz 38Hz 25Hz

Particles Size ≈ 45–53 μm ≈ 150–180 μm ≈ 45–53 μm

Original hologram Resolution 2048 × 2048 2048 × 2048 1024 × 1024

Pixel pitch 3.45 μm 3.45 μm 6.9 μm

Processed hologram Resolution 256 × 256 256 × 256 512 × 512

Pixel pitch 27.6 μm 55.2 μm 13.8 μm

Imaging volume Resolution 256 × 256 × 334 256 × 256 × 334 512 × 512 × 251

Size 7.1 × 7.1 × 50mm3 23.67 × 23.67 × 50mm3 35 × 35 × 25mm3

Figure 13. Path line visualization of the reconstructed fluid flows (see also Visualizations 1 and 2[31]).
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the a factor of two. The depth was discretized into 251 layers (0.1
mm per layer with a voxel resolution of 13.8 μm × 13.8 μm ×
100 μm. Figure 13c shows the path-line visualization of the re-
constructed vector flow. As the left part of the streamline figure
shows, the vortex rings rotate along the water flow, that is, upright
in the middle part of the tank and downright in the side parts.
The recovered flow field in all the cases shown in Figure 13 are

consistent with both the expectations and the observed hologram
frames. For all experimental cases, the outer iterations are 3, and
the inner iteration of the hologram solver is 20, and 𝜏 = 0.001.
Specific prior weights are tuned to plausible values. The recon-
struction of the second flow (Figure 13c), in which the volume
is with a voxel number of 256 × 256 × 334, cost around 1 min
on a Ubuntu 18.04 Linux workstation with 2.70GHz Intel(R)
Xeon(R) CPU E5-2680, 62.9GB RAM, and a NVIDIA TITAN X
(Pascal) GPU.

4. Discussions and Conclusion

We have introduced a novel holographic imaging method that is
capable of recovering 3D fluid flows and particle volumes using
an inline holography system, meanwhile significantly reducing
the hardware setup requirements and relaxing calibration com-
plexity. We formulate an inverse problem to reconstruct the parti-
cle volumes. A further step is taken to reconstruct the fluid veloc-
ity vector fields with the recovered particle volumes at different
times. The fluid velocity vector fields further improve the particle
volume reconstructions.
We demonstrate our method both on synthetic flows, ground-

truth flows induced by moving a frozen particle volume, and a
real stirred flow. Overall, our method can robustly reconstruct a
significant part of the flow structures at good accuracy.
The primary drawback of our method is the limited FOV. Even

with the help of a 4f system, the inevitable wavefront degradation
would reduce the reconstructions’ spatial resolution, introducing
systematic errors into the image formation model. One way to
overcome this FOV limitation is to illuminate the volume with
spherical wavefronts (known as inline holography with spherical
illumination[32]), resulting in a modification of the system PSF,
so that the full FOV can be covered by a limited size image sen-
sor. Also, the iterative nature of our algorithm requires a good ap-
proximate initialization to start, in that particle volume and fluid
flows are constrained to each other and may prevent high-quality
reconstructions. Finally, the tolerance of our fluid pyramid opti-
cal flow reconstruction algorithm, by its nature, only allows for
subtle particle displacements (less than 4 pixels), and thus pre-
venting the method itself to be applied to fast fluid flows when
the camera capture frame rate is low. Future worksmay revise the
current pyramid downsampling to be a maximum projection op-
erator to allow for deeper pyramids to conserve particles without
losing them due to blurring.
There are several ways to elaborate on the spirit of our ap-

proach further. In software, reconstruction quality can be poten-
tially improved by varies basis functions or learned ones.[22–24]

The framework is eligible in principle for different hardware con-
figurations as well, resulting in a change of the forward image
formation model (matrix A) in Equation (6).
Despite these current limitations, on account of the simple

setup and good accuracy, our system can be easily implemented

and applied to investigate new types of fluid flows in the future.
Our proposed framework could also be inspiring in other space–
time diffraction imaging applications with different data mani-
folds other than the particle volumes presented here, for exam-
ple optical diffraction tomography[33] and X-ray ptychography,[34]

and Fourier ptychography,[35] reducing the demanding measure-
ments in a conventional way.

5. Methods

We conduct two types of experiments, where the first one is to
move particles with known motion vector, verifying the accuracy
of our methods on real data; The second one is to reconstruct
practical fluid flows.

5.1. Digital Inline Holography

Digital inline holography aimed to recover a 3D objective trans-
fer function from a single 2D image. Particles were absorptive
and the amplitudes of the objective transfer functions were al-
ways less than one. For simplicity, the reciprocity field of objective
transfer functions were refered to as particle volume, denoted as
o(r, z) ∈ ℝ with r = (x, y), and hence in this work only amplitude
reconstructions were considered. In inline holography, under a
planar uniform wavefront, the scalar field uz(r) ∈ ℂ at the sen-
sor plane can be formulated as an interference between reference
wave rz(r) and the convolution of o(r, z) and free-space propaga-
tion kernel h0(r, z) ∈ ℂ (see Appendix A for derivation). The 2D
image I(r) is written as:

I(r) = ||rz(r) + uz(r)||2 of uz(r) = ∫
z2

z1

o(r, z)⊗ h0(r, z) dz (2)

where ⊗ denotes convolution. In practice, the particle volume
was sparse, that is, for most regions o(r, z) = 0. This observation
led to a plausible negligence of the squared term in Equation (2),
with {⋅} denoting the complex conjugate:

I(r) = |rz(r)|2 − 2ℜ{uz(r)} + ||uz(r)||2 ≈ 1 − 2ℜ{uz(r)rz(r)} (3)

For the sake of brevity, all measurements were post-processed
and constant-free, that is, b(r) = [I(r) − 1]∕2. Also rz(r) can be re-
written as a convolution (see Appendix A), resulting in a change
of convolution kernel h0(r, z) → h(r, z). This completed the linear
image formation model, through which the Gabor holography
related the 3D particle volumes o(r, z) to the 2D measurements
b(r):

b(r) ≈ ℜ
{
∫

z2

z1

o(r, z)⊗ h(r, z) dz
}

(4)

5.2. Motion Flow

The temporal evolution of particles defines an apparent move-
ment of the underlining particle volume, known as fluid veloci-
ties. Motion flows can be numerically reconstructed from consec-
utive, rapid measurements of changing particle volumes. Under
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the assumption of incompressibility, that is, divergence-free flow,
the motion flow vt ∈ ℝ3 related temporally neighboring particle
volumes from time t to t + 1.[36] That is, with x = (r, z):

ot(x + vt) ≈ ot+Δt(x) (5)

where subscripts (t and t + Δt) denote for two neighboring
time frames.

5.3. Inverse Problem

Given a sequence of indexed 2D holograms bt(r) of t = 1, 2,…, T ,
at each frame t, its 3D particle volume ot(x) and the associated
3D flow vector vt(x) would simultaneously be likely to be re-
covered. One obvious and conventional approach was to recon-
struct frame-by-frame. Exploiting Equations (4) and (5), in a least-
squares sense, and sequentially at each frame t:

min
ot ,vt

‖‖Aot − bt‖‖22 + 𝜏‖‖ot+Δt(x) − ot(x + vt)‖‖22 for

t = 1, 2,…, T (6)

where 𝜏 > 0 is a trade-off parameter, bold fonts are discretization
from their continuous variants, and matrix A denotes the linear
mapping of Equation (4).
Considering the dimensionality gap from 2D to 3D, inversion

of Equation (6) was highly ill-posed, and data priors (i.e., do-
main knowledge) were important for plausible reconstructions.
For volumes of interest, only very small portions were occu-
pied by particles, indicating a natural sparsity for particle vol-
umes, as noticed by ref. [19] Fluid flows, on the other hand,
were practically smooth and were usually incompressible,[8,36]

but the reconstruction of fluid flows depended on available parti-
cles, which were presumably sparse. This dilemma led to “null”
flow reconstructions as a result of numerical ill-conditioning, and
could be mitigated by the introduction of Tikhonov regulariza-
tion. Given these domain-knowledge, particle sparsity (priors(o)),
flow smoothness, and Tikhonov regularization (priors(v)) were
added to the original reconstruction of Equation (6). Specifically:

priors(o) = 𝜇‖o‖1
⏟⏟⏟
sparsity

(7a)

priors(v) = 𝛼xy
(‖∇vx‖22 + ‖∇vy‖22) + 𝛼z‖∇vz‖22

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
smoothness prior

+ 𝛽xy
(‖vx‖22 + ‖vy‖22) + 𝛽z‖vz‖22

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Tikhonov regularization

(7b)

where 𝜇, 𝛼xy, 𝛼z, 𝛽xy, and 𝛽z are trade-off parameters, and are
manually tuned for specific scenes. These prior terms can handle
numerical ill-conditioning, which could happen when particles
were too few to fully cover the whole volume, since it is problem-
atic to estimate flow for volumes where there were no particles
present. A larger value of 𝜇 encouraged such a sparse particle sit-
uation. Similarly, larger values of 𝛼xy,z/𝛽xy,z helped stabilize the
flow reconstruction, but at the cost of smoothing/reducing the
resulting flow magnitudes, anisotropically in x, y, and z.

Further, by taking into consideration of the temporal coher-
ence between neighboring frames, particle volumes and fluid
flows were jointly estimated and this strategy was optimized for
neighboring frames together, and hence closing the numerical
reconstruction loop. These yielded the following optimization
problem:

min
o,v

T∑
t=1

‖‖Aot − bt‖‖22 + 𝜏

T−1∑
t=1

‖‖ot+Δt(x) − ot(x + vt)‖‖22
+ priors(o) + priors(v) (8)

Specifically, Equation (8) was solved by alternating between solv-
ing particle volume o and solving volumetric movement flow v,
as in Algorithm 1:

Solve for o: min
o

T∑
t=1

‖‖Aot − bt‖‖22
+ 𝜏

T−1∑
t=1

‖‖ot+Δt(x) − ot(x + vt)‖‖22 + priors(o) (9a)

Solve for v: min
v

𝜏

T−1∑
t=1

‖‖ot+Δt(x) − ot(x + vt)‖‖22 + priors(v)

(9b)

Specifically, particles were solved using FASTA iterative shrink-
age algorithm,[37] and flow was solved using standard Horn–
Schunck optical flow.[38] See Appendix B for more details.

Appendix A: Holographic Particle Image
Velocimetry

A.1. Propagation Point Spread Function

Let r = (x, y). Consider in free space monochromatic scalar field
u0(r) propagates through a short distance z perpendicular to (x, y)
and becomes uz(r). The relationship between u0(r) and uz(r), in
the spatial and frequency domain, is:[26,39]

uz(r) = h0(r, z)⊗ u0(r) and

Uz(𝝆) = exp
[
jkz

(
1 − 𝜆2|𝝆|2)1∕2]U0(𝝆) (A1)

where ⊗ denotes convolution, 𝝆 is the Fourier dual of r, and
U0(𝝆) and Uz(𝝆) are Fourier transforms of u0(r) and uz(r), re-
spectively. We follow the convention that | ⋅ | denotes the 𝓁2-
norm of a vector, for example, |𝝆| = (𝝆2x + 𝝆

2
y )
1∕2. In practice,

spatial frequency satisfies |𝝆| ≪ 1∕𝜆, and (1 − 𝜆2|𝝆|2)1∕2 is nu-
merically close to 1 for any given 𝜆2|𝝆|2, making the kernel nu-
merically hard for inversion. Hence we prefer an approximation
to Equation (A1) for enhanced numerical stability. Taylor expand-
ing Equation (A1):

Uz(𝝆)

= exp(jkz) exp
[
−jkz

(1
2
𝜆2|𝝆|2 + 1

8
𝜆4|𝝆|4 + 1

16
𝜆6|𝝆|6 + …

)]
U0(𝝆)

(A2)
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Algorithm 1 Holo-Flow solver for Equation (9)

function Reconstruct Volume and Flow b1, b2,… , bT
Initialize o0 and v0;

while not converge do ▹ Alternating loop

ok+1 ← argmin
o

∑T
t=1 ‖Aot − bt‖22 + 𝜏

∑T−1
t=1 ‖ot+Δt(x) − ot(x + vkt )‖22 + priors(o); ▹ o-solver: FASTA [37]

vk+1 ← argmin
v

𝜏
∑T−1

t=1 ‖okt+Δt(x) − okt (x + vt)‖22 + priors(v); ▹ v-solver: 3D optical flow [38]

return oK and vK ; ▹ At final iteration K

The Fresnel diffraction formula can be derived by preserving only
the first term 1

2
𝜆2|𝝆|2 in Equation (A3). An expansion of two

or three terms suffice in most of our situations. Excluding the
exp(jkz) term, we define a new convolution kernel h(r, z):

uz(r) = h(r, z)⊗ u0(r) and

Uz(𝝆) = exp
[
−jkz

(1
2
𝜆2|𝝆|2 + 1

8
𝜆4|𝝆|4 + 1

16
𝜆6|𝝆|6)]U0(𝝆) (A3)

A.2. Inline Holography Under Plane Wave Illumination

Suppose there is a 3D object o(r, z) illuminated by a plane wave
under the assumption of a transmissive background of unique
magnitude, where we consider the object of interest o(r, z) to be
a small differential quantity to the background, and is sparsely
distributed over the volume space. The captured hologram Ih(r)
is the propagated 2D scalar field oh(r) at zh,

[26] which is a self-
interference of the two fields:

Ih(r) =
|||||∫

z2

z1

h0(r, z)⊗
(
1 + o(r, z)

)
dz

|||||
2

= ||rh(r) + oh(r)||2
= 2ℜ

{
oh(r)rh(r)

}
+ |oh(r)|2 + |rh(r)|2

(A4)

where according to the properties of Fourier transform rh(r) =∫ z2
z1
exp(jkz) dz is the reference field when there are no objects

present, {⋅} denotes complex conjugate operator, |rh(r)|2 could
be easily pre-calibrated before any measurements and simply as-
sumed as 1, and |oh(r)|2 ≪ 1. This leads to a linear model[19]:

Ih(r) ≈ 2ℜ
{
oh(r)rh(r)

}
(A5)

where oh(r) at the sensor plane is a superposition of all 3D object
fields o(r, z) across z. That said, with Equation (A1):

oh(r)rh(r) = ∫
z2

z1

[
h0(r, z)⊗ o(r, z)

]
r(r, z) dz (A6)

In frequency domain, according to Equations (A2) and (A3):

{[
h0(r, z)⊗ o(r, z)

]
r(r, z)

}
= exp

[
−jkz

(1
2
𝜆2|𝝆|2 + 1

8
𝜆4|𝝆|4 + 1

16
𝜆6|𝝆|6 +⋯

)]{o(𝝆, z)}
= {h(r, z)⊗ o(r, z)} (A7)

where  denotes the Fourier transform, h(r, z) is the free space
point spread function of distance z in spatial domain, and⊗ de-
notes convolution operator. With Equations (A5), (A6), and (A7),
we have:

Ih(r) ≈ 2ℜ
{
∫

z2

z1

h(r, z)⊗ o(r, z) dz
}

(A8)

With an additional assumption that o(r, z) ∈ ℝ, the above is re-
written as:

Ih(r) ≈ ∫
z2

z1

2ℜ{h(r, z)}⊗ o(r, z) dz (A9)

Here, we end upwith a linear convolutionalmodel in real domain
with respect to o(r, z).

Appendix B: 4D Particle-flow Optimization

We now discuss further details regarding the optimization for
Equations (8) and (9). We solve Equation (8) by alternating opti-
mization, refer to Algorithm 1. All computations are highly par-
allelizable, and can be efficiently implemented. The algorithms
were implemented in two versions: CPU and GPU version. For
the CPU version, pure MATLAB code (MATLAB 2020a) is pro-
totyped for this purpose, with the parallelization done intrinsi-
cally via vectorization operations. For the GPU version, code is
refactorized in pure C++17 (compiled via Clang 9) and CUDA
10.2, with the parallelization done mostly by the implicit mech-
anism of CUDA and its associated acceleration libraries (CuFFT
and Thrust), as well as code optimization to reduce GPU mem-
ory usage and to improve locality for speed. We believe the ma-
jor acceleration difference comparing the CPU and the GPU ver-
sion, is primarily because the C++17 and CUDA programming
language offer a better way for fine memory/instruction control,
leveraging the parallelization spirit of the proposed algorithms.

B.1. o-update (Equation (9a))

We solve o-update (Equation (9a)) using proximal gradient de-
scents, or known as iterative thresholding algorithms.[40] For
such schemes to work, it requires for a splitting strategy as:

min
o

f (o) + g(o),

s.t. f (o) =
T∑
t=1

‖Aot − bt‖22 + 𝜏

T−1∑
t=1

‖Ctot − ot+Δt‖22,
g(o) = priors(o)

(B1)
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where Ct denotes a linear mapping containing all interpolation
coefficients for computing ot(x + vt) from ot(x), and we neglect
x and vt to simplify notations. The gradient of f (o) is, for each
frame t:

∇f (ot) =
⎧⎪⎨⎪⎩
2AT (Aot − bt)
+2𝜏CT

t (Ctot − ot+Δt) for t = 1, 2,…, T − 1,
2AT (Aot − bt) for t = T

(B2)

Computation forCT is not easy. For efficiency, we approximateCT

asC−1, and thematrix-vectormultiplication becomes the interpo-
lation by inverse vt. This approximation is known as the forward–
backward warping[41,42]:

Ctot = ot(x + vt) and CT
t ot ≈ C−1

t ot = ot(x − vt) (B3)

B.2. v-update (Equation (9b))

Notice v-update (Equation (9b)) is a variant of the classical
Horn-Schunck optical flow[38] formulation. To cope with multi-
resolution and keep robust, using a pyramid and warping
scheme,[43] we linearize the original problem to linear least
squares, followed by median filtering.[44] The linear least squares
problem is the following, with ∇ot (spatial) and ∇tot (temporal)
gradients of particle volumes ot at time t being computed from
the last o-update:

min
v

𝜏

T−1∑
t=1

‖∇vt ⋅ ∇ot + ∇tot‖22 + 𝛼xy
(‖∇vx‖22 + ‖∇vy‖22)

+ 𝛼z‖∇vz‖22 + 𝛽xy
(‖vx‖22 + ‖vy‖22) + 𝛽z‖vz‖22 (B4)

The associate linear system is readily solved by conjugate gra-
dients, and typically converged within hundreds of iterations at
sufficiently small residual errors.
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