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Uncovering electronic and geometric descriptors
of chemical activity for metal alloys
and oxides using unsupervised machine learning

Jacques A. Esterhuizen,1,2 Bryan R. Goldsmith,1,2,* and Suljo Linic1,2,3,*
The bigger picture

Establishing predictive

relationships between the

electronic structure, the

geometric structure, and the

adsorption properties of a

catalytic site is critical for

furthering the design and study of

heterogeneous catalysts. Despite

many targeted efforts at

developing electronic-structure

descriptors of a material’s

adsorption properties, there is no

unified framework for identifying

these descriptors systematically.

In this contribution, we put

forward an unsupervised machine

learning approach to rapidly
SUMMARY

We show that unsupervised machine learning (ML) using principal-
component (PC) analysis provides a straightforward pathway for
developing accurate and interpretable electronic-structure descrip-
tors of the chemical and catalytic properties of materials. We
demonstrate the approach by finding chemisorption descriptors
for metal alloys and surface oxygens on metals and metal oxides.
In both cases, the PC descriptors yield ML models that predict the
material’s chemical properties with competitive accuracy compared
with ML models built using established descriptors. Importantly, in-
terpreting the electronic-structure patterns captured by each PC
descriptor via signal reconstruction suggests potential design mo-
tifs for future electronic-structure descriptor design and allows us
to identify links between a material’s geometric and catalytic prop-
erties. Ultimately, we show that the unsupervised ML approach pro-
vides a route to find electronic-structure descriptors of the catalytic
properties of materials that readily connect to geometric structure
and composition.
identify accurate and

interpretable electronic-structure

descriptors. We show that

principal-component analysis of

the electronic density of states can

identify chemisorption

descriptors for metal alloys and

surface oxygens on metals and

metal oxides. Notably, the trends

captured by these descriptors are

explainable, and their

interpretation sheds light on the

links between a material’s

electronic structure, surface

geometry, and composition and,

ultimately, chemisorption

strength.
INTRODUCTION

In the field of heterogeneous catalysis, electronic-structure descriptors serve as an

invaluable link between the geometric structure of catalysts and their chemisorption

properties.1–7 One of the most widely used descriptors of the chemisorption energy

of atoms or molecules on a transition metal surface site is the site’s d-band center.

The d-band center, calculated as the first statistical moment of the d-projected den-

sity of states (DOS) at the adsorption site, describes the average energy of a surface

site’s d-electronic states.3,4,8–10 One approach to improve the predictive capacity of

electronic-structure chemisorption descriptors beyond the d-band center is to

consider higher-order moments of the projected DOS (e.g., the second-order

moment, which describes the d-band width5), or even other fine-structure descrip-

tors (i.e., local changes to the maxima, minima, and tails of the distribution not

captured by low-degree statistical momenta) of the DOS, such as the position of

the upper d-band edge relative to the Fermi level.6,11 While these targeted

descriptor development efforts have led to augmented descriptors for some mate-

rials, there exists no unified framework to identify these descriptors across a range of

different materials systematically.

In this contribution, we present a data-driven workflow that allows us to identify ac-

curate and interpretable electronic-structure-based chemisorption descriptors. We

use these electronic-structure descriptors as a bridge to relate a catalyst’s chemi-

sorption properties to its geometric structure and composition. To accomplish
Chem Catalysis 1, 1–18, September 16, 2021 ª 2021 Elsevier Inc. 1



ll

Please cite this article in press as: Esterhuizen et al., Uncovering electronic and geometric descriptors of chemical activity for metal alloys and
oxides using unsupervised machine learning, Chem Catalysis (2021), https://doi.org/10.1016/j.checat.2021.07.014

Article
this, we employ principal-component analysis (PCA) to derive descriptors of a mate-

rial’s electronic structure (Scheme 1). We show that these principal-component (PC)

descriptors are minimal and robust features for building accurate chemisorption

models using supervised machine learning (ML) algorithms. We emphasize that

there are more efficient approaches for simply predicting chemisorption energies

than using electronic-structure descriptors, such as graph convolutional neural net-

works trained on large adsorption datasets like OC20.12,13 However, the utility of

electronic-structure descriptor approaches lies in their ability to yield scientific in-

sights in an interpretable fashion. We interpret the electronic-structure effects

captured by each of the PC descriptors using signal reconstruction and show that

these effects map to local changes in the geometric structure of a site (Scheme 1B

and 1C). We demonstrate the approach by finding PC descriptors for chemisorption

on transition-metal-alloy surfaces and validate it by comparing our findings to the

results of physics-based chemisorption descriptors. We extend the approach to

study surface oxygen reactivity for metals, rutile metal oxides, and perovskite metal

oxides, uncovering new electronic-structure descriptor motifs for quantifying oxy-

gen reactivity for these materials. We expect that the approach will generally be

applicable to identify electronic-structure descriptors for a range of problems in

the physical and chemical sciences (e.g., solid-state materials,14–16 organometallic

catalysts,17 and enzymes18).
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RESULTS AND DISCUSSION

Modeling chemisorption with density functional theory

We chose a layered alloy model system with well-defined ligand and strain effects to

elucidate the interplay between electronic-structure and geometric effects on chem-

isorption energies.3,9,10,19 An overview of the surface and ligand metals considered

for the layered alloy (111) model systems is shown in Figure 1A. In the layered alloys,

the ligand metal composes the layer immediately beneath the surface, and the sur-

face metal composes the rest of the slab (Figure 1B). A total of 245 layered alloys

were considered (in all cases, strain = �2%, �1%, 0%, 1%, 2%): 55 Rh alloys (ligand

metal Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au), 60 Pd alloys (Fe, Co, Ni, Cu, Ru,

Rh, Pd, Ag, Os, Ir, Pt, and Au), 45 Ir alloys (Ni, Cu, Rh, Pd, Ag, Os, Ir, Pt, and Au), and

75 Pt alloys (Fe, Co, Ni, Cu, Mo, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au). The surface

metals considered are commonly used in catalytic applications and span different

groups and periods on the periodic table. Ligand atoms for each surface metal

were selected based on having favorable alloy formation character according to

the Hume-Rothery rules and previous reports of their synthesis.20,21 Strained layered

alloys were considered because it is well established that strain engineering can

mediate the chemisorption strength through electronic-structure effects.4,8 We

emphasize that the alloy-induced ligand and strain effects present in these layered

alloy model systems are also present in intermetallic and disordered alloys.

We modeled the chemisorption of C, O, N, and H atomic adsorbates on the layered

alloys using Kohn-Sham density functional theory (DFT) with the Perdew-Burke-

Ernzerhof (PBE) functional. These four adsorbates were selected because their

chemisorption energies have been used as descriptors for numerous chemical trans-

formations, including water oxidation,22 hydrogen evolution,23 nitrogen dissocia-

tion,24 and hydrocarbon transformations.25,26 Adsorbates were placed at the same

adsorption sites on the strained and unstrained layered alloys as on the pure surface

metal. The considered adsorption sites have been previously reported as the most

stable sites for the studied adsorbates and surface metals,27–30 and are shown in Fig-

ure 1C. The adsorption of C atoms was modeled at the hexagonal close-packed
2 Chem Catalysis 1, 1–18, September 16, 2021
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Scheme 1. Workflow for automating electronic-structure descriptor identification using PCA

(A) Principal-component analysis (PCA) identifies a lower-dimensional basis (i.e., the principal components) of a density of states (DOS) matrix to yield

PC score descriptors.

(B) These descriptors allow exploration of the links between a material’s electronic structure, geometry, and catalytic properties (e.g., activity).

(C) Notably, the electronic-structure effects captured in each descriptor can be analyzed and interpreted by reconstructing the DOS from the

descriptors.
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(hcp) hollow site on all surfaces except for Pt, where it was modeled at the face-

centered cubic (fcc) hollow site. The O species was placed at the fcc hollow site

on all alloys. The N atom was placed at the fcc hollow site on all surfaces, except

for Rh, where it was placed at the hcp hollow site. H was placed at the fcc hollow

site on Rh and Pd surfaces and the atop site on Ir and Pt. The experimental proced-

ures section contains additional modeling details regarding the calculation param-

eters and model systems used in this study.

Comparative analysis of principal-component descriptor performance

PCA is an unsupervised ML technique that reduces a dataset’s dimensionality (i.e., the

number of variables describing the dataset) by projecting the data onto a reduced

orthogonal basis, called the PCs, that describes the maximum variance within the

data.31 Projecting the complete data onto the vectors thatmake up this orthogonal ba-

sis yields a dataset of reduced dimensionality such that all data points are described by

a set of values called PC scores rather than the original complete feature space.32 The

resulting PCdescriptors are adsorbate-independent electronic-structure descriptors of

the alloy. In contrast to previous ML studies that applied PCA to atomic, geometric, or

energetic features,33–39 we apply PCA to the atom projected d-electronic DOS at the

bare catalyst surface. For example, Garcı́a-Muelas and López used PCA to find adsorp-

tion descriptors of C1-C2 species on various close-packed metal surfaces, including

layered alloys.33 However, they applied PCA to amatrix of thermochemical data rather

than electronic-structure data.

We first analyze the predictive performance of the PC descriptors when used in a

regression application to predict chemisorption energies. Models built with the

PC descriptors exhibit good out-of-sample performance when predicting the
Chem Catalysis 1, 1–18, September 16, 2021 3



Figure 1. Layered alloy structure and composition

(A) Map of the elements considered as surface metals (orange), ligand metals (blue), and

adsorbates (green). Not all ligand metals were studied with all surface metals; see main text for

details.

(B) A generalized example of the layered alloy model (111) surface.

(C) A top-down view of the layered alloy (111) surface with adsorption sites labeled. The green circle

denotes the face-centered cubic (fcc) hollow binding site, the green star denotes the hexagonal

close-packed (hcp) hollow site, and the green square denotes the atop site.
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DFT-computed adsorption energies of a holdout test set, with an average test error

of 0.062 eV across all adsorbates (Figure S1). To compare the performance of ML

models built using PC-based descriptors with that of models built using traditional

electronic-structure descriptors and the full DOS,6,40–46 we performed rigorous

nested cross-validation analysis of various MLmodel classes, shown in Figure 2. Spe-

cifically, we constructed Gaussian process regression (GP), random forest regres-

sion, explainable boosting machine regression (EBM), gradient boosted regression,

support vector regression, and ridge regression models built using traditional elec-

tronic-structure descriptors (d-band center with respect to the Fermi level, d-band

width, d-band upper edge with respect to the Fermi level, and d-band filling), the

full DOS, and the top 10 PC descriptors. We give additional details regarding the

traditional descriptor calculations in the supplemental information. The experi-

mental procedures section contains details regarding feature selection, ML model

training, and cross-validation.

The data in Figure 2 show that ML models using 10 PCs as input features consistently

yield cross-validation root-mean-square errors (RMSEs) about a factor of 2 smaller than

the models built using traditional descriptors for predicting chemisorption. The PC

models are competitive with models built using the complete DOS, with average

RMSE <0.01 eV larger for all adsorbates studied. Of the ML models examined, GP
4 Chem Catalysis 1, 1–18, September 16, 2021



Figure 2. Cross-validation confirms PCA generalizability for different machine learning

algorithms

Nested cross-validation, with 10 folds in both the inner and the outer loops, was performed for

predicting (A) C, (B) O, (C) N, and (D) H adsorption energies on layered alloys. Colored bars show

the cross-validation error for Gaussian process regression (GP), random forest regression (RF),

explainable boosting regression (EBM), gradient boosted regression (GB), support vector

regression (SVR), and ridge regression (RR) models built using the traditional electronic-structure

descriptors (blue), the full density of states (orange), and the top 10 PC descriptors (green). The

error intervals denote G1 standard deviation in the cross-validation RMSE across the outer loops of

the nested cross-validation procedure. The average cross-validation RMSE (RMSECV ) across all

models for each feature set is reported in the insets.
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models yield the highest predictive accuracy for all adsorbates. Therefore, we used GP

models to examine singular value decomposition47 and kernel PCA48 as alternative

dimensionality reduction methods (Figure S2) but found neither of these to yield

considerable performance improvements over PCA. The ML models using PCs as in-

puts perform similar to the full DOS models based on average cross-validation

RMSE, even outperforming the complete DOS in some cases. Typically, the PC

descriptor models have an RMSE that is slightly larger than using the complete

DOS, likely due to the inherent loss of information from dimensionality reduction.

Linking the principal-component descriptors to chemisorption energy and

geometric structure and composition of alloys

To analyze how the adsorption behavior changes as a function of the PC scores, we

generated partial dependence plots (PDPs) for the first two PCs, displayed in Figures

3A and 3B.49 We selected the first two PCs because they describe 73.8% of the training

data variance (the first PC describes 47.4% of the variance, the second PC describes

26.4% of the variance). From the third PC onward, each PC captures <10% of the vari-

ance; thus, interpretation of these PCs was not considered (Figure S3).

The PDPs in Figure 3 summarize how the adsorption trends for C, O, N, and H

change for different scores of the first and second PCs. The data in Figure 3A

show that the adsorption energies of all four adsorbates become more exothermic
Chem Catalysis 1, 1–18, September 16, 2021 5



Figure 3. Effect of the principal

components on the adsorption

behavior of C, O, N, and H

Partial dependence plots of

Gaussian process regression

models are constructed for the (A)

first and (B) second principal

components. The shaded region

denotes G1 standard deviation

around the mean (solid line).
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as the score of the first PC increases. Conversely, Figure 3B shows that all four adsor-

bates form weaker bonds as the score of the second PC increases. In general, the

electronic-structure trends captured by the PC descriptors affect the adsorption pro-

cess similarly across different atomic adsorbates.

To determine the electronic-structure effects captured by each PC descriptor, we

analyzed the DOS reconstructions as a function of each PC descriptor’s score. Despite

beingwell established in the cognitive neuroscience andmachine intelligence commu-

nities for decades,50 interpretation of the PCs via reconstruction has yet to see use in

the field of catalysis. Previous efforts were unable to leverage this aspect of PCA

because they used atomic, geometric, or energetic features,33–39 resulting in

difficult-to-interpret PCs that are high-dimensional linear combinations of the input

features. In contrast, an electronic DOS is like a signal, and therefore the impact of

the individual PC on the overall reconstruction can be visualized as a signal, which en-

ables us to explain the significant information packaged in each PC descriptor.

The data in Figures 4A and 4B reveal how the first and second PC scores affect the

DOS reconstructions. The reconstructions are robust and remain unchanged when

learning the PCs on only a subset of the data (Figure S4). Figures 4C–4F show the

behavior of summary statistics related to the DOS reconstructions’ statistical mo-

ments (d-band center or first moment, width or second moment, skewness or third

moment, and kurtosis or fourth moment) as a function of the scores of the first two

PCs. The d-band center describes the average energy of the DOS relative to the

Fermi level, and the d-band width describes the width of the DOS. The skewness de-

scribes the DOS’s asymmetry, whereas the kurtosis is related to the fourth moment

of the DOS and is a measure of the fractional occupation of the states in the tails of

the DOS. Additional details regarding the calculation of these summary statistics are

given in the supplemental information. We note that the skewness and kurtosis are

unitless because they are scaled by the standard deviation.
6 Chem Catalysis 1, 1–18, September 16, 2021



Figure 4. Analysis of individual principal components on density of states reconstruction

The data in the first row show how the (A) first and (B) second principal components affect the DOS

reconstruction. The principal-component values for each DOS reconstruction are provided. The

data in the second and third rows show how the statistical moments of the DOS reconstructions

depend on the (C and E) first and (D and F) second principal components. (C) and (D) display the d-

band center and width, and (E) and (F) show the d-band skewness and kurtosis.
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The data in Figure 4C show that the d-band center shifts up in energy and becomes

narrower as the first PC score increases. The correlation between the first PC and the

d-band center is strong, with a Pearson correlation coefficient of 0.85. We recall that

increasing the first PC score leads to more exothermic chemisorption. Furthermore,

the kurtosis increases nearly monotonically with the first PC score (Figure 4E). This

result would indicate that a d-band with a higher first PC score has higher occupa-

tions in the DOS distributions’ tails based on the definition of kurtosis. In addition

to changing the DOS distribution and its low-degree momenta, Figure 4A shows

that the first PC describes fine-structure effects not captured by the low-degree

DOS momenta. For example, we observe a shift in the lower d-band edge with

the first PC score, suggesting that the lower d-band edge may be one descriptor

motif to explore in future work. Prior studies have attributed similar electronic-struc-

ture effects to the degree of orbital overlap experienced by surface atoms.3,4,8,51

Connecting this to the first PC, we can see that widening and downshifting the

d-states of a surface site, which correspond to lowering the first PC scores, corre-

sponds to a higher degree of orbital overlap.

The data in Figure 4B show the effect of changing the second PC score on the DOS,

and Figures 4D and 4F show the second PC score’s influence on the statistical mo-

ments. The d-band widens and shifts down in energy as the second PC score in-

creases (Figure 4D). However, the correlation between the d-band center and the
Chem Catalysis 1, 1–18, September 16, 2021 7
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second PC score is much weaker than that between the first PC score and the

d-band, with a Pearson correlation coefficient of �0.37. In addition, the shape of

the DOS changes based on the value of the second PC score. For example, the

data in Figure 4F show that the skewness increases along with the second PC score.

Based on the definition of skewness, this indicates that the occupation at the upper

d-band edge also increases with the second PC score. A marginal decrease in the

kurtosis occurs as the second PC score increases, indicating fewer d-states in the dis-

tributions’ tails. Like the first PC, the second PC also captures fine-structure effects

that are not well described by the low-degree d-band momenta. For example, the

upper band edge shifts in conjunction with the second PC, indicating that the posi-

tion of the upper band edge relative to the Fermi level may be descriptive of adsorp-

tion trends. Previous works have attributed similar electronic-structure effects to a

metal surface’s valence d-electron character.52 This prior result would suggest that

surface sites with higher upper band edges and lower second PC scores correspond

to metals with a lower number of valence d-electrons. Conversely, surface sites with

lower upper band edges and higher second PC scores correspond to metals with a

higher number of valence d-electrons.

We demonstrated above that the PC descriptors yield accurate chemisorption

energy predictions and provide insight into the electronic-structure differences be-

tween different surface sites. However, connecting alloys’ geometric structure and

composition to their chemisorption strengths is critical to move beyond elec-

tronic-structure models toward building predictive geometry-chemisorption

strength models. We emphasize that electronic structure serves as an invaluable

link between geometric structure and chemisorption and can aid in identifying

geometric descriptors. To leverage this, we created box and swarm plots, shown

in Figures 5A–5F, which reveal how the first and second PC score distributions,

and therefore the electronic structure, change due to variations in the geometric

structure and composition of the alloys.

We first analyze how the PC scores change as a function of changing an alloy’s

surface metal. The data in Figure 5A show that the 4d surface metals (i.e., Rh

and Pd) have similar first PC score distributions. Likewise, the 5d surface

metals (i.e., Ir and Pt) also have similar first PC score distributions, which are lower

in value than the 4d surface metal distributions. The primary difference between 4d

metals and 5d metals of the same group is increased atomic size. Because the in-

crease in the first PC leads to stronger chemisorption, these results indicate that

alloys with 5d surface metals (larger atomic radius) bind adsorbates weaker than

do those with 4d surface metals (smaller atomic radius) for similar d-valence elec-

tronic structures, i.e., chemisorption strength decreases moving down a given

group of the periodic table. In addition, the first PC score distributions in Figure 5A

do not show a discernible trend concerning the surface metal group, which is

descriptive of the number of valence d-electrons. This finding suggests that the

surface metal’s size accounts for the surface metal’s primary geometric effect on

the first PC score.

The data in Figure 5B show that the second PC score depends primarily on the num-

ber of valence d-electrons in the surfacemetal. Surfacemetals in a higher group have

higher second PC scores, indicating that the second PC score increases as the num-

ber of valence d-electrons in the surface metal increases. Since increasing the sec-

ond PC score leads to weaker chemisorption (Figure 3B), these results indicate the

chemically intuitive result that transition metals with more valence d-electrons

bind adsorbates less strongly.
8 Chem Catalysis 1, 1–18, September 16, 2021



Figure 5. Linking the principal components to the alloys’ geometric structure and composition

Box and swarm plots decompose the distributions of the (A, C, and E) first and (B, D, and F) second

principal components as a function of changing (A and B) the surface metal, (C and D) the ligand

metal, and (E and F) the alloy-induced biaxial strain in the x–y plane. Solid lines in the middle of

each box denote the median value, and the box edges denote the interquartile range. In (A–D), the

periodic row is color coded such that 3d metals are blue, 4d metals are orange, and 5d metals are

green. Labels of specific surface and ligand metals are displayed.
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Figures 5C and 5D show the impact of the subsurface ligand atoms on the first and

second PC scores. Figure 5C shows that alloy surfaces with late transition metal li-

gands like Cu, Ag, and Au lead to higher first PC scores (and stronger chemisorption)

than earlier transition metal ligands such as Rh, Ir, and Ni. Furthermore, we also

observe trends in the first PC score within a given group of subsurface atoms. For

example, a Cu subsurface ligand atom forms alloys characterized by a lower first

PC score and more endothermic chemisorption than alloys containing Ag or Au sub-

surface ligands. The data in Figure 5D suggest that, in general, there is only a weak

relationship between the second PC and the ligand metal identity (Figures S5D and

S5F).

By comparing the findings associated with Figures 5A and 5B, which shed light on

the impact of the surface metal on the PC descriptors, and Figures 5C and 5D, which

shed light on the role of ligand atoms, we can arrive at simple but powerful conclu-

sions about how the character of the surface and ligand metals affects the chemi-

sorption strength in metal alloys, summarized in Scheme 2. The number of valence

d-electrons and the metal atoms’ sizes are two critical and easily accessible param-

eters that govern the chemisorption strength. In general, we find that, as the filling of

the surface metal atom’s d-band increases, indicating a higher number of valence

d-electrons, chemisorption becomes more endothermic. Based on the data in Fig-

ure 5C, we observe that the d-electron character of the subsurface ligand atoms

has precisely the opposite effect on the chemisorption strength compared with
Chem Catalysis 1, 1–18, September 16, 2021 9



Scheme 2. How the character of the surface and ligandmetals affects the chemisorption strength

in metal alloys

Increasing the ligand and surface metal sizes and decreasing the number of d-electrons in the

ligand metal correspond to a decrease in the first PC and weaker chemisorption. Increasing the

number of surface d-electrons corresponds to an increase in the second PC and weaker

chemisorption.
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the surface atoms. Ligand atoms with fuller d-bands lead to more exothermic chem-

isorption on the surface metal site. We also observe that chemisorption becomes

more endothermic as the atom size increases for a fixed number of d-electrons in

both the ligand and the surface metal atoms.

It is critical to compare these findings with established chemisorption models and

electronic-structure theories.53–55 For most adsorbates (including those analyzed

in this work), metals with lower-energy d-band centers bind adsorbates more weakly

than metals with higher-energy d-band centers. Changing an alloy’s composition

can tune the surface site’s d-band center. For example, for atoms with an equivalent

number of d-electrons, changing the degree of orbital overlap experienced by sur-

face atoms changes the position of the d-band center. Alloys containing larger sur-

face and ligand metals have more orbital overlap and therefore have wider and

lower-in-energy d-band centers. This effect is captured by the first PC.3,4,51 In addi-

tion, surface metal atoms with a higher number of valence d-electrons, and therefore

fuller d-bands, generally have lower-energy d-bands. This effect appears to be well

described by the second PC, with surface metals with more valence d-electrons hav-

ing higher second PC scores. The role of the number of d-electrons in the ligand

metal on chemisorption captured by the PC descriptors is also consistent with the-

ories of chemisorption on metals as explained by bond-order conservation argu-

ments.56,57 Surface atoms in alloys with more noble ligands (containing more

valence d-electrons), characterized by higher first PC scores, compensate for weaker

metal-metal interactions with the ligand metal by interacting with adsorbates more

strongly. In sum, these results indicate that the conclusions we derived from the PCA
10 Chem Catalysis 1, 1–18, September 16, 2021
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descriptors regarding the impact of the character of the surface and ligandmetals on

the chemisorption strength in metal alloys are entirely consistent with prior chemi-

sorption theories.

We have also used PC descriptors to analyze the impact of geometric strain on the

electronic structure and chemisorption strength. The data in Figure 5E show that

strain has a significant effect on the first PC score (Figure S5E), with increasing tensile

strain resulting in larger first PC scores. This trend suggests that the first PC primarily

describes the degree of orbital overlap between metal atoms near the surface. The

data reveal that increasing compressive strain leads to a monotonic downward shift

in the first PC score distribution, corresponding to a widening of the d-band and a

downshift in the d-band center. Consequently, the adsorption energy weakens for

C, O, N, and H adsorbates under compressive strain. This observation is consistent

with prior reports showing that compressive strain modifies alloys’ electronic struc-

tures by widening their d-band and shifting them down in energy to maintain their

filling.4,8 On the other hand, Figure 5F shows that the second PC scores barely

change due to strain (Figure S5F). This trend is consistent with the idea that the sec-

ond PC primarily captures the surface metal’s valence d-electron character, which

should be largely unaffected by strain.

This PCA allowed us to identify electronic-structure descriptors for alloys that shed

light on the relationships between a surface site’s geometric structure (including

the direct adsorption site and ligand atoms) and the chemisorption strength of

different adsorbates on that site. We show that that the first two PCs connect well

to prior efforts to develop electronic-structure descriptors and are primarily descrip-

tive of the degree of orbital overlap at the surface and the number of valence d-elec-

trons in the surface metal. We show that these effects can be well captured by two

atomic characteristics of the alloys’ constituent metals, namely, the surface and

subsurface atoms’ numbers of d-electrons and sizes. Importantly, our PCA approach

arrives at these descriptors without engaging any existing chemisorption theory

beforehand.

Using PCA to find an electronic-structure descriptor for oxygen reactivity on

metals and metal oxides

To establish that this approach can be extended beyond chemisorption models for

metal alloys, we employed this workflow to identify electronic and geometric de-

scriptors of surface oxygen reactivity on metals, rutile metal oxides, and perovskite

metal oxides (ABO3). The reactivity of a surface oxygen species is defined in terms of

its ability to bind a hydrogen atom (DEO � DEOH = EO� + 1=2EH2ðgÞ � EOH� ). Finding

electronic-structure descriptors for reactive oxygen species has been a long-stand-

ing challenge with broad implications for understanding amaterial’s catalytic perfor-

mance for oxidation chemistries, such as the oxidative coupling of methane,58

oxygen evolution,59 propylene epoxidation,60 and many others.61 Dickens et al.

have proposed the O 2p states’ average energy (ε2p) as an electronic-structure

descriptor for quantifying the surface oxygen atom’s reactivity.62 The O 2p states

typically have a bimodal distribution because they segment into bonding and

anti-bonding states, so the average energy may not describe this distribution with

a high degree of accuracy.

We applied PCA to the DOS of surface oxygen species on metals, rutile metal

oxides, and perovskite metal oxides to construct a descriptor of the O 2p

states. We used a dataset from Dickens et al.62 that contains the 2p DOS between

�10 and 2 eV relative to the Fermi level for O species on 97 pure fcc metals,
Chem Catalysis 1, 1–18, September 16, 2021 11



Figure 6. Electronic-structure descriptors from PCA for O reactivity on metals and metal oxides

(A) Representative structures making up the dataset of oxygen species on fcc metals, rutile metal

oxides, and perovskite oxides from Dickens et al.62

(B) How the O 2p bonding and anti-bonding orbitals of surface oxygen change as a function of the

first principal-component score.

(C) A partial dependence plot showing the effect of the first principal-component score on surface

oxygen reactivity. The shaded region denotes G1 standard deviation of confidence around the

mean.

(D and E) Box and swarm plots decompose the distributions of the first principal-component score

as a function of changing the base metal (D) period and (E) group.
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32 rutile metal oxides, and 166 perovskite metal oxides (Figure 6A). The states

of both lattice O and superstoichiometric adsorbed O (similar to the adsorbate

evolution mechanism of the oxygen evolution reaction59) are considered for

oxides. Using the top seven PC descriptors for constructing GP models (Fig-

ure S8) results in a test RMSE of 0.486 eV. We note that including d or f states

that might accept localized or delocalized electrons from the hydrogen atom

may be one avenue to improve the predictive capacity of oxygen reactivity de-

scriptors. Nonetheless, only O 2p states were considered in this study to enable

direct comparison between the PCA descriptors and the previously reported ε2p

descriptor from Dickens et al. In addition, we observe that even stronger predictive

performance is obtained when using the non-linear descriptors identified using

kernel PCA (Figure S11). However, it is not possible to interpret the individual ef-

fects of these non-linear descriptors using reconstruction; therefore, we proceed

with standard PCA.
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We analyzed the O 2p DOS reconstructions as a function of the PC descriptor’s

score to interpret the electronic-structure effects captured by our descriptor,

shown in Figure 6B. Only the first PC was analyzed because it describes 36.7%

of the total variance of the data, more than twice as much as any of the remaining

PCs (Figure S6). The data show that DOSs with low first PC scores are characterized

by a high and discrete atom-like occupancy in the bonding states and a lower

metal-like occupancy in the anti-bonding states, whereas the converse is true for

DOSs with high first PC scores. This finding suggests that the first PC describes

the relative occupancy of the bonding and anti-bonding states, a physical quantity

that generally correlates with the ε2p descriptor (Pearson correlation coefficient of

0.93, Figure S7).

To analyze how the relative occupancies of the bonding and anti-bonding states

affect the surface oxygen reactivity, ΔEO--DEOH, we generated a PDP showing how

ΔEO--DEOH changes as a function of the first PC score (Figure 6C). The data show

that, in general, DEO--DEOH increases as the first PC score increases. This result is

consistent with a physical chemistry description of bonding, since it suggests that

surface oxygen species with lower (higher) PC scores, which are more stable (unsta-

ble) due to a higher (lower) relative filling of the bonding orbital, are less (more) likely

to abstract hydrogen atoms or be active for oxidation chemistries.

We analyzed trends in the first PC regarding material composition (Figures 6D and

6E), which revealed that the trends concerning the basemetal bonded to the oxygen

are broadly consistent with what we observed for alloys. The base metal’s number of

d-electrons and size are descriptive of the oxygen reactivity for metals and rutile ox-

ides. As the base metal becomes nobler (with nobility increasing with atomic radius

from 3dmetals to 5dmetals and increasing with the number of valence d-electrons2)

the oxygen species becomes more unstable, and therefore more reactive. This

insight rationalizes the fact that the most active materials for oxidation chemistries

are typically platinum-group metal oxides (e.g., RuO2 and IrO2).
63,64

For perovskite oxides, we observe that changing the valence d-electron character of

the B-site cation (the site that interacts most strongly with the oxygen atoms) leads to

electronic structure effects similar to changing the valence d-electron character of

the base metal in a pure metal or rutile oxide (Figure S9B). As the number of valence

d-electrons increases, the O 2p states move up in energy and become characterized

by higher first PC scores. However, we observe an opposite trend for pure metals

and rutile oxides concerning changes in the B-site cation’s atomic size (Figure S9A).

As the size of the B-site cation increases, the oxygen states shift down in energy and

become characterized by lower first PC scores. To explain this counterintuitive result

at the dataset level, we investigated local trends in the O 2p states of perovskite

oxides with a fixed A-site cation, focusing on materials where the A-site cation is

La (Figure S10). Visualization of the La-based perovskite O 2p states suggests that

they generally behave similar to how they do for metals and rutile oxides. As the

size of the B-site cation increases, the metal-oxygen interaction becomes weaker,

leading to a lower degree of hybridization and more atom-like O 2p states. While

this leads to states with higher average energy for rutile oxides and metals, the

average energy of the O 2p states becomes lower as the states become atom-like

in perovskites; this leads to an opposite trend in the first PC score with respect to

the B-site cation’s atomic size.

In summary, we extended our PCA approach to identify electronic and geometric

descriptors of surface oxygen reactivity for metals, rutile metal oxides, and
Chem Catalysis 1, 1–18, September 16, 2021 13
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perovskite metal oxides. Analysis of the first PC descriptor via reconstruction sug-

gests that the descriptors capture trends that are consistent with a physical chemis-

try description of bonding. For example, low first PC scores are characterized by a

high and discrete atom-like occupancy in the bonding states and a lower metal-

like occupancy in the anti-bonding states, whereas the converse is true for DOSs

with high first PC scores, suggesting that the first PC score captures the relative

occupations of the O bonding and anti-bonding orbitals. Analysis of the surface

oxygen reactivity trends with respect to the PC descriptor suggests that materials

with high first PC scores, characterized by unstable surface oxygen species with a

higher relative filling of the anti-bonding orbital, are active toward oxidation

chemistries.

Conclusions

Unsupervised learning represents a promising paradigm for the efficient discovery

of descriptors for materials. We use a simple approach that leverages PCA to identify

electronic-structure descriptors based on the site-projected d-band DOS of alloys

containing late-transition metals. The PC descriptors yield accurate ML models for

predicting chemisorption that outperform models built using traditional elec-

tronic-structure descriptors. Importantly, the PC descriptors are interpretable, thus

giving insight into how a material’s electronic structure is connected to surface ge-

ometry and composition, and ultimately chemisorption strength. We demonstrate

that the approach presented herein could be applied to diverse catalytic systems

through a case study examining surface oxygen reactivity for metals, rutile metal ox-

ides, and perovskite metal oxides. Therefore, we expect that this approach can

extend readily to other catalytic systems, such as intermetallic and random alloys, ni-

trides, and sulfides, as well as other application fields across chemistry and materials

science, such as describing activity trends for homogeneous catalysts and devel-

oping relationships between electronic structure and functionality for photovoltaic

materials.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information and resources should be directed to the lead con-

tact, Suljo Linic (linic@umich.edu).

Materials availability

This study did not generate new materials or reagents.

Data and code availability

The data and codes generated during this study are available on GitHub at https://

github.com/jesterhui/pca_electronic_structure_descriptors. This repository con-

tains all DFT calculated structures and representative INCAR files, as well as repre-

sentative Python scripts for carrying out PCA. Structures are also available on the

NOMAD repository at https://doi.org/10.17172/NOMAD/2021.06.22-1.

DFT modeling of layered alloys and their chemisorption properties

The Vienna Ab initio Simulation Package (VASP) was used to perform all electronic-

structure theory calculations.65–68 We used the PBE functional to describe the

electron exchange and correlation,69,70 and the projector augmented wave

method to describe electron-ion interactions.71,72 A plane-wave kinetic-energy

cutoff of 450 eV was selected, and a 4 3 4 3 1 Monkhorst-Pack k-point grid

was used for the Brillouin zone integration.73 Benchmarking calculations indicate
14 Chem Catalysis 1, 1–18, September 16, 2021

mailto:linic@umich.edu
https://github.com/jesterhui/pca_electronic_structure_descriptors
https://github.com/jesterhui/pca_electronic_structure_descriptors
https://doi.org/10.17172/NOMAD/2021.06.22-1


ll

Please cite this article in press as: Esterhuizen et al., Uncovering electronic and geometric descriptors of chemical activity for metal alloys and
oxides using unsupervised machine learning, Chem Catalysis (2021), https://doi.org/10.1016/j.checat.2021.07.014

Article
that the DOSs are converged using a 4 3 4 3 1 Monkhorst-Pack k-point grid

(Figure S12).

Layered alloy surfaces were studied using the slab model illustrated in Figures 1B

and 1C, which has been used in prior studies to probe ligand and strain ef-

fects.3,4,9,10 Each layered-alloy slab model consists of five layers of metal atoms

composed entirely of the base metal, except for the second layer of atoms directly

below the surface layer that is composed of the ligand metal. The bottom three

layers of the model system were fixed at the bulk lattice constant of the corre-

sponding metal and was uniformly adjusted for strain. We studied slabs with

strains of �2% to +2% in intervals of 1%. Conjugate gradient geometry optimiza-

tion was performed on the upper two layers of the slab and the adsorbate, with all

other layers fixed in their bulk lattice positions. Geometry optimization was

stopped when the maximum forces on all atoms in the system were less than

0.03 eV/Å. Alloys containing Fe, Co, and Ni were studied with collinear spin-polar-

ization. Model systems were constructed and manipulated using the Atomic

Simulation Environment.74 For all adsorbates, we considered electronic adsorption

energies (zero-point energies were not included) defined relative to the corre-

sponding free atom:

DEi = Ei=M � ðEM + EiÞ;
where M denotes the slab and i denotes the adsorbate. All alloy structures studied

are available on the NOMAD repository at https://dx.doi.org/10.17172/NOMAD/

2021.06.22-1.
Identifying electronic-structure descriptors with PCA

PCA is an unsupervised learning approach that has seen use in previous works to

extract catalysis descriptors, which were then used in conjunction with supervised

learning methods to yield accurate and computationally efficient models.33–39

However, this work represents the first example of PCA explicitly applied to the elec-

tronic-structure data of surfaces. For the alloy dataset, the first step was to construct

a DOS matrix containing the d-projected DOS for all the alloys, which is visualized in

Scheme 1A. The VASP output samples different energy values for different systems

when outputting the DOS. However, for this analysis, the DOS must be sampled at

uniform energy intervals. A one-dimensional interpolating spline was fit to the DOS

of each alloy, and the DOS was sampled uniformly for 300 points between �10 and

10 eV. The DOSs were normalized such that the integral of each DOS was unity. This

analysis yielded the datamatrix shown in Scheme 1A. Next, dimensionality reduction

(including PCA, kernel PCA, singular value decomposition) on the DOS matrix (con-

taining both the training and the test set splits) was performed using the scikit-learn

package to find a minimal set of descriptors for the data.75

In general, the segmenting of the cross-validation folds usually occurs before

feature and model selection procedures apply. However, Hastie, Friedman, and

Tibshirani note that initial unsupervised screening steps can be done before

cross-validation fold segmentation.31 Since this filtering does not involve the

data labels, it should not bias the predictors nor give an unfair advantage. Testing

this assumption empirically indeed suggests that selecting descriptors prior to per-

forming the supervised learning step does not yield noticeable improvements in

predictive performance (Table S1). For the alloy dataset, 10 PCs were selected

because this was the minimum number of PCs that the GP models required to

converge in RMSE for adsorption energy predictions based on nested cross-valida-

tion (Figure S2).
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For our case study of surface oxygen reactivity, a dataset from Dickens et al. was

used.62 This dataset contained hydrogen binding energies and the O 2p DOS for

97 oxygen species on fcc (111) surfaces, 32 rutile metal oxide oxygen species, and

166 perovskite oxide oxygen species. Like alloys, an interpolating spline was fit to

the DOS and then the DOS was sampled uniformly over 600 points between �10

and 2 eV.
ML model construction

EBM regression models (also known as iGAMmodels) and PDPs were built using Mi-

crosoft Research’s InterpretML package.76 All other ML models were learned using

the scikit-learn package.75 Nested cross-validation,77 with 10 folds in both the inner

and the outer loops, was performed three times, and the performance was averaged

for evaluating model generalization performance as a function of the ML model and

the dimensionality reduction routine used. All MLmodels for alloys were constructed

with 10 PCs, except for the EBMmodels, which were constructed with 5 PCs due to a

drop in cross-validation performance upon the addition of more PCs into the model.

PDPs were built using the InterpretML package.76 The data used for ML model con-

struction for the alloys and metal oxides, as well as scripts used for model training

and testing, are available from the authors on GitHub at https://github.com/

jesterhui/pca_electronic_structure_descriptors.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.checat.
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