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Chemical descriptors encode the physicochemical and structural properties of small mole-

cules, and they are at the core of chemoinformatics. The broad release of bioactivity data has

prompted enriched representations of compounds, reaching beyond chemical structures and

capturing their known biological properties. Unfortunately, bioactivity descriptors are not

available for most small molecules, which limits their applicability to a few thousand well

characterized compounds. Here we present a collection of deep neural networks able to infer

bioactivity signatures for any compound of interest, even when little or no experimental

information is available for them. Our signaturizers relate to bioactivities of 25 different types

(including target profiles, cellular response and clinical outcomes) and can be used as drop-in

replacements for chemical descriptors in day-to-day chemoinformatics tasks. Indeed, we

illustrate how inferred bioactivity signatures are useful to navigate the chemical space in a

biologically relevant manner, unveiling higher-order organization in natural product collec-

tions, and to enrich mostly uncharacterized chemical libraries for activity against the drug-

orphan target Snail1. Moreover, we implement a battery of signature-activity relationship

(SigAR) models and show a substantial improvement in performance, with respect to

chemistry-based classifiers, across a series of biophysics and physiology activity prediction

benchmarks.
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Most of the chemical space remains uncharted and identi-
fying its regions of biological relevance is key to medicinal
chemistry and chemical biology1,2. To explore and catalog

this vast space, scientists have invented a variety of chemical
descriptors, which encode physicochemical and structural properties
of small molecules. Molecular fingerprints are a widespread form of
descriptors consisting of binary (1/0) vectors describing the presence
or absence of certain molecular substructures. These encodings are at
the core of chemoinformatics and are fundamental in compound
similarity searches and clustering, and are applied to computational
drug discovery (CDD), structure optimization, and target prediction.

The corpus of bioactivity records available suggests that other
numerical representations of molecules are possible, reaching beyond
chemical structures and capturing their known biological properties.
Indeed, it has been shown that an enriched representation of mole-
cules can be achieved through the use of bioactivity signatures3.
Bioactivity signatures are multi-dimensional vectors that capture
the biological traits of the molecule in a format that is akin to
the structural descriptors or fingerprints used in the field of che-
moinformatics. The first attempts to develop biological descriptors
for chemical compounds encapsulated ligand-binding affinities4, and
fingerprints describing the target profile of small molecules unveiled
many unanticipated and physiologically relevant associations5. Cur-
rently, public databases contain experimentally determined bioac-
tivity data for about a million molecules, which represent only a small
percentage of commercially available compounds6 and a negligible
fraction of the synthetically accessible chemical space7. In practical
terms, this means bioactivity signatures cannot be derived for most
compounds, and CDD methods are limited to using chemical
information alone as a primary input, thereby hindering their
performance and not fully exploiting the bioactivity knowledge
produced over the years by the scientific community.

Recently, we integrated the major chemogenomics and drug
databases in a single resource named the Chemical Checker (CC),
which is the largest collection of small-molecule bioactivity signatures
available to date8. In the CC, bioactivity signatures are organized by
data type (ligand-receptor binding, cell sensitivity profiles, toxicology,
etc.), following a chemistry-to-clinics rationale that facilitates the
selection of relevant signature classes at each step of the drug dis-
covery pipeline. In essence, the CC is an alternative representation of
the small-molecule knowledge deposited in the public domain and, as
such, it is also limited by the availability of experimental data and the
coverage of its source databases (e.g., ChEMBL9 or DrugBank10).
Thus, the CC is most useful when a substantial amount of bioactivity
information is available for the molecules and remains of limited
value for poorly characterized compounds11. In the current study, we
present a methodology to infer CC bioactivity signatures for any
compound of interest, based on the observation that the different
bioactivity spaces are not completely independent, and thus simila-
rities of a given bioactivity type (e.g., targets) can be transferred to
other data kinds (e.g., therapeutic indications). Overall, we make
bioactivity signatures available for any given compound, assigning
confidence to our predictions and illustrating how they can be used
to navigate the chemical space in an efficient, biologically relevant
manner. Moreover, we explore their added value in the identification
of hit compounds against the drug-orphan target Snail1 in a mostly
uncharacterized compound library, and through the implementation
of a battery of signature–activity relationship (SigAR) models to
predict biophysical and physiological properties of molecules.

Results
The current version of the CC is organized into 5 levels of
complexity (A: Chemistry, B: Targets, C: Networks, D: Cells, and
E: Clinics), each of which is divided into 5 sublevels (1–5). In
total, the CC is composed of 25 spaces capturing the 2D/3D

structures of the molecules, targets and metabolic genes, network
properties of the targets, cell response profiles, drug indications,
and side effects, among others (Fig. 1a). In the CC, each molecule
is annotated with multiple n-dimensional vectors (i.e., bioactivity
signatures) corresponding to the spaces where experimental
information is available. As a result, chemistry (A) signatures are
widely available (~106 compounds), whereas cell-based assays (D)
cover about 30,000 molecules, and clinical (E) signatures are
known for only a few thousand drugs (Fig. 1b). We thus sought to
infer missing signatures for any compound in the CC, based on
the observation that the different bioactivity spaces are not
completely independent and can be correlated.

Bioactivity signatures must be amenable to similarity calcula-
tions, ideally by conventional metrics such as cosine or Euclidean
distances, so that short distances between molecule signatures
reflect a similar biological behavior. Therefore, inference of bioac-
tivity signatures can be posed as a metric learning problem where
observed compound–compound similarities of a given kind are
correlated to the full repertoire of CC signatures, so that similarity
measures are possible for any compound of interest, including those
that are not annotated with experimental data. In practice, for each
CC space (Si), we tackle the metric learning problem with a so-
called Siamese Neural Network (SNN), having as input a stacked
array of CC signatures available for the compound (belonging to
any of the A1–E5 layers, S1–S25) and as output, an n-dimensional
embedding optimized to discern between similar and dissimilar
molecules in Si. More specifically, we feed the SNN with triplets of
molecules (an anchor molecule, one that is similar to the anchor
(positive) and one that is not (negative)), and we ask the SNN to
correctly classify this pattern with a distance measurement per-
formed in the embedding space (Fig. 1a and Supplementary Fig. 1).
We trained 25 such SNNs, corresponding to the 25 spaces available
in the CC. We used 107 molecule triplets and chose an SNN
embedding dimension of 128 for all CC spaces, scaling it to
the norm so as to unify the distance magnitude across SNNs (see
“Methods” section for details). As a result of this procedure, we
obtained 25 SNN ‘signaturizers’ (S1–25), each of them devoted to
one of the CC spaces (Si). A signaturizer takes as input the subset of
CC signatures available for a molecule and produces a 128D sig-
nature that, in principle, captures the similarity profile of the
molecule in the Si CC space, where experimental information may
not be available for the compound.

To handle the acute incompleteness of experimental signatures
accessible for training the SNNs (Fig. 1b), we devised a signature-
dropout sampling scheme that simulates a realistic prediction
scenario where, depending on the CC space of interest (Si), sig-
natures from certain spaces will be available while others may not.
For example, in the CC, biological pathway signatures (C3) are
directly derived from binding signatures (B4), thus implying that,
in a real B4 prediction case, C3 will never serve as a covariate. In
practice, signature sampling probabilities for each CC space Si
were determined from the coverage of S1–S25 signatures of
molecules lacking an experimental Si signature. Overall, chemical
information (A1–5), as well as signatures from large chemoge-
nomics databases (e.g., B4-5), could be used throughout (Sup-
plementary Fig. 2). Signatures related to the subset of drug
molecules (e.g., Mode of Action (MoA): B1, indications: E2, side-
effects: E3, etc.) were mutually inclusive; however, they were more
frequently dropped out in order to extend the applicability of
signaturizers beyond the relatively narrow space of known drugs.

We evaluated the performance of a signaturizer Si in an 80:20
train–test split both (a) as its ability to classify similar and
dissimilar compound pairs within the triplets (Fig. 1c and Sup-
plementary Fig. 3), and (b) as the correlation observed between
each predicted signature (i.e., obtained without using Si as part of
the input (S1–S25)) and, correspondingly, a truth signature

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24150-4

2 NATURE COMMUNICATIONS |         (2021) 12:3932 | https://doi.org/10.1038/s41467-021-24150-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


produced using only Si. In the “Methods” section, we further
explain these two metrics, as well as the splitting and signature-
dropout methods that are key to obtain valid performance esti-
mates. In general, as expected, chemistry (A) signaturizers per-
formed almost perfect (Fig. 1c). The A-level signatures are of little
added value, since chemical information is always available for
compounds; however, we see that the inferred signatures cannot
only faithfully reproduce the original CC signatures but also
recapitulate the similarity information captured by the much
longer extended connectivity fingerprints (ECFP4; Supplementary
Fig. 4). At the targets levels (B), the performance of the signa-
turizers was high for large-scale binding data B4, while accuracy
was variable at deeper annotation levels where the number of
compounds available for training was smaller (e.g., MoA (B1) or
for drug-metabolizing enzymes (B2)) (Fig. 1d). Performance at
the networks level (C) was high, as this level is directly informed

by the underlying targets (B) level. Not surprisingly, the most
challenging models were those related to cell-based (D) and
clinical (E) data, probably due to the inherent complexity of these
data with respect to the number of annotated molecules. On
average, the accuracy of cell-based signaturizers was moderate
(~0.7) and true-vs-predicted correlation of clinical signatures
such as therapeutic classes (Anatomical Therapeutic Chemical,
ATC; E1) was variable across molecules. The performance of
SNNs varied depending on the CC space and molecule of interest,
with signatures being well predicted in all spaces. Figure 1e and f
illustrate this observation for three drugs (namely perphenazine
(1), acebutolol (2), and perhexiline (3)), which have predicted
signatures of variable quality in the transcriptional (D1) and side-
effects (E3) spaces. Overall, bioactivity maps were well covered by
test-set molecules, indicating that our SNNs are unbiased and
able to generate predictions that are spread throughout the

Fig. 1 Training and evaluation of CC signaturizers. a Scheme of the methodology. Signaturizers produce bioactivity signatures that fill the gaps in the
experimental version of the CC. A SNN is trained using a signature-dropout scheme over 107 triplets of molecules (anchor, positive, negative) to infer
missing signatures in each bioactivity space. The inferred signatures are finally evaluated. b Coverage of the experimental version of the CC. The bar plot
indicates the number of molecules available for each CC data type. The heatmap shows the cross-coverage between data sets, i.e., it is a 25 × 25 matrix
capturing the proportion of molecules in one data set (rows) that are also available in other data sets (columns) c Accuracy of the 25 signaturizers,
measured as the proportion of correctly classified cases within a triplet. Train–test refers to the case where the anchor molecule belongs to the test set, and
the positive and negative molecules belong to the training set. Test–test corresponds to the most difficult case where none of the three molecules within
the triplet has been utilized during the training. d Performance of the 25 signaturizers, measured for each molecule as the correlation between the true and
predicted signatures along the 128 dimensions. Given the bimodal distribution of signature values, signatures are binarized (positive/negative) and
correlation is measured as a Matthew’s correlation coefficient (MCC) over the true-vs-predicted contingency table. e Three exemplary molecules (1, 2, and
3) are shown for the D1 and E3 spaces. True and predicted signatures are displayed as color bars, both sorted according to true signature values.
f Correspondingly, t-SNE 2D projections of D1 and E3 predictions, where 1, 2, and 3 are highlighted, the intensity level describes the density of molecules in
the 2D space going from dark red (low density) to white (high density). g 2D-projected train (gray) and test (colored) samples for the 25 CC spaces. The
legend at the bottom specifies the A1-E5 organization of the CC.
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complete bioactivity landscape (Fig. 1g and Supplementary
Fig. 5).

Large-scale inference of bioactivity signatures. Having trained
and validated the signaturizers, we massively inferred missing sig-
natures for the ~800,000 molecules available in the CC, obtaining a
complete set of 25 × 128-dimensional signatures for each molecule
(https://chemicalchecker.org/downloads). To explore the reliability
of the inferred signatures, we assigned an applicability score (α) to
predictions based on the following: (a) the proximity of a predicted
signature to true (experimental) signatures available in the training
set; (b) the robustness of the SNN output to a test-time data
dropout12; and (c) the accuracy expected a priori based on the
experimental CC data sets available for the molecule (Fig. 2a). A
deeper explanation of this score can be found in the “Methods”
section, along with Supplementary Fig. 6 showing the relative
contribution of a, b, and c factors to the value of α. In a similarity
search exercise, we found that α scores ≥0.5 retrieved a significant
number of true hits (odds-ratios > 8, P-values < 1.7·10−21 (Sup-
plementary Fig. 7)). This observation shows that, even for modest-
quality CC spaces such as D1 (transcription), the number of sig-
natures available can be substantially increased by our method (in
this case from 11,638 molecules covered in the experimental version
of the CC to 69,532 (498% increase) when SNN predictions are
included (Supplementary Fig. 8)). Moreover, low- and high-α areas
of the signature landscape can be easily delimited, indicating the
presence of reliable regions in the prediction space (Fig. 2b).

The 5 × 5 organization of the CC (A1–E5) was designed to
capture distinct aspects of the chemistry and biology of compounds,
and a systematic assessment of the original (experimental) resource
revealed partial correlations between the 25 data types8. The

original pattern of correlations was preserved among inferred
signatures, especially for the high-α ones (Fig. 2c and Supplemen-
tary Fig. 9), thereby suggesting that the data integration performed
by the SNNs conserves the genuine information contained within
each data type, and implying that signatures can be stacked to
provide non-redundant, information-rich representations of the
molecules. For example, the 25 CC spaces can be concatenated
horizontally to obtain a global signature (GSig) of 3200 dimensions
(25 × 128D), encapsulating in a unique signature all the bioactivities
assigned to a molecule (Fig. 2d). Similarity measures performed in
the GSig space up-rank pairs of compounds with the same MoA or
ATC code (Fig. 2e) and have an overall correlation with the rest of
experimental data available from the CC, capturing not only
chemical similarities between molecules but also common target
profiles, clinical characteristics and, to a lesser degree, cell-based
assay read-outs (Fig. 2f).

Indeed, as shown in Fig. 2g, a 2D projection of GSigs reveals
clusters of molecules with specific biological traits. Of note, some
of the clusters group molecules with similar chemistries (e.g.,
ESR1,2 ligands), while others correspond to sets of diverse
compounds (e.g., MAPK8,9,10 inhibitors). Most of the clusters
have a mixed composition, containing subgroups of chemically
related compounds while also including distinct molecules, as
is the case for the HSP90AA1-associated cluster, of which
compounds 4 and 5 are good representatives (Fig. 2h).

Bioactivity-guided navigation of the chemical space. Taken
together, CC signatures offer a novel bioactivity-driven means to
organize chemical space, with the potential to unveil higher levels
of organization that may not be apparent in the light of chemical
information alone. In Fig. 3a, we analyze a diverse set of over 30

Fig. 2 Large-scale bioactivity prediction using the signaturizers (~800k molecules). a Features combined to derive the applicability scores (α).
b Applicability scores for the predictions, displayed across the 25 (A1-E5) 2D-projected signature maps. A grid was defined on the 2D coordinates,
molecules were binned and the average α is plotted in a red (low) to blue (high) color scale. c Cross-correlation between CC spaces, defined as the
capacity of similarities measured in Si (rows) to recall the top-5 nearest neighbors in Sj (columns) (ROC-AUC), the color scale goes from red to blue
indicating low to high cross-correlation (also reported as dot size). Top 10k molecules (sorted by α) were chosen as Si. d Scheme of the signature stacking
procedure. Signatures can be stacked horizontally to obtain a global signature (GSig) of 3200 dimensions. e Ability of similarity measures performed in the
GSig space to identify pairs of molecules sharing the Mode of action (MoA left) or therapeutic classes (ATC code right) (ROC-AUC). f Likewise, the ability
of GSigs to identify the nearest neighbors found in the experimental (original) versions of the A1-E5 data sets. g t-SNE 2D projection of GSigs. The 10k
molecules with the highest average α across the 25 signatures are displayed. The cool-warm color scale represents chemical diversity, red meaning that
molecules in the neighborhood are structurally similar (Tanimoto MFp similarity between the molecule in question and their 5-nearest neighbors). A
subset of representative clusters is annotated with enriched binding activities. h Example of a cluster enriched in heat shock protein 90 inhibitors
(HSP90AA1) with highlighted representative molecules with distinct (4) or chemically related (5) neighbors in the cluster.
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compound collections, ranging from species-specific metabo-
lomes to purchasable building-block (BB) libraries. To expose the
regions of the global bioactivity space covered by these collec-
tions, we first performed a large-scale GSig-clustering on the full
CC. We then calculated GSigs for each compound in each library
and mapped them to the CC clusters, thereby obtaining a specific

cluster occupancy vector for each collection. Finally, we used
these vectors to hierarchically group all the compound libraries.
As can be seen, drug-related libraries (e.g., IUPHAR and IDG)
had similar occupancy vectors to the reference CC library,
meaning they were evenly distributed in the bioactivity space,
which is expected given the over-representation of medicinal

ba

c

d

Fig. 3 Signature-based analysis of compound collections. a Chemical libraries are hierarchically clustered by their proximity to the full CC; here, proximity
is determined by the cluster occupancy vector relative to the k-means clusters identified in the CC collection (number of clusters= (N/2)1/2; GSigs are
used). Proximal libraries have small Euclidean distances between their normalized occupancy vectors. Size of the circles is proportional to the number of
molecules available in the collection. Color (blue-to-red) indicates the homogeneity (Gini coefficient) of the occupancy vectors relative to the CC.
b Occupancy of high-applicability regions is further analyzed for five collections (plus the full CC). In particular, we measure the average 10-nearest-
neighbor L2-distance (measured in the GSig space) of molecules to the high-α subset of CC molecules (103, Fig. 2). The red line denotes the distance
corresponding to an empirical similarity P-value of 0.01. The percentage indicates the number of molecules in the collection having high-α vicinities that
are, on average, below the significance threshold. This percentage is shown for the rest of the libraries in a. c The previous five compound collections are
merged and projected together (t-SNE). Each of them is highlighted in a different color with darker color indicating a higher density of molecules. d Detail of
the compound collections. The first column shows the chemical diversity of the projections, measured as the average Tanimoto similarity of the 5-nearest
neighbors. Blue denotes high diversity and red high structural similarity between neighboring compounds. Coloring is done on a per-cluster basis. The rest
of the columns focus on annotated subsets of molecules. Blue indicates high-density regions.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24150-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3932 | https://doi.org/10.1038/s41467-021-24150-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


chemistry in our resource. Libraries containing BBs from differ-
ent providers (ChemDiv, Sigma-Aldrich, and ChemBridge) were
grouped together, although with an uneven representativity of the
CC bioactivity space. Similar trends were observed for species-
specific metabolomes (Yeast, E. coli, and Human (HMDB)) and
natural products collected from various sources (Traditional
Chinese Medicines (TCM), African substances (AfroDb), or food
ingredients (FooDB)).

To gain a better understanding of the bioactivity areas
encompassed by each collection, we chose five examples related
to drug molecules, metabolomes, and natural product extracts.
More specifically, we considered 6505 approved and experimental
drugs (REPO Hub)13, 8603 endogenous human metabolites
(HMDB)14, 6355 metabolites found in other species beyond
vertebrates (MetaboLights)15, 49,818 food constituents (FooDB;
www.foodb.ca) and 6502 plant chemicals (CMAUP)16. Figure 3b
shows that, despite their variable depth of annotation (Supple-
mentary Fig. 10), these collections, for the most part, are laid out
in high-α regions of the GSig space. Moreover, Fig. 3c offers a
comparative view of the bioactivity areas occupied by each
collection, with some overlapping regions as expected, especially
between natural product collections. The map reveals a region
that is specific to drug molecules, possibly belonging to a set of
bioactivities that is outside the reach of natural metabolites.

A deeper dive reveals further structure in the bioactivity maps.
For example, when we focus on drug molecules (REPO Hub),
broad therapeutic areas such as infectious diseases, neurology/
psychiatry, cardiology, and oncology can be circumscribed within
certain regions of the GSig landscape (Fig. 3d), and the same
applies to finer-grained disease categories (indications) and
mechanisms of action (Supplementary Fig. 11). Thus, the
chemistry-to-clinics scope of GSigs provides a multi-level view
of the chemical space, clustering compounds first on the basis of
their targets and, in turn, keeping targets close in space if they
belong to the same disease area. This is exemplified by PI3K,
CDK, and VEGFR inhibitors, which have their own well-defined
clusters within the oncology region of the map, and by histamine
receptor antagonists and acetylcholine receptor agonists, which
are placed together in an area assigned to neurology/psychiatry
(Fig. 3d and Supplementary Fig. 11).

Analogous observations can be made beyond the well-
annotated universe of drug molecules, consistently organizing
the chemical space in relevant ways. For example, the HMDB
map highlights tissue- and biofluid-specific regions with varying
degrees of chemical diversity (Fig. 3d and Supplementary Fig. 12),
and the MetaboLights cross-species metabolome database is well
organized by taxonomy (e.g., Chordata, Ascomycota, Actinobac-
teria), revealing conserved metabolite regions as well as species-
specific ones (in general, we found the former to be less
chemically diverse (Supplementary Fig. 12)). Likewise, plants can
be organized in families and species by means of their ingredient
signatures, as exemplified in Fig. 3d for three Lamiaceae and two
Apiaceae species. Finally, the map of food ingredients displays
clear bioactivity clusters of food chemicals, adding to recent work
suggesting that the food constituents landscape can be charted
and exploited to identify links between diet and health17.

Enriching chemical libraries for activity against Snail1. After
seeing that inferred CC signatures are indeed useful to char-
acterize large natural product collections, we sought to assess
whether they are also advantageous in combination with more
classical chemo-centric approaches. To this end, we performed a
computational assessment of two chemical libraries, namely the
Prestwick collection (PWCK) and the IRB Barcelona proprietary
library (IRB). The IRB library contains >17,000 compounds, only

3% of which have reported bioactivities and are thus included in
the CC. This library was originally designed to inhibit t-RNA
synthetases by means of ambivalent small molecules displaying
ATP-like and amino acid-like chemotypes. The PWCK library is
considerably smaller (>1,000 compounds), and it is composed of
well-annotated molecules over a wide range of activities (>99% of
the molecules are present in the CC). Thus, the IRB and PWCK
libraries represent two typical scenarios: the recycling of a tar-
geted library, and the use of a small diversity-oriented compound
collection, respectively.

We sought to enrich these libraries for activity against the
product of SNAI1 gene, Snail1, a zinc-finger transcription
factor with an essential role in the epithelial-to-mesenchymal
transition (EMT)18. Being a transcription factor, Snail1 is almost
undruggable19, and we looked for indirect strategies to inhibit its
function. In a previous siRNA screening, we found that the knock-
down of certain deubiquitinases (DUBs) significantly decreased
Snail1 levels, suggesting that DUBs promote Snail1 stabilization
and are required for its effects on EMT and cancer progression20.

We searched the literature for previous knowledge on DUB
inhibition by small molecules21–23 and categorized DUBs on the
basis of their performance in the siRNA-DUB/Snail1 screening
assay (Supplementary Data 1). We curated 45 DUB inhibitors, 6
of which were inhibitors of candidate DUBs in the siRNA-DUB/
Snail1 assay. In parallel, we collected 5540 compound-DUB
interactions available in the CC corresponding to 15 of the DUBs.
Overall, this search yielded a substantial pool of chemical matter
related to DUB inhibition (Supplementary Data 1).

In addition to DUBs, we considered other proteins with a well-
established connection to Snail1 activity, including TGFBR1/2,
ERK2, FBXL5/14, DDR2, and GSK3B24. We collected perturba-
tional (e.g., shRNA) expression signatures for the corresponding
genes, together with the signatures of prominent DUBs found in the
siRNA-DUB/Snail1 screen. In total, we retrieved 95 transcriptional
signatures from the L1000 Connectivity Map and 18 from the Gene
Expression Omnibus (GEO)25 (see Supplementary Data 1 for the
full list of signatures). Each signature was converted to the CC D1
format. Finally, we derived networks-level (C) signatures for the
previous Snail1-related proteins by exploring their pathways (C3),
biological processes (C4), and interactome neighborhoods (C5).

We then devised a strategy to select a few hundred compounds
enriched for activity against Snail1 from the IRB and PWCK
libraries (Fig. 4a). On the one hand, we defined a chemical query
to identify compounds that were (i) chemically similar (P < 0.001)
to well-curated DUB inhibitors, or to DUB inhibitors in a broader
list (combined with binding data from chemogenomics resources).
On the other hand, we designed two biological queries to capture
connectivities between the biology of Snail1 and the bioactivity
data available in the CC. In particular, we looked for (ii)
compounds whose (putative) targets were functionally related to
Snail1 (i.e., C3–5 similarities to TGFBR1/2, ERK2, etc., P < 0.001)
but different from DUBs, and (iii) compounds whose gene
expression pattern might mimic the transcriptional signatures of
genetic KO perturbations of the above targets (i.e., D1 similarities,
P < 0.001). A detailed description of the queries is given in the
“Methods” section.

After inferring CC bioactivity signatures for all the ~20,000
compounds in our libraries, the chemical and biological queries
detailed above retrieved 169 and 131 compounds, respectively, with
78 molecules being picked by both. Thus, overall, we selected 222
compounds from the three queries (Supplementary Data 1); 131
from the IRB library and 91 to the PWCK collection. In addition,
we selected 188 random compounds to be used as background,
using the same library proportions. Selected compounds had
comparable molecular weights and drug-like properties (Supple-
mentary Fig. 13a). As expected, compounds identified by the
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chemical query are more similar to our reference set of 45 known
DUB inhibitors than those retrieved by the biological queries
(Supplementary Fig. 13b).

To validate the capacity of these compounds to decrease Snail1
protein levels, we used a Snail1-Firefly-luciferase fusion protein
stably expressed in MDA-MB-231 cells (Fig. 4a)20. Figure 4b
shows the outcome of the Snail1-luciferase screening assay. As
can be seen, 22 out of the 25 compounds displaying the strongest
Snail1 down-regulation (including the two controls) came from
chemical and biological queries. Importantly, a substantial
number of hits (6 in the top 25) were candidate molecules
selected by both biological and chemical queries, and an
additional 3 compounds were retrieved only by biological queries
(Supplementary Fig. 13c). It is important to note that these three
compounds are chemically unrelated to any of the known DUB
inhibitors, with Tanimoto similarities ranging from 0.13 to 0.32
(Supplementary Data 1). Overall, our results highlight the added
value of bioactivity signatures to complement chemical similarity
searches (Fig. 4c). Certainly, considering as positive those
molecules able to decrease 1.5 times Snail1 levels, selected
compounds showed a 5-fold enrichment over the hit-rate of
random compounds (Fig. 4d). It is also worth noting that 17 of
the positive hits were not known to be bioactive, and therefore
their CC signatures have been fully inferred by our signaturizers.
Finally, we selected the 10 compounds that displayed the
strongest effect on reducing Snail1 levels and re-tested them in
a confirmatory dose-response assay (Supplementary Fig. 14).
Indeed, 4 of them showed a dose-dependent regulation of Snail1

(Fig. 4e). Of note, compounds 8 and 9 had the same chemotype,
which was identified in 4 of the top 25 hits. Taken together, these
results demonstrate that the various kinds of inferred chemical
and biological signatures can be used to implement complex
searches to tackle the activity of currently orphan targets.

Enhanced prediction capabilities compared to chemical
descriptors. In addition, we examined whether our signaturizers
could be used as molecular features to predict the outcome of a
given bioassay of interest, analogous to the use of chemical
descriptors in structure-activity relationship (SAR) studies. We
thus developed signature–activity relationship (SigAR) models,
and trained machine-learning classifiers to learn discriminative
features from the CC signatures of active (1) and inactive (0)
compounds, with the goal of assigning a 1/0 label to new
(untested) compounds.

To evaluate the SigAR approach in a wide range of scenarios,
we used nine state-of-the-art biophysics and physiology bench-
mark data sets available from MoleculeNet26. More specifically,
we considered bioassays extracted from PubChem (PCBA),
namely an unbiased virtual screening data set (MUV), inhibition
of HIV replication (HIV), inhibition of beta-secretase 1 activity
(BACE), blood-brain barrier penetration data (BBBP), toxicity
experiments (Tox21 and ToxCast), organ-level side effects
(SIDER), and clinical trial failures due to safety issues (ClinTox).
Although none of these benchmark data sets are explicitly
included in the CC resource, data points can be shared between
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Fig. 4 Library enrichment to identify Snail1 inhibitors. a Scheme of the methodology. Two compound libraries are screened (IRB and PWCK). A chemical
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MoleculeNet and the CC, which would trivialize predictions. To
rule out this possibility, we excluded certain CC signature classes
from some of the exercises, as detailed in Supplementary Table 1
(e.g., side-effect signatures (E3) were not used in the SIDER set of
MoleculeNet tasks).

Each MoleculeNet benchmark data set has a given number of
prediction tasks, ranging from 617 (ToxCast) to just one (HIV,
BACE, and BBBP). The number of molecules also varies (from
1,427 in SIDER to 437,929 in PCBA) (Supplementary Table 1).
We trained a classifier for each MoleculeNet task independently,
following a conformal prediction scheme that relates the
prediction score to a measure of confidence27. We chose to use
a general-purpose machine-learning method (i.e., a random forest
classifier) with automated hyperparameter tuning, allowing us to
focus on the added value of the CC signatures rather than the
classification algorithm. Nevertheless, to confirm that the observed
trends are not dependent on the random forest classifier, we
repeated the experiment with a model-agnostic approach based on
an AutoML methodology. To evaluate the accuracy of the
classifiers, we followed MoleculeNet recommendations strictly,
both in terms of splitting (e.g., scaffold-based) and in terms of
performance measure (AUROC/AUPR) to ensure a fair assess-
ment. We primarily compared the performance of CC signatures
with the popular Morgan fingerprint (MFp), but also included a
collection of different chemical descriptors such as MACCS keys,
Daylight-like, and continuous and data-driven descriptors. We
also included in the comparison the performance of the best
predictor for each task as reported in MoleculeNet. Finally,
although CC signatures are abstract representations that do not
offer direct structural/mechanistic interpretations, we devised a
strategy to obtain high-level explanations for predicted activities.
More specifically, for each molecule, we measured the cumulative
explanatory potential (Shapley values28) of each signature type
(S1–25) across the GSig space, indicating the classes of data
(chemistry, targets, etc.) that were more determinant for the
classifier decision (see “Methods” section). In sum, we imple-
mented an automated (parameter-free) SigAR methodology,
the outcome of which can be interpreted at the signature-type
level and is calibrated as a probability or confidence score.

In Fig. 5a–d and Supplementary Fig. 15, we show the
characteristics of a representative classifier, corresponding
to the heat shock factor response element (SR-HSE) task in the
Tox21 panel. In a 5-fold cross-validation, active molecules got
higher prediction scores than inactive compounds (Supplemen-
tary Fig. 15). Moreover, the SigAR model outperformed the
conventional chemical MFp (Fig. 5a).

Additionally, the accuracy of the classifier was more robust to
successive removal of training data (Fig. 5b), suggesting that, in
principle, fewer data would be necessary to achieve a proficient
model if CC signatures are used. Of note, some molecules had a
high prediction score with the GSig-based model but were
nonetheless predicted to be inactive by the MFp-based counter-
part, and vice versa (Fig. 5c), thus pointing to the complemen-
tarity between the SigAR and SAR approaches. Indeed, CC
chemistry levels were not among the best explanatory signature
types for the SR-HSE classifier. Instead, HTS bioassays (B5) and
cell morphology data (D4) appeared to be more informative
(Fig. 5d), an observation that is also apparent when active
molecules are laid out on the B5 and D4 2D maps (Fig. 5e).

Figure 5f demonstrates that GSigs are generally favorable to
MFps across the 12 toxicity pathways defined in the Tox21
benchmark data set, with particularly large differences for the SR-
p53, NR-Aromatase, NR-AR, NR-PPAR-gamma, and SR-HSE
tasks, and essentially the same performance for the NR-AhR and
NR-ER tasks. Supplementary Figs. 16–20 give further details for
these classifiers, supporting the robustness of the SigAR approach

and demonstrating that, depending on the classification task, the
model will benefit from specific CC signature types (Fig. 5e and
Supplementary Figs. 19, 20). The NR-AhR model, for instance,
mostly leverages the chemical levels (A), whereas SR-ATAD5
benefits from cell sensitivity data (D2), and NR-ER-LBD exploits
the functional (e.g., biological process (C3)) information
contained within the network levels of the CC.

More comprehensively, in Fig. 5g we evaluate the predictive
power of the SigAR classifiers across the full collection of
MoleculeNet benchmark data sets, comprising 806 prediction tasks
(Supplementary Table 1). Our SigAR predictions were generally
more accurate than the equivalent chemistry-based models, meaning
that our signaturizers feed additional, valuable information to a
broad range of activity-prediction tasks. We observed a remarkable
added value of the SigAR methodology for the physiology
benchmark data sets (e.g., SIDER and ClinTox), which are, a priori,
those that should benefit most from an integrative (data-driven)
approach like ours. Overall, we observed 8.5% median improve-
ments in performance with respect to chemistry-based classifiers
(IQR: 1.4–19.5%, Wilcoxon’s test P-value= 5·10−60) (Fig. 5h). This
implies a median reduction of the gap between the actual and perfect
(ideal) performance of 17.6% (IQR: 24.4–31.5%). Reassuringly,
considering only molecules with reported bioactivity (i.e., included
in the CC) further accentuated the difference in performance
(Supplementary Fig. 21), highlighting the importance of data
integration methodologies to overcome the limitations of a classical
(chemistry-only) approach. Finally, it is worth noting that the
superior performance of CC signatures is robustly maintained when
benchmarked against different chemical descriptors or classifiers
(Supplementary Fig. 22).

Discussion
Drug discovery is a funneling pipeline that ends with a drug being
selected from a starting pool of hundreds of thousands, if not
millions, of compounds. Computational drug discovery (CDD)
methods can aid in many steps of this costly process29, including
target deconvolution, hit-to-lead optimization, and anticipation
of toxicity events. An efficient mathematical representation of the
molecules is key to all CDD methods, 2D structural fingerprints
being the default choice in many cases.

The renaissance of (deep) neural networks has fueled the
development of novel structure featurizers30 based on graph/
image convolutions of molecules31–33, the apprehension of the
SMILES syntax34, or even a unified representation of protein
targets35. These techniques are able to identify problem-specific
patterns and, in general, they outperform conventional chemical
fingerprints. However, neural networks remain challenging to
deal with, and initiatives such as DeepChem are contributing to
making them accessible to the broad CDD community36. The CC
approach presented here shares with these initiatives the will to
democratize the use of advanced molecular representations. Our
approach is complementary in that it does not focus on optimally
encoding chemical structures. Instead, we have undertaken the
task of gathering, harmonizing, and finally vectorizing the
bioactivity data available for the molecules in order to embed a
wide array of bioactivities in a compact descriptor.

Since CC signatures are simple 128D-vectors, they are compa-
tible with other CDD toolkits that primarily use multi-dimensional
descriptors to represent molecular structures. This compatibility
presents a unique opportunity to inject biological information into
similarity searches, visualization of chemical spaces, and clustering
and property prediction, among other widely used CDD tasks.

In this study, we showed how CC signatures can be used to
navigate the chemical space in a biological-relevant manner,
revealing somehow unexpected high-order structure in poorly
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annotated natural product collections. We also demonstrated that
inferred bioactivity signatures are useful to annotate mostly
uncharacterized chemical libraries and enrich compound collec-
tions for activity against a drug-orphan target, beyond chemical
similarities. Moreover, compared to using chemical information
alone, we observed a superior performance of SigAR models
across a series of biophysics and physiology activity-prediction
benchmark data sets. We chose to train models with minimal
parameter tuning, illustrating how our signaturizers can be used
in practice with minimal knowledge of machine-learning to
obtain state-of-the-art performances.

A limitation of CC signatures is that they are difficult to
interpret in detail. That is, the underlying data points (binding to
receptor x, occurrence of drug side effect y, etc.) cannot be
deconvoluted from the 128D signature. This caveat is common to
other machine-learning applications (e.g., natural language pro-
cessing) where embedded representations of entities are favored
over sparser, more explicit ones37. Nonetheless, we show that CC
signatures can be interpreted at a coarser level, indicating which
signature types are more informative for a certain prediction task.
Another caveat of our approach is the likely existence of null
signatures corresponding to innocuous molecules with no actual

Fig. 5 MoleculeNet benchmarks, comparing the predictive power of CC signatures with a classical MFp-based approach. a Precision–recall curves
(PRCs) for the Tox21 SR-HSE task, trained with CC signatures (blue) and MFps (red). Shaded areas span the standard deviation over five stratified
train–test splits, the darker lines indicate the mean value. b Robustness of the SR-HSE classifier, understood as the maintenance of performance (ROC-
AUC) as fewer training samples become available. c Prediction scores (probabilities) of active test molecules using MFps (x axis) or CC signatures (y axis).
d Importance of CC data sets for the predictions. Features are ranked by their absolute Shapley value (SHAP) across samples (plots are capped at the top
250 features). For each CC data set (Si), SHAPs are cumulatively summed (y axis; normalized by the maximum cumulative sum observed across CC data
sets). e 2D projections related to SR-HSE (first column) and other (second column) tasks, done for the A1, B5, and D4 CC categories (rows). A simple
support vector classifier (SVC) is trained with the (x,y)-coordinates as features in order to determine an activity-decision function. Performance is given as
a ROC-AUC on the side of the plots. Blue and red areas correspond to likely active and likely inactive regions, respectively. Active compounds are overlaid
as black dots. f Performance of CC signatures (blue) and MFps (red) on the 12 Tox21 tasks. Tasks are ranked by their CC ROC-AUC performance. g Global
performances of biophysics (purple) and physiology (orange) benchmark tasks. PRC and ROC AUCs are used, following MoleculeNet recommendations,
the number of tasks of each category varies and is reported in the original MoleculeNet report. Here we report mean ± SD. Shades of blue indicate whether
all 25 CC data sets were used (light) or whether conservative data set removal was applied (darker) (Supplementary Table 1). Dashed and dotted lines
mark respectively the best and average reported performance in the seminal MoleculeNet study13. h Relative performance of CC and MFp classifiers across
all MoleculeNet tasks (split by ROC-AUC and PRC-AUC metrics, correspondingly; top and middle panels). Higher performances are achieved when more
active molecules are available for training (x axis). The average gain in AUC is plotted in the bottom panel.
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bioactivity in a given CC data type38. Likewise, the accuracy of the
signatures may vary depending on the molecule. To control for
these factors, CC signatures are accompanied by an applicability
score that estimates the signature quality on the basis of the
amount of experimental data available for the molecule, the
robustness of the prediction, and the resemblance of the predicted
signature to signatures available from the training set.

Contrary to most chemical descriptors, CC signatures evolve
with time as bioactivity measurements accumulate in the data-
bases. We will release updated versions of the signaturizers once a
year and, as developers of the CC, we are committed to keeping
abreast of the latest phenotypic screening technologies and che-
mogenomics data sets. Although the current version of the CC is
constrained to 25 categories, our resource is prepared to
accommodate new data types, offering the opportunity to cus-
tomize and extend the current repertoire of signaturizers. The
growth of the CC resource is restricted by the number and quality
of publicly accessible data sets, a limitation that is likely to be
ameliorated with the implementation of private-public partner-
ships and the general awareness that, in the markedly gene-
centric omics era, the depth of small-molecule annotation lags
behind genomes and proteomes39,40. The ever-growing nature of
chemical matter (in contrast to the finite number of genes)
demands computational methods to provide a first estimate of the
biological properties of compounds41. We believe that CC sig-
naturizers can bridge this gap and become a reference tool to
scrutinize the expected bioactivity spectrum of compounds.

Methods
Data collection. Experimental CC signatures were obtained from the CC reposi-
tory (version 2019/05). Drug Repurposing Hub molecules and annotations were
downloaded from https://clue.io/repurposing (June 2019). HMDB and FooDB data
were downloaded from http://hmdb.ca and http://foodb.ca, respectively (April
2020). Plant ingredients were collected from CMAUP (July 2019) and cross-species
metabolites from https://www.ebi.ac.uk/metabolights (April 2020). MoleculeNet
benchmark data sets were downloaded from http://moleculenet.ai in June 2019.
The remaining compound collections were fetched from ZINC catalogs (http://
zinc.docking.org) (June 2020).

Siamese neural networks. We carried out all procedures specified below for each
CC data set (Si) independently, and we trained 25 SNNs based on existing CC
signatures and molecule triplets reflecting Si similarities. SNNs use the same
weights and neural architecture for the three input samples to produce comparable
output vectors in the embedding space.

Covariates matrixWe trained a SNN having horizontally concatenated
signatures (S1–S25) as a covariates matrix (X), and producing 128D-vectors as
output (Y). The covariates matrix was stacked with a pre-compressed version of CC
signatures (named signatures type II) with 128 dimensions. Only CC data sets
covering at least 10% of Si were stacked in X. Thus, given n molecules in Si, and
having m S1–25 data sets cross-covering at least 10% of n, X would be of shape (n,
128·m). For each molecule (row), missing signatures were represented as not-a-
number (NaN) values.

Triplet sampling. We sampled 107 molecule triplets (i.e., 107/n triplets per
anchor molecule). Positive samples (i.e., molecules similar to the anchor) were
drawn using the FAISS k-nearest neighbor search tool42. The value of k was
empirically determined so that it maximized the average ROC-AUC of similarity
measures performed against the rest of CC data sets, and it was then clipped
between 10 and 50. Negative samples were randomly chosen from the pool of
molecules at larger distances than the positive compounds.

SNN architecture. SNNs were built and trained using Keras (https://github.com/
fchollet/keras). After the 128·m-dimensional input layer, we added a Gaussian
dropout layer (σ= 0.1). We then sequentially added two fully connected (dense)
layers whose size was determined by the m magnitude. When m·128 was higher
than 512, the two hidden layers had sizes of 512 and 256, respectively. For smaller
m values, we linearly interpolated the size between input and output (128)
dimensions (e.g., for m= 7, the two hidden layers had sizes of 448 and 224,
respectively). Finally, a dense output layer of 128 dimensions was sequentially
added. For the hidden layers, we used a SeLU activation with alpha-dropout
regularization (0.2), and the last (output) layer was activated with a Tanh function,
together with an L2-normalization.

Signature dropout. We devised a dropout strategy to simulate the availability of
CC signatures at prediction time. To do so, we measured the proportion of
experimental S1–25 signatures available for not-in-Si molecules. These observed
(realistic) probabilities were then used to mask input data at a fitting time, more

frequently setting those CC categories with the smaller probabilities to NaN. The Si
signature was dropped out with an oscillating probability (0–1) over the training
iterations (5000 oscillation cycles per epoch).

Loss functions. To optimize the SNN, we used a pair of loss functions with a
global orthogonal regularization43. The first one was a conventional triplet loss,
checking that the distance between the anchor and the positive molecule measured
in the embedding (128D) space was shorter than the anchor-negative distance
(margin= 1). The second loss was exclusively applied to the anchor molecule, and
it controlled that the embedding resulting from the signature dropout was similar
to the embedding obtained using Si alone (mean-squared error (MSE)). Global
orthogonal regularization (alpha= 1) was used to favor the maximal spread-out of
signatures in the embedding space. The Adam optimizer was used with a default
learning rate of 10−4.

Evaluation. For each Si, we split the list of n molecules into the train (80%) and
test (20%) sets. Splitting was done after removing near-duplicates with FAISS. We
then defined three triplet splits, i.e., train–train, test–train, and test–test, using
molecules from the train and test sets as anchors and positives/negatives,
correspondingly. For CC spaces with <30,000 molecules, we trained the model for 5
epochs, whereas the largest data sets were trained for 2 epochs. Two accuracy
measures were defined: (a) a triplet-based accuracy quantifying the proportion of
correctly classified triplets by Euclidean distance measurements in the embedding
space (dropping out Si); and (b) an anchor-based accuracy measuring the
correlation between the Si-dropped-out embedding and the Si-only embedding.
Given the bimodal distribution endowed by the Tanh activation, we chose to use a
Matthews correlation coefficient (MCC) on a contingency table of binarized data
(positive/negative along the 128 dimensions).

Light-weight signaturizers. We ran predictions for all molecules available in the
CC universe (N= 778,531), producing 25 matrices of shape (N, 128). These
matrices were used to learn chemistry-to-signature (CTS) signaturizers that are
easy to distribute, allowing us to obtain signatures for a given molecule on-the-fly.
CTS signaturizers were trained on a large number of molecules (N) with the aim to
approximate the pre-calculated signatures presented in this work. Thus, in practice,
a CTS signaturizer will often act as a mapping function, since the number of pre-
calculated signatures is very large and covers a considerable portion of the
medicinal chemistry space. CTS signaturizers were trained for 30 epochs and
validated with an 80:20 train–test split, using 2048-bit Morgan Fingerprints
(radius= 2) as feature vectors. Three dense hidden layers were used (1024, 512,
and 256 dimensions) with ReLU activations and dropout regularization (0.2). The
output was a dense layer of 128 dimensions (Tanh activation). The Adam
optimizer was used (learning rate= 10−3). CTS signaturizers achieved a correlation
with the type III signature of 0.769 ± 0.074.

Applicability domain estimation. An applicability score (α) for the signatures can
be obtained at prediction time by means of a linear combination of five factors
related to three characteristics that help increase trust in the predictions. These
factors were tuned and calibrated on the test set.

Distance. Signatures that are close to training-set signatures are, in principle, closer
to the applicability domain. We measured this distance in an unsupervised way
(i.e., the average distance to 5/25 nearest-neighbors) and in a supervised way by
means of a random forest regressor trained on signatures as features and prediction
accuracy (correlation) as a dependent variable. In addition, we devised a measure of
intensity, defined as the mean absolute deviation of the signatures to the average
(null) signature observed in the training set.

Robustness. The signature-dropout procedure presented above can be applied at
prediction time to obtain an estimate of the robustness of the prediction. For each
molecule, we generated 10 dropped-out inputs, thereby obtaining an ensemble of
predictions. Small standard deviations over these predictions indicate a robust
output.

Expectancy a priori. We calculated the accuracy that is expected given the input
signatures available for a particular molecule. Some CC signature types are highly
predictive for others; thus, having these informative signatures at hand will in
principle favor reliable predictions. This prior expectancy was calculated by fitting
a random forest classifier with 25 absence/presence features as covariates and
prediction accuracy as an outcome.

Validation of the inferred bioactivity signatures and the signaturizers. To
further explore the validity of the inferred bioactivity signatures and the developed
signaturizers, we ran three independent technical validations.

First, we conducted a scrambling experiment, which involved the calculation of
GSigs related to randomized MFps, in order to assess whether the resulting GSigs
would have some sort of structure (signal) or not. This is, we randomly picked 1000
compounds from the CC universe and computed their GSigs with and without a
scrambling of their structural representation (i.e., their Morgan fingerprints). Then,
we calculated all the pairwise distances signatures in each set. As expected, when we
plot the shortest distance between pairs of molecules within the GSig and
scrambled-GSig sets, we see that there are no significant similarities between
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scrambled and global signatures, while GSigs can indeed detect similarities between
small molecules, i.e., short distances between GSigs (Supplementary Fig. 23a).
Additionally, 2D projections (t-SNE and PCA) of scrambled and global signatures
(Supplementary Fig. 23b) reinforce the observation that scrambled signatures are
indeed different from real GSigs and contain no bioactivity signal.

Second, we performed a Y-scrambling experiment on the whole array of
MoleculeNet prediction tasks (previously introduced). Y-scrambling (or Y-
randomization) is commonly used to validate QSPR/QSAR models by training
predictors on the randomly shuffled dependent variable (Y) that we aim to predict.
Comparing the performances (on an unshuffled test set) of models trained on
shuffled vs unshuffled data we can assess the robustness of descriptors and rule out
the effect of random correlations. This is exactly what we observe for both GSig and
ECFP4 descriptors (Supplementary Fig. 24), with a drop of model performances to
an average of 0.5 ROC-AUC when training on scrambled data.

Lastly, we ran a time-series experiment by confronting the small-molecule
bioactivity signatures predicted using the 2019_01 (September 2019) signaturizers
with novel experimental bioactivity data available in the newly released 2020_02
(November 2020) version. In this new CC release, most of the source databases
have been updated presenting new data for molecules that were not present in the
previous versions.

Profiting from the novel experimental data, for each bioactivity space, we
gathered molecules only present in the new version and that are completely novel
in terms of CC annotation. Using the signaturizer 2019_01, we predicted signatures
for the new molecules and searched for neighbors in the 2019_01 CC universe. We
then compared this set of neighbors to those confirmed in the 2020_02 version,
excluding molecules not available in the 2019_01 CC universe (i.e., those neighbors
that are also new molecules). Supplementary Fig. 25 shows the fraction of novel
molecules (y axis) for which at least one correct neighbor is identified among the
top [1–1000] predicted neighbors (x axis), within the roughly 1 M molecules in the
CC chemical space. We also show the same fraction of recovered real neighbors
when randomizing the signaturized molecules. Despite the limited number of new
molecules with experimental information in some of the spaces, we observe that the
signaturizers derived from previous versions can identify similar molecules for a
significant fraction of the new compounds. Moreover, we also see how increasing
the applicability score threshold augments the reliability of the predicted signatures
in all the bioactivity spaces. However, as expected, when we use random molecules
as bait, we cannot identify true neighbors and there is no relationship with the
applicability scores.

Library enrichment for activity against Snail1
Computational screening. Compound collections: Two compound collections were
considered for screening, namely the IRB Barcelona library (17,563 compounds,
considering the connectivity layer of the InChIKey) and the commercial Prestwick
library (1108 compounds). Of these, 627 and 1104 were part of the CC universe,
respectively, meaning that they had some type of reported bioactivity.

Chemical query: This query involved the search for compounds that were
chemically similar to curated DUB inhibitors, based on their known activity on
promising DUBs according to a previous siRNA/Snail1 screen20 (Supplementary
Data 1), or similar to DUB inhibitors belonging to a broader list (with DUB-
binding data available). The query was implemented by computing chemical
similarity (best across A1+A4, P < 0.001) to DUB inhibitors from the literature
(curation categories 1 and 2 in Supplementary Data 1, corresponding to 6 DUB
inhibitors). In total, this query selected 169 compounds.

Biological queries: In addition to DUBs, we considered other proteins relevant to
Snail1 activity, namely TGFBR1/2, ERK2, FBXL5/14, DDR2, and GSK3B
(Supplementary Data 1). We then looked for transcriptional signatures associated
with the corresponding genes in the L1000 Connectivity Map (shRNA assays,
reversed over-expression assays, and known small-molecule perturbagens) and also
in CREEDS, which brings together data from GEO44. Overall, we gathered 132
transcriptional signatures with a potential of having a connection to Snail1
(Supplementary Data 1). Different priorities (0–4) were given to these signatures
based on our mechanistic knowledge of Snail1 (Supplementary Data 1 legend).
Transcriptional signatures were converted to the CC D1 format as explained above.
In addition, we derived C3–5 signatures for the Snail1-related genes, including
DUBs highlighted by the siRNA/Snail1 screen.

We looked for connectivities (similarities, P-value < 0.001) between signatures
of compounds in the D1 space and the list of Snai1-related signatures (at least 10
up/downregulated genes per signature). We did two searches (search H and search
L), one against high-priority signatures (priority ≥3), and another with a more
relaxed cutoff (priority ≥1). In parallel, we derived C3–5 signatures for non-DUB
Snail1-related proteins (TGFBR1/2, etc.).

Random query: Molecules were randomly picked from the PWCK and IRB
libraries, proportionally to the relative abundance of molecules from the two
libraries in the lists retrieved from the previous queries (Supplementary Data 1).

Comparison to classical ECPF4-based queries: To compare our results to a more
classical compound selection strategy, based on ECPF4 similarities, we calculated
all Tanimoto similarities between the >17k compounds in our library and the 45
annotated DUB inhibitors, and selected the 222 compounds with the highest
similarities. Additionally, for each compound, we also computed the average

similarity to the closest 5 DUB inhibitors and, again, selected the 222 with the
highest scores. The Supplementary Fig. 26a shows the overlap between the different
selections, revealing that all three approaches are indeed complementary. We then
calculated the enrichment in the identification of Snail1 inhibitors achieved by each
strategy considering as positive hits all those compounds able to decrease 1.5 times
the levels of Snail1, and compared the hits found by each strategy to those found in
random compounds. As Supplementary Fig. 26b shows, the signatures-based
approach achieved a ~3.5-fold enrichment, closely followed by the average score of
compounds over the 5 closest DUB inhibitors (~2.8-fold) and the one that only
considers the highest Tanimoto similarity with any DUB inhibitor (~1.7-fold).
Overall, the three approaches show a significant capacity to enrich compound
libraries for a given function but, as expected, the combination of chemical and
biological signatures identifies additional compounds.

Cells. We used MDA-MB-231 cells stably transduced with pLEX-Snail1-Firefly
Luciferase and pMSCV-Renilla Luciferase from our previous study20, and cultured
them in DMEM supplemented with 10% FBS, glutamine, and antibiotics (Ther-
moFisher Scientific).

Dual-luciferase assay screening. We seeded 5·104 cells in 96-well white plates pre-
pared for cell culture (Corning). The day after, pre-diluted compounds of the
chemical libraries were added to the cells at a final concentration of 20 µM, or in a
few cases, of 4 µM, depending on the stock concentration and the maximum
amount of DMSO that could be used in the assay. Several replicas of the vehicle
controls (DMSO) or the positive control (the general DUB inhibitor PR-619
(Sigma-Aldrich)) were distributed along the experimental plates to allow internal
normalization. After 6 h of incubation, the medium was removed. Cells were then
directly lysed with passive lysis buffer (Promega), and plates were stored at −20 °C.
Firefly and Renilla luciferase were quantified using the Dual-Luciferase Reporter
assay system (Promega) in a GloMax luciferase plate reader (Promega). Four
replicas conducted on two days were performed.

Intensities were corrected for each measurement (i.e., Firefly and Renilla) using
one linear model per replica. The linear model included plate, row, and column (as
ordinal covariates) and type of measure (namely compounds, negative and positive
controls) as fixed effects, as well as plate-row and plate-column interactions.
Estimation of effects for plate, row, and column (and their interactions) were used to
correct intensity values. Intensities were previously transformed (square root) in order
to fulfill the assumptions of linear models. In practice, this transformation implies a
correction based on the median (instead of mean) effects, and it is thus robust to
outliers (potential hits). Corrected values were transformed back to the original scale
of the measures after correction. For normalization against controls, log2-ratios of
intensities were computed against the mean of negative controls within each marker-
replicate. Log2-ratios of Firefly:Renilla were then computed for signal evaluation.

The enrichment of hit rates was evaluated separately for each query (chemical,
biological) with respect to the random distribution of Firefly:Renilla ratios.

To ensure that the tested compounds did not directly interfere with luciferase
activity, we devised a double computational and experimental strategy. On the one
hand, we used the available PubChem bioassay AID:411 (https://pubchem.ncbi.
nlm.nih.gov/bioassay/411) listing inhibitors of Firefly Luciferase to train a simple
predictor of luciferase inhibition. The Bioassay contains over 70 thousand inactive
and over 1500 active compounds against luciferase for which we derived both
the GSig (presented in our manuscript) and classical Morgan Fingerprint (ECFP4
descriptor). A simple logistic regression (with class weights to handle active/
inactive imbalance) was sufficient to achieve good classification accuracy. We
performed a 5-fold stratified cross-validation and we measured performance in
terms of ROC-AUC and F1-score. We report the result of both train and test splits
in Supplementary Fig. 27a. We then used the classifier trained on GSigs to calculate
the probability of luciferase interaction for the 400 tested compounds, including the
top 25 candidates we identified. Supplementary Fig. 27b shows that an interaction
of these compounds to the luciferase reporter is unlikely. Unfortunately, we did not
find training data of similar characteristics for Renilla luciferase; no PubChem
bioassay provides inhibition data specifically for this enzyme. However, please note
that in our experimental measure of activity (i.e., low Firefly:Renilla ratio), false
positives may reveal Firefly luciferase inhibition (numerator), not Renilla luciferase
inhibition (denominator).

On the other hand, we used transiently transfected MDA-MB-231 cells
expressing constitutively the Firefly and the Renilla Luciferases under the control of
CMV and TK promoters, respectively. Specifically, MDA-MB-231 cell line was
cultivated in DMEM-F12 medium. Cells were co-transfected with 2 µg of pCMV-
luc and 6 µg of pTK-RN in 100 mm plates, using Polyethylenimine (PEI) at a ratio
DNA:PEI 1:3. 24 h after transfection, cells were trypsinized and seeded in a 96-well
plate at 40,000 cells per well. 48 h after transfection, cells were treated with the
drugs at 20 µM during 6 h. Cells were then lysed using the Passive Lysis Buffer
provided in the Dual-Luciferase Reporter Assay System (Promega) and Firefly and
Renilla activities were measured following the manufacturer’s instructions. As can
be seen in Supplementary Fig. 27c, only the positive control (PR619) at a high
concentration showed a moderate interference with the Renilla luciferase activity.
Indeed, none of the selected compounds showed an inhibitory effect neither on
Firefly nor on Renilla luciferase activity, confirming that the measured signal was
not confused by interference with the reporter enzymes.
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Signature–activity relationship (SigAR) models. For each classification task in
the MoleculeNet, we sought to predict active/inactive (1/0) compounds using
horizontally stacked CC signatures. A random forest classifier was trained using
hyperparameters identified with HyperOpt45 over 10 iterations (number of esti-
mators: (100, 500, 1000), max depth: (None, 5, 10), minimum sample split: (2, 3,
10), criterion: (gini, entropy), maximum features: (square root, log2)). Classifiers
were calibrated using a Mondrian cross-conformal prediction scheme over
10 stratified splits. The evaluation was done with five stratified 80:20 train–test
splits. Large MoleculeNet data sets such as PCBA were trained on a maximum of
30 under-sampled data sets, each comprising 10,000 samples. Scaffold-aware
stratified splits, when necessary, were done ensuring that Murcko scaffolds46

observed in the training set were not present in the test set47. Please, note that we
followed MoleculeNet recommendations strictly, both in terms of splitting (e.g.,
scaffold-based) and in terms of performance measure (AUROC/AUPR) to ensure a
fair assessment.

Signature importance for each prediction was calculated by aggregating Shapley
values (SHAP) as follows. First, features were ranked by their absolute SHAP across
molecules. We then calculated the cumulative rank specific to each signature type
(Si) (up to 250 features). Signature types with more of their dimensions in highly
ranked positions were deemed to be more explanatory for the prediction task.

To assess the robustness of our results, we extended the collection of chemical
descriptors beyond ECFPs. In particular, we included Daylight-like (RDKit)
fingerprints (path-based), MACCS keys, and a data-driven state-of-the-art
descriptor named CDDD, which is based on a deep-learning model trained on
string (SMILES) representations of the molecules. Additionally, we repeated the
SigAR task predictions with a model-agnostic approach based on the AutoML
TPOT methodology. In brief, TPOT automatically performs feature selection/
processing, classifier choice, and hyperparameter optimization across a wide array
of standard ML techniques. Thus, this approach provides a fair (ML-independent)
head-to-head comparison between our descriptors and the rest of the chemical
fingerprints. Note that, in this case, we could not address the PCBA MoleculeNet
subtasks (involving 400k molecules) due to prohibitive computational costs
for TPOT.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The latest version of inferred signatures (version 2020_02 at the moment of writing this
manuscript) is available for direct download from https://chemicalchecker.com/
downloads. Additional data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
Software for generating CC signatures is available as a python package at http://
gitlabsbnb.irbbarcelona.org/packages/signaturizer. The signaturizer API allows the
conversion of molecules (represented as SMILES or InChl strings) to the 25 signature
types available from the CC. These pre-trained signaturizers are light-weight versions of
the SNNs presented here, freeing the user from the need of setting up a full version of the
CC (see “Methods” section). Signaturizers are available as TensorFlow Hub SavedModel
instances and are automatically downloaded by the API the first time they are used. The
full CC repository is open-sourced at http://gitlabsbnb.irbbarcelona.org/packages/
chemical_checker and also available on Zenodo48.
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