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C O M P U T E R  V I S I O N

An autonomous drone for search and rescue in forests 
using airborne optical sectioning
D. C. Schedl, I. Kurmi, O. Bimber*

Autonomous drones will play an essential role in human-machine teaming in future search and rescue (SAR) mis-
sions. We present a prototype that finds people fully autonomously in densely occluded forests. In the course of 
17 field experiments conducted over various forest types and under different flying conditions, our drone found, 
in total, 38 of 42 hidden persons. For experiments with predefined flight paths, the average precision was 86%, 
and we found 30 of 34 cases. For adaptive sampling experiments (where potential findings are double-checked 
on the basis of initial classification confidences), all eight hidden persons were found, leading to an average pre-
cision of 100%, whereas classification confidence was increased on average by 15%. Thermal image processing, 
classification, and dynamic flight path adaptation are computed on-board in real time and while flying. We show 
that deep learning–based person classification is unaffected by sparse and error-prone sampling within straight 
flight path segments. This finding allows search missions to be substantially shortened and reduces the image 
complexity to 1/10th when compared with previous approaches. The goal of our adaptive online sampling tech-
nique is to find people as reliably and quickly as possible, which is essential in time-critical applications, such as 
SAR. Our drone enables SAR operations in remote areas without stable network coverage, because it transmits to 
the rescue team only classification results that indicate detections and can thus operate with intermittent 
minimal-bandwidth connections (e.g., by satellite). Once received, these results can be visually enhanced for 
interpretation on remote mobile devices.

INTRODUCTION
Use of uncrewed aerial vehicles (UAVs) by emergency services in 
civil applications is rapidly increasing (1), also for search and rescue 
(SAR) missions (2–7). In contrast to crewed aircraft, such as heli-
copters, drones are more flexible and cheaper in acquisition, main-
tenance, and operation; moreover, they avoid risks to pilots under 
difficult weather conditions. Considerable progress is being made 
to create fully autonomous drones that team up with action forces. 
However, technical and legal obstacles remain. For instance, under 
complex flying conditions aviation regulations require autonomous 
drones to support advanced safety features, such as traffic avoidance 
and flight termination systems, that are still under development 
for drones.

Effective imaging, for instance, is essential for autonomous UAVs. 
The narrow aperture optics of conventional cameras increase the 
depth of field and therefore project sharply the entire occlusion vol-
umes (such as forests) into the images captured. Objects of interest 
at a particular distance often remain fully occluded. Wide-aperture 
optics (i.e., with diameters of several meters), which cause an ex-
tremely shallow depth of field, would be better suited to these cases 
but remain infeasible for airborne applications. Synthetic aperture 
(SA) sensing offers a means of overcoming these physical limita-
tions; it is widely recognized to approximate theoretical wide-aperture 
sensors by computationally combining the signals of multiple 
small-aperture sensors or a single moving small-aperture sensor to 
improve resolution, depth of field, frame rate, contrast, and signal-
to-noise ratio. This principle has been applied in a range of fields, 
for instance, for obtaining weather-independent images and recon-
structing geospatial depth information using radar (8–10), for observing 
large celestial phenomena in outer space using radio telescopes 

(11, 12), for reconstructing a defocus-free three-dimensional (3D) 
volume using interferometric microscopy (13), for generating 
high- resolution mapping of objects and seafloors using sonar (14–17), 
and for applying 2D SA imaging to shorter wavelengths (i.e., optical 
light) using light detection and ranging (LIDAR)/SA imaging laser 
(18, 19). In the visible range, SA imaging (20–27) has been used to 
acquire structured light fields (regularly sampled multiscopic scene 
representations). Systems using large camera arrays capture 4D light 
ray data that are then used to support various digital postprocessing 
steps (such as refocusing, computation of virtual views with maximal 
SA, and varying depth of field) after their acquisition. In such systems, 
SA are constrained mainly by the physical size of the camera array used.

With airborne optical sectioning (AOS) (28–34), we have intro-
duced a wide SA imaging technique that uses crewed or uncrewed 
aircraft, such as drones (Fig. 1A), to sample images within large (SA) 
areas from above occluded volumes, such as forests. On the basis of 
the poses of the aircraft during capturing, these images are compu-
tationally combined to integrate images. These integral images sup-
press strong occlusion and make visible targets that remain hidden 
in single recordings.

The computation of AOS integral images is based on unstructured 
light-field theory [refer to (35) and (36) for a thorough discussion], 
which represents image pixels as 4D light rays in a 3D volume. As 
illustrated in Fig. 1B, the origins of these rays are their correspond-
ing cameras’ position and their directions are determined by the 
aircrafts’ poses and the cameras’ intrinsic parameters.

Rays are lastly intersected with the surface of a digital elevation 
model (DEM; Fig. 1B). For rays that intersect at the same surface 
point, the associated pixel values are averaged. Repeating this for all 
rays and surface points results in an integral image. Thus, points on 
the ground appear in focus, whereas occluding structures (trees and 
vegetation) are defocused. In case a DEM is not available, the ground’s 
surface is approximated by a focal plane whose parameters can be 
automatically determined (33).
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In (30), we presented a statistical model to explain the efficiency of 
AOS with respect to occlusion density, occluder sizes, number of 
integrated samples, and size of the SA. Although the SA in (30) and 
(34) are 2D, the equations and AOS principles still hold in the case 
of 1D apertures as the ones being applied in this work. The main ad-
vantages of AOS over alternatives, such as LIDAR (37–39) or syn-
thetic aperture radar (8–10), are its computational performance in 
real-time occlusion removal and its independence to wavelength. 
AOS has been applied in the visible spectrum (28) and in the far-in-
frared (thermal) spectrum (31) for wildlife observations (32) and 
search and rescue (SAR) (34). In addition, it can be applied to near-in-
frared wavelengths, for example, to address applications in agri-
culture or forestry. In (34), we demonstrated that integrating single 
images before classification rather than combining classification 
results of single images is substantially more effective when classify-
ing partially occluded persons in aerial thermal images. Here, AOS 
was applied for image integration and occlusion removal. This find-
ing, in principle, enables drone-supported SAR missions in heavily 
concealed areas, such as forests. In practice, however, several chal-
lenges remain to be overcome. Thus far, drones have been used only to 
sample images along a predefined flight path that covers a 2D SA, 
with all image processing done offline, after a flight, on high-perfor-
mance computers. Both sampling of large 2D aperture areas and heavy 
image processing [in particular, computer vision–based pose esti-
mation, which can take hours even on high-end graphics processing 
units (GPUs)] require a notable amount of time, which makes them 
impractical for time- critical applications, such as SAR. Further-
more, sampling along a fixed flight path does not allow regional 
differences in occlusion density that may require resampling to be 
considered.

Here, we report on two main contributions toward fully autonomous 
drones for SAR: First, we show that, compared with the classical 
approach of 2D aperture sampling and computationally expensive 
computer vision–based pose estimation, the effectiveness of person 
classification under occlusion conditions is not reduced when sampling 
along 2D SAs (i.e., 1D flight paths) and using imprecise Global Positioning 
System (GPS) and inertial measurement unit (IMU) measurements 
for pose estimation. Having resampled previous test flights (34), we 
report that imprecise 1D sampling of around 30 images and precise 
2D sampling of around 300 images yield similar average precision 
(AP) scores of 92 to 93%. It follows that image processing can be 

implemented in its entirety using on-board mobile processors, thus 
enabling real-time classification during time-efficient flights. Second, 
we introduce an adaptive online sampling technique that changes the 
flight path dynamically during flight and uses classification confi-
dences for decision-making. Thus, the drone can decide to resample 
a particular region if it receives even a weak hint from the classifier 
that a person might be hidden there. For path planning, we rely on 
a common potential field algorithm, as it supports iterative local 
planning at moderate computational costs. Our classification- 
driven resampling strategy, however, can be applied to other path 
planning techniques. We developed an autonomous prototype 
drone and evaluated it in the course of 17 field experiments over 
various forest types (conifer, broadleaf, and mixed) and under dif-
ferent flying conditions (daylight, temperature, and seasons).

With this prototype, we achieved an AP score of 86% for pre-
defined flight paths and a 100% AP score for our adaptive sampling, 
where confidence scores improved by 15%, due to resampling. 
From a total of 42 hidden persons, 38 were found by the drone 
(30 of 34 with one false alert for experiments with predefined 
flight paths and 8 of 8 with no false alert for adaptive sampling 
experiments).

RESULTS
1D SA classification
In (34), we sampled 2D SA areas of 30 m by 30 m (this equals the 
ground coverage of our thermal camera’s field of view at an altitude 
of about 35 m above ground level) with a sampling density of 1 m by 
3 m. The high number of samples (about 300 images) and precise 
computer vision–based pose estimation ensured effective occlusion 
removal and a focused appearance of persons in the corresponding 
integral images (Fig. 2, A and B). A 1D SA sampling (i.e., integrat-
ing images captured along a 1D flight path) and image registration 
with instant but imprecise GPS and IMU measurements from the 
drone results in defocus (Fig. 2C). The defocused point spread of a 
person’s thermal signal contains the forest’s occlusion structure in 
its optical bokeh.

The advantage of 1D over 2D SA sampling is a substantial reduction 
in sampling time for covering the same area (by a factor of 10 in our 
example, because—at the same sampling rate—only 30 rather than 
300 images are captured and integrated). The disadvantages are 

Fig. 1. Autonomous drone supporting SAR missions. (A) Camera drone with the recording and processing equipment used in our experiments. In the case of a positive 
finding, an integral thermal image from the AOS approach, together with classification result and location are transmitted to a mobile device of the rescue team. (B) Basic 
principle of AOS. Movie S1 shows a video footage of the drone and sample test site.
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less-efficient occlusion removal (due to undersampling) and defocus 
(due to less precise pose estimation). In particular, the latter has im-
plications not only for classification itself but also for training a clas-
sifier. In (34), we showed that, in the case of efficient occlusion 
removal and precise image registration, the data needed for training 
a classifier are invariant to occlusion. Hence, training data can be 
recorded under control conditions in an open-field environment with 
the trained classifier still performing well for occluded test data re-
corded from above all types of forest. This is no longer the case for 
defocused 1D SA samplings, because the occlusion structure becomes 
an apparent part of each integral image’s optical bokeh. Occlusion 
invariance can no longer be assumed, and, accordingly, training data 
must be produced in the presence of occlusion. However, the ques-
tion arises of whether classification remains effective for cases such 
as that shown in Fig. 2C even if training data contain occlusion.

An initial experiment provided first evidence that this is the case: 
We split 11 test flights (F0 to F11, excluding F7) over various forest 
types (conifer, broadleaf, and mixed forest) from (34) into five 
training flights (F0, F4, F5, F10, and F11, with 132 labels of 19 persons), 
two validation flights (F1 and F8, with 65 labels of 10 persons), and 
four test flights (F2, F3, F6, and F9, with 204 labels of 26 persons). 
Details of these flights are provided in (34). Note that, because of its 
circular sampling, we did not use F7. The original 2D grid SA sam-
pling of each flight was computationally resampled to sequences of 
1D line SA samplings, whereas the measured GPS/IMU data were 
used for pose estimation in place of a computer vision–based pose 
estimation. Furthermore, a simpler classifier [you only look once 
(YOLOv4)–tiny (40)] that is suitable for less-performant mobile pro-
cessors was used [previously, we applied the computationally more 
expensive YOLO3 classifier with spatial pyramid pooling (41, 42)]. 
Results are summarized in Fig. 3 and presented in more detail in 
Table 1.

Figure 3 plots the overall (of all test flights combined) AP score 
over an increasing number (N) of integrated thermal images sam-
pled along a 1D SA path. The AP metric (43) is commonly used to 
evaluate the performance of object classification algorithms; con-
siders correct, wrong, and missed detections across multiple scenes; 
and is independent of the classifier sensitivity (i.e., does not require 
manual tuning of confidence thresholds). Samples were taken at in-
tervals of 1 m. A maximum path length of 30 m (30 samples) was 
recorded in our flights. The results of discrete path length variations 
were fitted to a hyperbolic function (see the Average Precision Curve 
section of the Supplementary Materials) and extrapolated. This 
function indicates that high classification rates can be achieved for 
relatively small numbers of samples and short flight paths, even for 
1D SA sampling with defocus and simpler classifiers. For example, 

an AP of 92.8% was achieved with N = 30. In comparison, for the 2D 
SA sampling with better focus and classifier, an AP of 92.2% was 
achieved with N > 300 (34). Note that we augmented the training data 
of our new classifier with all path length variations (from N = 1 to 30). 
This finding suggests that neither 2D SA sampling nor precise pose 
estimation is necessary for achieving similar classification performance 
at a substantially higher speed.

Training data, however, are no longer invariant to occlusion. 
When trained with occlusion data, an AP of 62.2% is achieved for 
single-image SAs (N = 1; pinhole). Note that the reported single-image 
AP score, when trained on nonocclusion training data, is 24.8% in 
(34). This indicates that single-image classification improves when 
trained with occlusion data, as the classifiers might learn in addition 
from occlusion patterns. The low detection scores and the high 
number of false positives (FPs; see Table 1), however, still make 
single-image classification impractical for real-world applications.

Figure 3 also illustrates that the steep increase in classification 
performance followed by a flattening beyond a small N is in line 
with the increase in visibility improvement in integral images for 
increasing N. This was confirmed by our statistical model described 
in (30), where we claimed that the performance of SA imaging for 
occlusion removal does not increase infinitely with increasing aper-
tures and higher sampling rates but that there is a (relatively low) 
limit in both for achieving a maximum improvement. These low 
limits make AOS practical for time-critical applications, such as SAR.

Predefined search
In the second series of experiments, we validated our findings in 
practice in the course of eight new test flights (covering a total area 
of about 6 ha) over various forest types, where all processing was 
carried out in real time on the drone and during flight but where the 
flight paths were still predefined and static (following fixed way-
points). Here, we used test flights from (34) for training (F0, F2 to 
F6, F8, F10, and F11) and training validation (F1 and F9) and, again, 
augmented with path length variations from N = 1 to 30. During 
each new test flight, the drone sampled segments of 30-m-long 1D 
SAs with 1 sample/m along defined waypoints. Thus, after each seg-
ment, an integral image was computed and classified. Table 2 pres-
ents the results, whereas Fig. 4 illustrates them for the example of 
flight F16. Of 34 persons present, 30 persons were found, and only 
one person was incorrectly detected. The overall AP score was lower 
than in the first experiments (86% versus 93%). This is due to 
Table 1 comparing test flights of our previous offline classification 
study presented in (34), where compass errors were corrected man-
ually after recording. The data of the new test flights in Table 2 were 
computed fully automatically during flights and contain compass 

Fig. 2. 2D versus 1D SA imaging. The strong occlusion in single thermal images (A) can be removed effectively in integral images that densely sample 2D SA (B). Precise 
computer vision–based pose estimation leads to well-defined shapes of people. 1D SA sampling combined with GPS/IMU-based pose estimation leads to defocus in the 
resulting integral images (C).
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errors. If compass errors are manually corrected after the flights, then 
the AP score of Table 2 increases to 92% (shown in parentheses). 
Thus, better compass modules will improve the classification results.

Many real-time object detection algorithms that are based on 
convolutional neural networks, such as YOLO (44), divide images 
into regions, for each of which they predict bounding boxes and 
probabilities (confidence scores). These confidence scores are thresh-
olded for making a final classification decision. Depending on the 
choice of threshold, either too many FPs (incorrect detections) or 
too few true positives (TPs; i.e., persons are missed) can be the result. 
For both series of experiments (Tables 1 and 2), we selected a YOLO 
confidence score threshold of 10%. This minimizes FPs. A lower 
confidence score would increase the number of incorrectly detected 
persons (false alerts) but might also increase correct detections.

Because confidence scores correlate directly with the amount of 
occlusion, areas with detections that indicate the presence of a person 
should be resampled (double-checked) to observe the development 
of the confidence score before making a final decision. If an initially 
low score drops further after resampling, then this confirms an FP 
detection. If an initially high score increases, then this confirms a 
TP detection. However, this is only possible if the flight path is 
adapted dynamically on the basis of current classification results.

Classification-driven adaptive search
In the third series of experiments, we dynamically computed and 
adapted the flight path on board the drone rather than have it follow 
a predefined set of fixed waypoints. Here, the goal was to find a person 
as quickly and as reliably as possible, allowing the drone to make the 
decisions autonomously on how and where to search. Because the 
drone’s flight path changes dynamically based on classification results, 
we chose to build on common potential field–based path planning 
(45–50). Because of its scalability, limited computational complexity, 
and adaptability, it has been used previously in the course of real- 
time adaptive path planning for obstacle avoidance (48) and target 
detection and tracking (49, 50). The interested reader is referred to 
summaries on path planning for UAVs (46, 47, 51–61).

The search areas were split into grids of 30 m–by–30 m cells, and 
each cell was initialized with the rescue team’s estimate of the 

likelihood of finding a person within it. 
Each cell was scanned centered (hori-
zontally or vertically) from edge to edge 
with a 30-m SA, as in all previous ex-
periments. The decision on which cells 
are scanned and in which order was based 
on the cell probabilities and by evaluating 
the following potential field equation 
[as explained in (45)] for each cell

                    f(i ) = P(i ) *  e   − ‖x− c  i  ‖  2                (1)

where P(i) is the ith cell’s probability, x 
is the current location of the drone, and 
ci is the center position of cell i. The cell 
scanned next was that with the highest 
potential f(i). If multiple cells had the 
same maximum f(i), then we selected 
(among them) the cell that had the highest 
potential density in its neighborhood 
(successively enlarging the neighborhood 

until a maximum potential density cell was identified)

             P  d  (i ) =  ∑ j≠i       
P(j)

 ─  ‖ c  i   −  c  j  ‖  
2
      (2)

where j are the neighbors of i.
The probabilities of scanned cells were set to zero to avoid revis-

iting them. We stopped scanning under three conditions: (i) if a 
confirmed TP was detected, (ii) if a maximum path length (maxi-
mum flying time) was reached, and (iii) if the entire search region 
had been covered. Figure 5A illustrates an example path that was 
computed dynamically for a search area with an initial probability 
map. By evaluating Eqs. 1 and 2, we maximized the likelihood of 
detection while minimizing search time based on the rescue team’s 
initial assessment of the situation.

If a detection was made (we considered a detection to be weak if 
it had a confidence score of at least 5%), then resampling the corre-
sponding cell was triggered. Because the orientation of occluders is 
unknown, we resampled with an SA that was orthogonal to the pre-
vious one to increase the likelihood of visibility (in case of nonuni-
form occlusion distributions). Because the sampling rate of integral 
images is not uniform (lower in the periphery than in the center), 
this new SA was not cell centered but centered over the detection to 
achieve the highest possible sampling rate as close as possible to the 
target. Note that although combining the two samplings (cell centered 
and detection centered) seems to be an option, this does not lead to an 
improvement of the classification result because, as shown earlier, 
classification is unaffected by the SA’s sampling dimensionality. 
Therefore, the classifier is trained with 1D SA sampling data. Clas-
sifying 2D sampled data with it leads to weaker results. The reason 
is that, although the appearance of focused targets in integral images 
is similar in both cases, the bokeh of defocused occluders depends 
on the sampling pattern. The latter will affect the classification re-
sults. Thus, the sampling dimensionality of the training data and 
the test data must match.

We replace any cell-centered scores by the detection-centered 
scores. In all nine experiments of Table 3, this strategy leads to an 

Fig. 3. 1D SA classification performance. Classification performance increases for all test flights in Table 1 (blue) 
and modeled visibility improves (30) (yellow) with increasing number of integrated sample images N. Movie S2 illus-
trates the behavior of the blue curve for integral images of four sample flights.

 by guest on June 24, 2021
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/


Schedl et al., Sci. Robot. 6, eabg1188 (2021)     23 June 2021

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

5 of 10

increase in confidence for correct person detections [persons found 
(PF)] and to a reduction in confidence for incorrect detections 
[persons incorrectly found (PI)]. For multiple detections within the 
same cell, we scanned multiple SAs accordingly. Figure 5B presents 
an example showing the subarea highlighted in Fig.  5A in which 
two detections were made at one border of the cell (with confidence 
scores of 11 and 27%). After resampling, an increase in the confi-
dence score of one detection (from 27 to 51%) confirmed a TP, 
whereas a drop in the confidence score of the other detection (from 
11 to 0%) confirmed a FP. Figure 5C illustrates another example, 
where a weak 7% confidence detection was resampled and, based on 
a 0% confidence score, confirmed to be a FP.

Table  3 summarizes the results of nine adaptive search test 
flights, where eight of eight persons have been found and because of 
adaptive sampling, no incorrect persons were detected. On average, 
resampling increased the confidence scores by around 15% for con-
firmed TPs (PF) and decreased confidence scores by around 16% 
for confirmed FPs (PI). With a 10% confidence threshold as used 
before, and without adaptive resampling, false decisions would 
have been made in four of the nine flights: Two persons would not 
have been detected, and two erroneous detections would have 
occurred.

DISCUSSION
For automatic person classification in occluding forests, 1D SA im-
aging performs, despite GPS errors, equally well as 2D SA imaging 
of 10 times the number of samples combined with time-consuming 
precise pose estimation. Nevertheless, image integration remains 
necessary to achieve effective classification rates (62% AP for single 
images and 93% AP for integrals with 30 images; see Table 1). This 
finding motivated the development of an autonomous drone for 
SAR missions in forests, which adapts its flight path to achieve 
real-time classification results. In the course of 17 field experiments 
over various forest types (conifer, broadleaf, and mixed), we show 
that our prototype finds humans reliably. From a total of 42 hidden 
persons, 38 were found (30 of 34 for predefined flight paths and 8 of 
8 for adaptive sampling experiments).

Unlike video streaming and remote processing, on-board pro-
cessing does not require fast and stable network coverage, which 
might not always be available for SAR missions in remote areas. 
Intermittent minimal-bandwidth satellite connections are sufficient 

to transmit classification results of detections only. In our case, a 
search mission requires only an (open access) DEM and an 
(optional) initial probability map. Both can be uploaded on site 
before takeoff.

False-negative classifications (person not found) are equally 
problematic as FPs (person wrongly found) because the latter might 
lead to an unnecessary moving out of the rescue team to the wrong 
place. Therefore, we allow the rescue team to make the final deci-
sion based on the transmitted integral images of detections to a mo-
bile ground station (Fig.  1A). Because of GPS pose error–related 
misregistration, however, these images are not easy to interpret 
visually. Automatic pose error reduction can be applied in the course 
of postprocessing to achieve substantial improvements, as explained 
in (62). These improvements, however, will not be beneficial to the 
automatic person classification itself because small regions of inter-
est around the detections are required for visual optimization. The 
regions of interest, however, are the result of the classification. Reg-
istration optimization for entire images is not feasible because pro-
cessing time and error proneness would be too high. Thus, visual 
enhancement of received classification results can be computed on 
remote mobile devices to support the rescue team in decision-making. 
Figure S4 illustrates the results of offline registration enhancement 
for all correct person detections (PF) in Table 3.

Carrying out experiments to gain practical experience together 
with emergency forces (such as firefighters, mountain rescue services, 
police, or armed forces) is on our agenda for future work. On the basis 
of the outcome of these experiments, the sensitivity (i.e., the confi-
dence threshold) of the classifier can then be fine-tuned on demand.

Thermal imaging has limitations when applied in warm surround-
ing environments that affect the performance of AOS. To ensure a 
measurable temperature difference between bodies and environ-
ment in thermal images, flights F0 to F28 were performed from 
October to April. Only direct sunlight led to heat spots on trees and 
on the ground. Person classification in single thermal images, how-
ever, has been shown to be working in warm environments [e.g., for 
pedestrian detection (63)] if a temperature difference is resolvable 
by the camera. In this case, AOS will also be successful. However, 
SAR missions are more critical in cold conditions because missing 
people might freeze to death if not found in time.

Because of current aviation regulations, all test and training 
flights required visual line of sight. Short battery life restricted fly-
ing times to a maximum of 15 to 20 min. Professional drones with 

Table 1. 1D SA classification performance. Classification results of test flights from (34), resampled to 1D SA segments, for various path lengths N. GT is the 
number of ground truth labels, TP are the true positives, FP are the false positives, and AP is the AP score. F9 is a flight over an empty (no hidden persons) forest. 
Note that, because of resampling, the path lengths per flight may vary slightly. Thus, N represents the average. Note also that fewer segments could be 
resampled for F2 (N = 28.46) than for the other flights. This also led to fewer GT labels (70 instead of 86) in this case, thus indicated with asterisks above TP and 
FP. Movie S1 visualizes the classification improvement for increasing N. Figure S1 provides satellite and color images of the corresponding test sites. n/a, not 
applicable. 

N = 1 (pinhole) N = 5 N = 10 N = 15 N = 19.97 N = 24.93 N = 28.46

Flight (GT) AP TP FP AP TP FP AP TP FP AP TP FP AP TP FP AP TP FP AP TP* FP*

F2 (70–86) 64% 65 80 90% 78 16 94% 81 8 96% 80 12 97% 81 7 96% 81 5 97% 66 5

F3 (53) 36% 24 42 46% 30 31 52% 31 24 55% 32 21 60% 37 19 72% 40 19 74% 43 28

F6 (65) 86% 56 16 99% 64 1 99% 64 4 98% 64 2 98% 64 1 98% 64 1 98% 64 2

F9 (0) n/a 0 6 n/a 0 7 n/a 0 2 n/a 0 4 n/a 0 2 n/a 0 2 n/a 0 2

All (188–204) 62% 145 144 83% 172 55 87% 176 38 87% 176 39 89% 182 29 92% 185 27 93% 173 37
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combustion engines (e.g., boxer or wankel) are more suitable for 
SAR missions because they can fly for up to 6 hours and carry pay-
loads of up to 75 kg. Now, we are investigating a new long-endurance 
prototype together with drone manufacturers and emergency 
forces, which will also apply a high-quality real-time kinematic GPS 
system (see fig. S5). Appropriate legal regulations for autonomous 
flights beyond visual line of sight are in development and will most 
likely be approved much earlier for emergency operations (SAR, 
firefighting, and disaster management) than for other applications. 

For autonomous flights beyond visual line of sight, additional 
components are essential, such as collision detection and avoid-
ance (ground obstacles, such as power lines or other aircrafts). In 
areas where no reliable DEM is available, advanced ground ob-
stacle avoidance will be necessary, and integral images have to be 
computed on the basis of automatically adjusted focal planes (33). Fur-
thermore, visual search techniques, such as AOS, are complementary 
to mobile phone tracking. Although the latter is good for a coarse 
localization of a radio signal, AOS supports exact positioning and 

Table 2. Predefined search experiments. Results of test flights with predefined flight paths, including GPS coordinates, date of flight, path length, and forest 
type at test sites. AP, the AP score; PP, the number of persons present at the test site; PF, the number of persons correctly found; and PI, the number of incorrect 
person detections (false alerts). Note that flight paths were divided into 30-m segments (and residues). Note also that, because of overlapping fields of view of 
the integral images, the same person may be labeled multiple times. Because it matters whether—and not how many times—a person was detected during the 
flight, we report person-specific PP, PF, and PI figures rather than label-specific GT, TP, and FP values as in Table 1. The numbers in parenthesis indicate scores 
after manual (offline) compass correction, leading to improved AP scores. Note, however, that a manual compass correction cannot be applied during flights. 
The results of F16 are shown in Fig. 4C, and the results of all other flights are illustrated in fig. S2. Aerial RGB samples of the corresponding test sites are 
shown in fig. S1. 

ID Latitude Longitude Date Length Forest AP PP PF PI

F12 48.33279428 14.33015898 13 Oct 2020 119.4 m Conifer
96.7% 

(100.0%) 2 (2) 2 (2) 1 (0)

F13 48.33295299 14.33105885 13 Oct 2020 263.9 m Broadleaf
100.0% 

(100.0%) 2 (2) 2 (2) 0 (0)

F14 48.33292935 14.33053121 15 Oct 2020 388.0 m
Conifer, 

broadleaf
100.0% 

(100.0%) 6 (6) 6 (6) 0 (0)

F15 48.33292935 14.33053121 20 Oct 2020 394.8 m
Conifer, 

broadleaf
75.6% 

(76.9%) 6 (6) 5 (5) 0 (0)

F16 48.33980546 14.33186291 22 Oct 2020 182.3 m Mixed
91.1% 

(100.0%) 6 (6) 6 (6) 0 (0)

F17 48.33980546 14.33186291 22 Oct 2020 180.0 m Mixed
63.3% 

(83.3%) 6 (6) 4 (4) 0 (0)

F18 48.3400508 14.33236699 28 Oct 2020 181.8 m Mixed
100.0% 

(100.0%) 2 (2) 2 (2) 0 (0)

F19 48.3400508 14.33236699 28 Oct 2020 211.9 m Mixed
75.0% 

(95.0%) 4 (4) 3 (3) 0 (0)

All 1922.1 m
86.2% 

(92.2%) 34 (34) 30 (30) 1 (0)

Fig. 4. Predefined search. Visualization of the F16 test flight from Table 2 (see also movie S3). The flight path was predefined [dotted yellow line in (A)]. The field of view 
[solid yellow lines in (A)] along the path was split into 30-m segments (and residue). An integral image was computed for each segment [thermal image overlays in 
(A) and (B)]. (A) A satellite view and (B) the DEM of the test site. (C) Integral images and close-ups with locations at which persons are present (black boxes) and classifica-
tions results where persons are detected (green boxes). Note that the drone’s orientation was kept constant (facing north) to reduce dynamic compass errors during flight.
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identification. Optimizing the data structure of our DEM to support 
efficient scalability through tiling is on our agenda for future work.

The thermal camera we used supports capture rates of 1 image/s. 
For 1 sample/m, this restricted flying speed to 1 m/s and integral 
image computation and classification to discrete 30-m steps (fast 
flight segments without sampling were done with 3 m/s). Faster imaging 
solutions would enable higher flying speeds (i.e., larger search areas) 
and continuous integral image updating and classification after 
capturing each image (e.g., after every meter flown). Early experi-
ments indicate already that we can achieve a 4 to 10 m/s of sampling 
with our prototype by using a fast video-grabbing hardware instead 
of a direct image download from the camera.

Potential field–based path planning makes local decisions and 
does not lead to globally optimal solutions. However, global path 
planning algorithms (52)—such as evolutionary algorithms, rapidly 
exploring random trees, Voronoi diagrams, A* algorithms, and 
others—are computationally too complex and will not run in real 
time on a mobile processor for realistic scales. A good trade-off 

between real-time dynamic adaptability and considering larger 
neighborhoods for path planning must be investigated. Upgrading 
to a faster mobile processor or vision processor (e.g., NVIDIA Jetson 
or Google Coral) might support more advanced path planning algo-
rithms. Adaptive search algorithms based on lost person movement 
modeling (64–67) needs to be considered as well in the future. 
Furthermore, multidrone solutions could reduce search time even 
further. All of these improvements, including enhancement of 
occlusion removal and classification and application to other fields 
(such as wildlife observation, finding fire hot spots, surveillance, and 
border control), fall within the scope of our future work. We believe that 
autonomous drones such as ours will play an essential role in human- 
machine teaming of rescue missions and emergency operations to come.

MATERIALS AND METHODS
We equipped an octocopter (MikroKopter Okto XL 6S12; 
945-mm diameter, about 4.5 kg, and two lithium ion polymer (LiPo) 

Fig. 5. Adaptive search. Satellite image of the test site overlaid with the flight path computed dynamically based on potential fields (A). The initially provided probabil-
ities are color coded. Dashed white lines indicate scanned SAs within 30 m–by–30 m cells (1 m/s). Dotted white lines indicate fast flight segments (3 m/s) without sam-
pling. Black triangles, the orientations of which illustrates the flight direction, mark positions of computed integral images. DEM overlaid with the close-up subarea of 
flight F21 (B). The two detections (pink stars) made in the initial integral image I are confirmed to be one correct (green box) and one incorrect (red box) classification in 
the resampled integral image II. Resampled SAs and fast flight segments without sampling are indicated by dashed and dotted black lines, respectively. The case of an 
empty scene in which an incorrect detection was confirmed (F20 in Table 3) is shown in (C). See also movie S4.

Table 3. Adaptive search experiments. Results of test flights with adaptive flight paths, including GPS coordinates, date of flight, path length, and forest type 
at test sites. C is the change in confidence score from the initial sampling of a cell to resampling of the corresponding detections for PF and PI. (C) is the final 
confidence score after resampling. Cases highlighted in bold would have led to misclassifications (persons not found or false alerts) for a confidence threshold 
of 10%. PP, PF, and PI are after resampling. Figure 5 (B and C) shows cases F20 and F21, and fig. S3 illustrates all other cases. Figure S1 provides satellite and aerial 
RGB samples of the corresponding test sites. 

ID Latitude Longitude Date Forest type PF ∆C (C) PI ∆C (C) PP PF PI

F20 48.3398254 14.3327864 27 Nov 2020 Mixed Empty −6.7% (0.0%) 0 0 0

F21 48.3338445 14.3301653 30 Nov 2020 Mixed 23.9% (51.1%) −10.4% (0.4%) 1 1 0

F22 48.3338445 14.3301653 30 Nov 2020 Mixed 8.4% (44.2%) None 1 1 0

F23 48.3327007 14.330069 1 Dec 2020 Conifer 15.5% (38.7%) −40.4% (0.1%) 1 1 0

F24 48.3332141 14.3314393 1 Dec 2020 Broadleaf 16.7% (22.6%) None 1 1 0

F25 48.3332141 14.3314393 2 Dec 2020 Broadleaf 2.6% (35.6%) None 1 1 0

F26 48.3327007 14.330069 3 Dec 2020 Conifer 19.6% (19.6%) −6.9% (0.0%) 1 1 0

F27 48.3327007 14.330069 4 Dec 2020 Conifer 18.2% (39.5%) None 1 1 0

F28 48.3338445 14.3301653 4 Dec 2020 Mixed 11.3% (43.6%) None 1 1 0

All 14.5% −16.1% 8 8 0
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4500-mAh batteries) with a thermal camera (FLIR Vue Pro; 9-mm 
fixed focal length lens, 7.5- to 13.5-m spectral band, 14-bit nonra-
diometric, and 118 g), a single- board system-on-chip computer 
(SoCC) (RaspberryPi 4B; 5.6  cm by 8.6 cm, 65  g, and 8-gigabyte 
(GB) random-access memory), an LTE communication hat (Sixfab 
3G/4G and long-term evolution (LTE) base hat and a subscriber 
identification module (SIM) card; 5.7 cm by 6.5 cm and 35 g), and a 
vision processing unit (VPU) (Intel Neural Compute Stick 2; 7.2 cm 
by 2.7 cm by 1.4 cm and 30 g). The equipment (total weight of 320 g) 
was mounted on a rotatable gimbal, and the camera was pointed 
downwards during flight, as shown in Fig. 1.

The SoCC established communication with the drone (receiving 
IMU/GPS positions and sending waypoint instructions including 
GPS location, orientation, and speed) via a serial protocol, triggered 
the thermal camera using a pulse width–modulated signal and its 
purpose input-output pins (general purpose input/output), down-
loaded the recorded images from the camera’s memory, preprocessed 
the images, and computed the integral image during flight. Our pro-
totype is equipped with a nondifferential GPS with a 2.5-m horizon-
tal positional accuracy at 50% circular error probable. Preprocessing 
involved adjusting the mean of the thermal images, removing the 
lens distortion using OpenCV’s pinhole camera model, and crop-
ping the images to a field of view of 50.82° and a resolution of 512 
pixels by 512 pixels. Preprocessing and integration of 30 thermal 
images required around 748 and 90 ms on the SoCC. The VPU was 
initialized with our pretrained network weights for object detection 
using YOLOv4-tiny (40) at start-up and detected persons in the in-
tegral images while flying. Detections were computed in 84 ms per 
integral image and were transmitted via an LTE connection to a 
remote mobile device using the communication hat. The main soft-
ware running on the SoCC was implemented using Python, where-
as submodules, such as the drone communication protocol and 
integral computation, were implemented using C, OpenGL, and 
C++ and integrated using Cython. How integral images are com-
puted was explained in detail in (28, 30, 34). On the SoCC, integrals 
are computed by projecting and averaging all single images on the 
ground surface (i.e., DEM or focal plane) using OpenGL’s pro-
jective texture mapping technique (68). This work differs from 
(28, 30, 34) in that we did not assume the ground surface to be planar 
but approximated it with a DEM. The DEMs for the test sites are 
available freely from the Upper Austrian State Government (69) in a 
common GeoTIFF format. We converted a predefined region to a 
triangle mesh using the geospatial data abstraction library (GDAL) 
software (70), requiring 4 s for a 100 m by 100 m of DEM and 10 s 
for a 300 m by 300 m of DEM on a standard PC. For the experi-
ments in Tables 2 and 3, the DEM was used to calculate the flying 
altitude of the drone. Thus, static obstacles and height variations in 
the DEM (e.g., hills or valleys) are considered. However, this does 
not support collision detection and avoidance for obstacles not 
present in the DEM (e.g., power lines or other aircrafts). For this, 
commercial collision detection systems [such as FLARM (71) or au-
tomatic dependent surveillance-broadcast (ADS-B) (72)] can be 
integrated. The central position of each SA was used to compute the 
integral images, within which persons were labeled if visible. The 
resolution of all integral images was always 512 pixels by 512 pixels.

For training and validation datasets, the following augmenta-
tions were applied. We randomly rotated the integral images (orig-
inal and nine random rotations), changed the altitude of the DEM 
from −3 to +3 m in steps of 1 m (seven variations), and varied the 

number of image samples per SA (pinhole, 1 to 5, 5 to 10, 10 to 15, 
15 to 20, 20 to 25, and 25 to 30), thus obtaining a total of 490 aug-
mentations per SA. The field of view per SA and the labels of hidden 
persons were kept the same when varying the number of images. 
This means, for example, that only one image per SA was used for 
N = 1 (see movie S2). Note that 6 of 115 individual SAs were shorter 
than 25 cameras, and 1 SA was shorter than 20 cameras, which re-
sulted in fewer long SAs.

For training our object detector with the YOLOv4-tiny (40) net-
work architecture, we classified a single object class (person) in the 
integral images. The initial 29 network layers (of 39 layers) were 
pretrained with the ImageNet (73) dataset. We used the Darknet 
software for training and set the starting learning rate and the batch 
and subdivision sizes to 0.00261, 64, and 16, respectively. Training 
weights were stored after every 200 iterations and evaluated on the 
training set. The weights with the highest AP score [intersection 
over union (IoU) of 25%] were used in the subsequent experiments 
(Tables 1 to 3). The FP, TP, and AP scores in Table 1 were comput-
ed in MATLAB with an IoU threshold of 25%. For the FP and TP 
scores, detections below 10% confidence were discarded.

For our experiments summarized in Table 1, we reused the data-
set from (34) and computationally resampled the recordings to se-
quences of 1D line SAs using the original GPS/IMU measurements. 
To make the new results comparable with the old 2D SA results in 
(34), we retained the manual compass correction as described in 
(34). For all other experiments, a manual compass correction was 
not possible, because images and drone poses were processed im-
mediately in real time during flight. For the experiments in Table 1, 
we split 11 test flights (F0 to F11, excluding F7) from (34) into five 
training flights (F0, F4, F5, F10, and F11), two validation flights (F1 
and F8), and four test flights (F2, F3, F6, and F9). The classifier for 
the additional test flights F12 to F28 (in Tables 2 and 3) was trained 
using flights F0 to F11 (excluding F1, F7, and F8) for training and 
F1 and F8 for validation.

For the experiments summarized in Table 2, the drone followed 
a preplanned path, recorded images, computed integral images, and 
performed detections after every 30-m SA segment during flight. 
After a flight, persons were labeled, and AP, PF, and PI scores were 
computed. For accurate labeling, we asked individuals to record 
their GPS locations on site using their smartphones. Because of the 
overlapping fields of view, the same person might appear in multi-
ple integral images. This is considered in the PF and PI metric in 
Table 2. For PF, we considered a person as found if at least one de-
tected a bounding box (with at least 10% confidence score) over-
lapped with the person’s ground truth (GT) label. Because of the 
GPS/IMU pose errors, we applied an IoU threshold of 1% and 
ignored multiple detections in the same GT bounding box. We 
classified a detection as incorrect (PI) if it had a confidence score of 
more than 10% but was outside of all GT bounding boxes. Further-
more, to compare scores of Tables 1 and 2, we additionally applied 
manual compass corrections offline to update results of Table  2 
(simulating better compass measurements). The compass correc-
tions lead to an improvement of confidence scores and, hence, to an 
increase in AP. This indicates that more precise compass modules 
improve the classification during flight.

For the experiments summarized in Table 3, the potential field 
equations (Eqs. 1 and 2) were evaluated on the SoCC to decide on 
the next target cells based on the drone’s current position, the prob-
ability map (predefined and updated after visiting each cell), and 
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previous detection result. Computation time for planning the next 
target cell was 1 ms.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/6/55/eabg1188/DC1
Section S1
Figs. S1 to S5
Movies S1 to S4
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