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ABSTRACT

Context. A precise detection of the coronal hole boundary is of primary interest for a better understanding of the physics of coronal
holes, their role in the solar cycle evolution, and space weather forecasting.
Aims. We develop a reliable, fully automatic method for the detection of coronal holes that provides consistent full-disk segmentation
maps over the full solar cycle and can perform in real-time.
Methods. We use a convolutional neural network to identify the boundaries of coronal holes from the seven extreme ultraviolet (EUV)
channels of the Atmospheric Imaging Assembly (AIA) and from the line-of-sight magnetograms provided by the Helioseismic and
Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). For our primary model (Coronal Hole RecOgnition Neural
Network Over multi-Spectral-data; CHRONNOS) we use a progressively growing network approach that allows for efficient training,
provides detailed segmentation maps, and takes into account relations across the full solar disk.
Results. We provide a thorough evaluation for performance, reliability, and consistency by comparing the model results to an inde-
pendent manually curated test set. Our model shows good agreement to the manual labels with an intersection-over-union (IoU) of
0.63. From the total of 261 coronal holes with an area > 1.5 · 1010 km2 identified during the time-period from November 2010 to De-
cember 2016, 98.1% were correctly detected by our model. The evaluation over almost the full solar cycle no. 24 shows that our model
provides reliable coronal hole detections independent of the level of solar activity. From a direct comparison over short timescales of
days to weeks, we find that our model exceeds human performance in terms of consistency and reliability. In addition, we train our
model to identify coronal holes from each channel separately and show that the neural network provides the best performance with
the combined channel information, but that coronal hole segmentation maps can also be obtained from line-of-sight magnetograms
alone.
Conclusions. The proposed neural network provides a reliable data set for the study of solar-cycle dependencies and coronal-hole
parameters. Given the fast and robust coronal hole segmentation, the algorithm is also highly suitable for real-time space weather
applications.
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1. Introduction

Coronal holes appear as large-scale dark regions in extreme ul-
traviolet (EUV) and soft X-ray (SXR) images of the upper solar
atmosphere. They are built from a large number of small-scale
magnetic funnels which are rooted in the solar photosphere, ex-
pand with height throughout the chromosphere and transition re-
gion, and eventually form the "holes" in the solar corona. Coro-
nal holes are characterized by a reduced temperature and den-
sity as compared to the ambient corona, have a dominant mag-
netic polarity, meaning that most of the magnetic funnels have
the same magnetic polarity, and further exhibit an "open" mag-
netic field topology, that is, the magnetic funnels close far into
interplanetary space at distances of several astronomical units
(e.g., review by Cranmer 2009). Solar plasma is accelerated ra-
dially away from the rotating Sun along these open magnetic
field lines, forming high-speed solar wind streams which tran-

scend the heliosphere with velocities of up to 800 km s−1. When-
ever these high-speed streams hit Earth, they interact with the
Earth’s magnetosphere and can cause geomagnetic storms and
substorms (e.g., review by Tsurutani et al. 2006).

Solar coronal holes are usually identified from (1) EUV or
X-ray images reflecting the density distribution of highly ionized
ions in the solar corona (Vršnak et al. 2007; Rotter et al. 2012;
Krista & Gallagher 2009; Verbeeck et al. 2014; Lowder et al.
2014; Garton et al. 2018; Illarionov & Tlatov 2018; Hamada
et al. 2018), (2) He I 10 830 Å images probing the solar chromo-
sphere (Henney & Harvey 2005; Tlatov et al. 2014; Webb et al.
2018), or (3) magnetic field extrapolations (Pomoell & Poedts
2018; Pizzo et al. 2011; Asvestari et al. 2019; Jeong et al. 2020).
In EUV and soft X-ray images, coronal holes appear as distinct
dark features because of their reduced density and temperature.
However, the automated identification of coronal holes in these
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Figure 1. Composite multi-channel observation from SDO AIA and
HMI on 2015-04-02. The corresponding wavelengths are given at the
top or bottom of the slices. The red contour lines indicate the coro-
nal hole boundary as estimated by CHRONNOS. The extended coronal
hole in the northern hemisphere can be clearly distinguished from the
quiet-Sun region in the channels 193 Å, 304 Å, and 211 Å. Extended
filament channels in 193 Å show a similar dark appearance, but are cor-
rectly omitted by our method.

images from classical methods remains challenging, for several
reasons: (a) The brightness of the solar corona varies strongly
over the solar cycle (Brueckner 1981; Huang et al. 2016; Heine-
mann et al. 2019), (b) the corona is an optically thin medium, that
is, the pixel intensities give the line-of-sight integrated emission
over large column depths (heights) and therefore do not relate
to a well-defined atmospheric layer; and (c) other features, such
as filament channels, also show reduced EUV and SXR inten-
sities compared to the ambient corona (Reiss et al. 2015; De-
louille et al. 2018). Figure 1 shows a composite of multiple EUV
filtergrams and the line-of-sight magnetogram, which illustrate
the wavelength-dependent appearance of coronal holes and their
similarity to solar filaments.

In the chromospheric He I 10 830 Å line, coronal holes show
a slightly reduced chromospheric absorption of the underlying
continuum emission, and thus appear as brighter structures in the
associated He I 10 830 Å filtergrams (Avrett et al. 1994; Brajša
et al. 1996). However, the contrast is typically weak, challeng-
ing the automated detection of coronal holes in He lines. Global
magnetic field extrapolations, on the other hand, identify coronal
holes as the regions with an open magnetic field configuration at
a given source surface height (typically at 2.5 solar radii; Schat-
ten et al. 1969; Levine et al. 1977; Wang & Sheeley 1990). As
the magnetic field distribution cannot be observed on the back
side of the Sun and measurements of the polar magnetic fields
suffer from increased uncertainties, the resulting boundaries are
at best good estimates. To date, there exists no algorithm able
to robustly and automatically identify coronal holes over long
portions of a solar cycle. Nevertheless, such an algorithm would
provide a far better understanding of the physics of coronal holes

and their role in the solar cycle evolution, and could be used for
space weather forecasting.

Here, we tackle the problem of automated coronal hole de-
tection with state-of-the-art technology in semantic image seg-
mentation. We train a convolutional neuronal network (CNN)
to identify the boundaries of coronal holes from the seven EUV
channels of the Atmospheric Imaging Assembly (AIA) and from
the magnetograms taken by the Helioseismic and Magnetic Im-
ager (HMI) on board the Solar Dynamics Observatory (SDO).
The line-of-sight (LOS) magnetograms measure the field in the
solar photosphere, whereas the seven EUV channels probe the
solar plasma at chromospheric and coronal layers, giving an ex-
tensive view of the outer solar atmosphere. Neural networks have
the ability to learn directly from multi-dimensional data and can
identify coronal holes based on their shape, structural appear-
ance, global context information, and multi-wavelength repre-
sentation. This allows our neural network to efficiently and re-
liably distinguish between coronal holes and other dark regions
(e.g., filaments). Based on the simultaneous use of six coronal
EUV channels, chromospheric He II observations (304 Å), and
photospheric LOS magnetograms, we provide the first method
that simultaneously incorporates all the different relevant infor-
mation considered by classical coronal hole detection methods.

2. Method

In this study, we address the problem of coronal hole detection
with the use of CNNs, which are a special type of deep learning
architecture well suited to high-dimensional data, such as im-
ages (LeCun et al. 2015). A CNN consists of layer-wise convo-
lution operations, where each layer has multiple filters (or ker-
nels) that each consist of a set of learnable weights. For each
filter, a feature map is computed by applying a convolution be-
tween the feature maps of the previous layer and the filter, where
the first feature maps are the channels of the input image (e.g.,
red-green-blue for a regular image) and the last feature map re-
sembles the output (Goodfellow et al. 2016). Therefore, the set
of feature maps at each layer corresponds to a local representa-
tion within the CNN. With the use of a given set of input–output
pairs and the backpropagation algorithm, the weights of the neu-
ral networks can be adjusted to provide a mapping between the
samples (supervised training). With a sufficiently large data set,
a general mapping can be found that is also valid for novel data
(generalization). At every layer, the local field of view is defined
by the size of the filter, that is, the spatial extent where local
features are correlated. In order to increase the field of view of
the neural network, deeper architectures, down-sampling opera-
tions, and dilated convolutions are used (Long et al. 2015; Yu &
Koltun 2015; Chen et al. 2018). Convolutional neural networks
take advantage of the typically high correlation of local groups
(e.g., adjacent pixels in an image) and hierarchically extract fea-
tures (edges → motifs → parts → objects; LeCun et al. 2015).
With this, deep CNNs extract, by layer-wise transformations, the
feature representation of an image that serves as a basis to, for
example, classify images (Armstrong & Fletcher 2019), predict
sequences (Upendran et al. 2020), transform images to different
domains (Kim et al. 2019; Jarolim et al. 2020), or provide seg-
mentation maps (Long et al. 2015).

From deep learning applications for semantic segmentation,
the concept of multi-scale architectures has proven to be most
successful (Ronneberger et al. 2015; Chen et al. 2018; Badri-
narayanan et al. 2017). Here the spatial dimensions are succes-
sively reduced, while the depth of the network (number of filters)
is being increased. With this, the neural network can correlate
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features of different scales at each resolution level and can solve
more complex tasks with the increased number of filters (greater
number of parameters). In order to correlate features across the
full image, a sufficient network depth is required. For semantic
segmentation, the output is a pixel-wise classification of the in-
put image (segmentation map). Therefore, the feature represen-
tation (low spatial resolution) needs to be matched to the size of
the input image. The segmentation map can be directly obtained
from the deepest layer of the neural network (e.g., Long et al.
2015), but with this approach the output typically lacks spatial
detail. An alternative approach, which accounts for global re-
lations and spatial resolution simultaneously, is the use of an
encoder-decoder architecture (Ronneberger et al. 2015; Chen
et al. 2018; Badrinarayanan et al. 2017). Here, the image is first
transferred into a feature representation over multiple scales by
the encoder, and then upsampled to the original resolution over
the same number of scales by the decoder. At each scale, skip
connections are used to combine the upsampled features, which
comprise the full context information, with the spatial details
from the encoder.

A common problem with deep networks is the vanishing
gradient problem, where the parameter optimization of the neu-
ral network becomes inefficient with increasing network depth
(He et al. 2016; Szegedy et al. 2015). In addition, when dealing
with high resolutions, the training time increases exponentially,
which often results in long convergence times for model train-
ing. A possible solution to this problem was developed by Kar-
ras et al. (2017) for the application of image generation. Here
the authors used an approach where the size of the network is
progressively increased. The advantage of this method is that
the training with low-resolution samples is computationally ef-
ficient and allows the deepest layers to be trained until full con-
vergence is reached, before introducing higher resolutions. The
shallowest layers (high spatial resolution) contain many fewer
training parameters and therefore require only a fraction of the
total number of optimization steps. With the progressively grow-
ing approach, efficient training can be performed even for images
with high resolution, while still providing the necessary network
depth to identify global relations and solve complex problems.
In addition, the pre-trained layers already provide a steady gra-
dient, which counteracts the vanishing gradient problem and di-
vergences during training.

For our neural network we build upon a progressively grow-
ing architecture that combines all the EUV filtergrams and the
LOS magnetograms into a single segmentation map (Coronal
Hole RecOgnition Neural Network Over multi-Spectral-data;
CHRONNOS). Here our primary aim is to obtain detailed seg-
mentation maps, to account for the full image context, and to dis-
cover relations between the channels independently (Sect. 2.2).
In addition, we evaluate the suitability of each single channel for
coronal hole detection, which also provides us with an increased
interpretability (Sect. 2.3). We build upon the assumption that
coronal hole features are present in each channel and employ a
neural network that produces a segmentation map for each in-
dividual channel (Single Channel Analyzing Network; SCAN).
A common criticism of neural networks is that they behave like
a black box. This means that, although neural networks provide
state-of-the-art performance for a wide variety of applications,
the reasoning of the neural network is typically hidden. In this
study, we mitigate this shortcoming by estimating the coronal
hole boundary information for each channel separately and by

evaluating the performance increase when using multi-spectral
information.1

2.1. Data set

We use images recorded in the seven EUV filters of AIA (Lemen
et al. 2012) and line-of-sight magnetograms from HMI (Schou
et al. 2012) on board the SDO (Pesnell et al. 2012) mission. For
the supervised training, we use pixel-wise segmentation masks
from Delouille et al. (2018) as reference for training. The masks
were obtained in a semi-automatic fashion, where the authors
automatically extracted potential coronal holes with the SPoCA-
CH module and manually reviewed the obtained segmentation
maps in order to remove the remaining filaments and invalid
extractions. The SPoCA-CH module is a modified version of
the SPoCA algorithm (Verbeeck et al. 2014) that gives more
conservative coronal hole boundaries, less erroneously classified
filaments, and less other artifacts as compared to the original
SPoCA module (Delouille et al. 2018). In this paper, we refer to
this data set as SPoCA-CH. The data set contains a total of 2031
coronal hole segmentation maps for the time period between
2010-07-21 and 2017-01-01 and comprises observations from
each day where a valid extraction could be obtained. Thanks to
the review process, we expect no filaments in the data set, but we
note that a significant number of coronal holes were not detected
by the method or removed during the review process (about 7%;
see Sect. 3) and we observe method-dependent variations of the
coronal hole boundary. We assume that the small deviations are
sufficiently sparse and random, such that the neural network we
develop can generalize to the task of coronal hole detection.

We apply a temporal separation of our data set, where we use
observations from the last two months of each year for evalua-
tion (test set) and the remaining observations for model training
(training set). From this we obtain 1667 training samples. With
this separation, an increased model performance due to memo-
rization of similar observations can be excluded.

For each considered day we acquired the observation that is
closest to 00:00 UT and has a valid quality flag. We obtained
all seven EUV filtergrams (94 Å, 131 Å, 171 Å, 193 Å, 211 Å,
304 Å, 335 Å) and the LOS magnetogram. For each EUV filter-
gram we applied a standard data reduction:

1. Center the solar disk and rotate for solar north up.
2. Spatial normalization of 1.1 solar radii to 512 pixels with a

third-order affine transformation.
3. Crop frame to 1.1 solar radii.
4. Correct for device degradation (Barnes et al. 2020b; Boerner

et al. 2014).
5. Normalize the exposure time.
6. Scale value range to (0, 1) based on a fixed data range, and

crop values that are out of range (see Appendix A).
7. Apply asinh stretch (see Appendix A) and scale values to

(−1, 1).

The data reduction for the LOS magnetograms is performed sim-
ilarly:

1. Center the solar disk and rotate for solar north up.
2. Spatial normalization of 1.1 solar radii to 512 pixels with a

third-order affine transformation.
3. Crop frame to 1.1 solar radii.
4. Set off-limb pixels to zero.

1 visit the project page for recent updates:
https://github.com/RobertJaro/MultiChannelCHDetection

Article number, page 3 of 19

https://github.com/RobertJaro/MultiChannelCHDetection


A&A proofs: manuscript no. output

5. Scale values in the range (−100, 100) Gauss linearly to
(−1, 1) and crop values outside the interval such that mag-
netic field strengths > 100 Gauss are set to 100 Gauss and
values < −100 Gauss to −100 Gauss. This implies that we
concentrate on weak fields, which are dominant within coro-
nal holes and the surrounding quiet Sun regions, while we
only neglect variations in the strong magnetic fields, which
are mostly apparent in active regions.

With this preprocessing, the images are consistent over the full
data set and independent of device degradation or yearly varia-
tions due to the ecliptic orbit (cf. Galvez et al. 2019).

The resized images (512×512) have approximately a scale
of 4.2" per pixel. As coronal holes appear as extended regions in
EUV filtergrams, the 512×512 pixels provide a sufficient amount
of spatial detail to account even for small coronal holes.

In order to provide a test set with as few missing coronal
holes as possible, we manually classify samples in the time pe-
riod from 2010-11-05 to 2016-12-26 using the Collection of
Analysis Tools for Coronal Holes algorithm (CATCH; Heine-
mann et al. 2019)2. For this data set, we again select the last
two months of each year. We only include segmentation maps
where a reliable extraction with low uncertainties could be ob-
tained with CATCH, comprising about 60% of the possible
days. We only consider coronal hole contributions between lon-
gitudes of [−400", 400"] in helioprojective coordinates, where
we can clearly identify coronal holes. CATCH uses a modu-
lated threshold-based approach where the detection threshold is
determined from AIA 193 Å filtergrams by the intensity gradi-
ent perpendicular to the boundary. This is done by minimizing
the area difference between similar thresholds individually for
each coronal hole. As shown in Heinemann et al. (2021), the ob-
tained boundary reflects the temperature and density gradient of
the coronal holes. We select all clearly identifiable coronal holes,
check for filaments, and remove any erroneous extractions. From
this we obtain 239 segmentation maps. We explicitly neglect
samples from 2017 onward because of the increased difficulty
in finding an appropriate boundary during periods of low solar
activity with the threshold-based method.

In summary, we consider 1667 samples for training and 239
samples for evaluation. For the comparison between CATCH and
SPoCA-CH (Sect. 3), we consider 202 samples because of miss-
ing segmentation maps.

2.2. Progressive growing neural network (Coronal Hole
RecOgnition Neural Network Over multi-Spectral-data;
CHRONNOS)

In this paper, we adapt the progressively growing image genera-
tion approach of Karras et al. (2017) for semantic image segmen-
tation (cf. Collier et al. 2018). We employ a growing encoder-
decoder architecture, where we start with an image resolution
of 8×8 pixels, which we progressively increase until we reach a
resolution of 512×512 pixels.

The majority of the trainable parameters are provided by
convolutional blocks (ConvBlock; see Appendix B), which we
use as a central component in our neural network architecture.
The training is performed iteratively in two steps, where we start
with a core model that consists of a ConvBlock and an input- and
output convolutional layer, which transform the input image to
match the number of filters of the ConvBlock and the output of

2 The CATCH suite is publicly available via GitHub (https://
github.com/sgheinemann/CATCH)

Figure 2. Training procedure of the progressively growing architecture
(CHRONNOS). The next resolution level is gradually faded in by sep-
arating the input and output layers (yellow) of the original core model
into a separate branch (old branch). The new branch introduces new
ConvBlocks (blue) and is faded in by increasing the α parameter over
the training cycle. The difference in resolution is adjusted by up- and
down-sampling layers for the old branch and by convolutional layers
for the new branch (green). Once the old branch is faded out (α = 1),
the old branch is removed and the remaining architecture is stabilized
by an additional training cycle. The new branch and core model form
the core model for the next resolution level.

the ConvBlock to an image, respectively. In the first step, we in-
crease to the next highest resolution by separating the old input-
and output convolutional layer and introducing a new branch.
The new branch consists of an input convolutional layer followed
by a ConvBlock and a stride-2 convolutional layer, which corre-
sponds to a spatial resolution decrease by a factor of two. The
spatial dimension of the new input image is matched to the old
input-convolutional-layer by an average pooling layer. The new
input to the core model is obtained by building the weighted sum
of the two branches. The output is obtained in the same way
by using a transposed convolution block with stride-1/2 and an
upsampling layer (see Fig. 2). A skip connection is applied be-
tween the two newly introduced ConvBlocks. The input to the
core model and the segmentation mask output are obtained from
the sum of both branches. Here, the new branch and old branch
are weighted by α and 1−α, respectively. During the training we
linearly increase α from 0 to 1. With this gradual transition, we
prevent a sudden disruption of the parameters in the core model.
In the second step, we remove the old branch and train the com-
bined architecture (equivalent to α = 1). This architecture then
serves as the core model for the next iteration. Appendix B con-
tains the architecture of the fully assembled model.

The main objective of the progressively growing method is to
provide high-resolution segmentation maps from the full multi-
wavelength input while still being able to identify global corre-
lations. By combining the multi-channel information at an early
stage, we expect that the neural network can focus on the most
relevant channels and discover relations between the channels
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(e.g., distinguish between filaments and coronal holes based on
the underlying magnetic field information). At the deepest layer
(8×8 pixels), our network can correlate features across the full
disk and is able to take into account the full context of the im-
age. The intermediate blocks of the encoder-decoder architec-
ture use skip connections that further benefit the update gradi-
ent (He et al. 2016) and take advantage of the spatial details
(Ronneberger et al. 2015). With the use of higher resolutions
(512×512 pixels), the network can better account for small re-
gions (see Sect. 3) and provides detailed segmentation maps.
The step-wise increase of image resolution provides more sta-
ble and efficient training (Karras et al. 2017). We note that even
higher image resolutions could be achieved by further growing
the architecture. In the present case, the maximum resolution of
512×512 pixels was selected based on the computational limita-
tions and the required spatial details.

2.3. Single Channel Analyzing Network (SCAN)

For our second approach, we aim at increased interpretability.
We assume that every observation channel contains information
about the coronal hole boundary and train a neural network for
each channel individually.

To this aim, we use the same model architecture and training
procedure as introduced in Sect. 2.2, with the difference that we
set the input dimensions to 1. We call the adapted CHRONNOS
architecture Single Channel Analyzing Network (SCAN). For
each channel, we train an individual neural network such that de-
tections are solely based on the single channel information. This
is different from CHRONNOS, where the detections are based
on the combined representation of all channels and we cannot
guarantee that each channel is equally used. Each EUV model
is identical in its architecture and training. Thus, the results pro-
vide a comparison of the relative information of the individual
channels for coronal hole detection. For the model training with
the LOS magnetograms, we start with a resolution of 16×16 pix-
els, grow our architecture to 128×128 pixels, and use a reduced
number of parameters (see Appendix B) in order to counterbal-
ance overfitting and diverging training. With the LOS magne-
tograms, we analyze whether coronal holes can be detected from
substantially different data, where coronal hole features cannot
be directly identified by humans.

2.4. Evaluation metrics

The output of the neural network corresponds to a pixel-wise
probability map of the full image, with values ranging between
0 and 1. For our evaluations, we apply a threshold of 0.5 to obtain
binary segmentation maps. For all our comparisons with the test
set, we only consider a central section of the solar disk covering
a field of ±400" from the central solar meridian, in accordance
with the extraction method of CATCH.

For a pixel-wise comparison of our model results with the
labels from the test set, we use three metrics. We calculate the
percentage of correctly classified pixels (accuracy). Because of
the over-representation of noncoronal-hole pixels in the solar im-
ages, this metric will give better performance scores for conser-
vative estimates and samples where only a small fraction of the
area is occupied by coronal holes. As an alternative estimate, we
use the Intersection-over-Union (IoU), which compares the frac-
tion of overlapping coronal hole area. This metric estimates the
extent to which the model detection of the coronal hole aligns
with the sample from the test set, independent of the total coro-

Figure 3. The IoU is computed by a pixel-wise comparison between
two segmentation maps. The IoU is determined by the total number
of pixels that intersect between the two segmentation maps (blue) di-
vided by the total number of pixels classified by either method (blue,
green, and red). The example shows a slightly larger estimated coro-
nal hole area by CATCH (green) and an additionally detected region by
CHRONNOS (red).

nal hole area in the image. An example of such a computation is
given in Fig. 3, where the model prediction is shown in red, the
manual CATCH labels in green, and the intersection in blue. In
addition, we compute the True-Skill-Statistic (TSS; Barnes et al.
2016):

TS S =
T P

T P + FN
−

FP
FP + T N

, (1)

where T P, T N, FP, and FN refer to the pixel-wise estimated
number of true positives, true negatives, false positives, and false
negatives, respectively. The metrics are computed per data sam-
ple and averaged over the full test set.

For most applications, the individual coronal holes and their
parameters (e.g., area, magnetic field) are of primary importance
(e.g., space-weather, parameter analysis). Therefore, we estimate
the performance of our models by determining the number of
correctly identified coronal holes and by comparing the total area
of the individual coronal holes. We identify coronal holes from
the semantic maps by grouping coronal hole pixels, where we
assign all adjacent pixels to the same group. We consider only
coronal holes exceeding an area of 1.5 ·1010 km2 (corresponding
to about 0.5% of the visible solar surface). This threshold is in
line with the sizes of coronal holes that show relevant correla-
tions to high-speed solar wind streams (Hofmeister et al. 2018;
Tokumaru et al. 2017). For each coronal hole, we determine the
bounding box by the maximum horizontal and vertical extent of
the grouped pixels.
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Figure 4. Example of the progressive resolution increase. The input images and labels are adjusted to the model at each resolution level. With the
increase in resolution, the boundary becomes more precise and new regions can be identified that are missing at lower resolutions.

The coronal hole area is determined by summing the areas
(in units of km2) of the labeled coronal hole pixels. To calcu-
late the area, we first apply a geometric correction for projection
effects (Hofmeister et al. 2017):

Ai =
Ai,pro j

cosαi
, (2)

where Ai,pro j refers to the projected area and α to the helio-
graphic angular distance from the center of the ith pixel. For each
coronal hole we compute the full area within the bounding box
in order to account for adjacent small coronal hole areas.

For a comparison in terms of individual coronal holes, we
combine the bounding boxes of the prediction (CHRONNOS,
SCAN, SPoCA-CH) and the reference (CATCH) by grouping
boxes based on their maximum intersection, merging them by
selecting the maximum extent, and removing any boxes that are
enclosed within others. We evaluate the total area within each
merged bounding box for both methods and classify the individ-
ual coronal hole detections. We classify coronal holes as false
negative (FN) when the predicted area is below 10% of the ref-
erence area, as false positive (FP) if the reference area is below
10% of the predicted area, and as true positive (TP) otherwise.
With this we primarily estimate the correct position of detected
coronal holes, while being more tolerant in terms of coronal hole
areas, which are typically identified in a more subjective man-
ner. The detailed comparison of CH areas is given in Sect. 4.1,
including the cumulative percentage of coronal holes as function
of the difference in derived areas (Fig. 10).

From the evaluation of individual coronal holes, we calculate
the recall,

RCL =
T P

T P + FN
, (3)

the precision,

PRC =
T P

T P + FP
, (4)

and the fraction of correctly identified coronal holes (accuracy),

ACC =
T P
T
, (5)

where T refers to the total number of detected coronal holes. We
note that in our evaluation the number of true negative samples is
zero (TN = 0), because we cannot compare the noncoronal-hole
areas in the same way.

3. Results

For our models, we use the Adam optimizer with a learning rate
of 0.001, β1 = 0 and β2 = 0.99 (cf. Karras et al. 2017). We re-
duce overfitting by using a weight decay of 10−8, set the dropout
layer in each ConvBlock to 0.2, and augment the images by ran-
dom horizontal and vertical flips. We use binary-cross-entropy
as loss function and weight the noncoronal-hole class with 0.1
to account for the class imbalance.

For the CHRONNOS model, we start with a resolution of
8×8 pixels and grow the model to a resolution of 512×512, as
described in Sect. 2.2. For the resolution adjustment of the in-
put images and the output maps we use average binning. At
each resolution level, the network is trained to predict the down-
sampled labels from the eight input channels (see Fig. 4). We
start with a batch size of 64 and decrease it at each resolution
level by a factor of two such that the batch size at the high-
est resolution is 1, as determined by our computational limita-
tions. The number of training epochs is adjusted in the same
way, with 10 training epochs at the highest resolution and a max-
imum of 100 epochs. An overview of randomly selected sam-
ples from the test set is shown in Fig. 5 and the accompany-
ing movie, showing the results of CHRONNOS over the years
2010-2020 at a cadence of one day, can be found online (Movie
1; https://youtu.be/kqkjJC3eH0c). The red contour lines
indicate the 0.5 probability threshold.

For the SCAN models, we train an individual neural network
for each channel, where we use the CHRONNOS architecture
and adjust the input dimensions as described in Sect. 2.3. For
the EUV models, we apply an analogous training to that used
in the multi-channel approach. For the LOS magnetograms we
use a different setup, where we start with 16×16 pixels, grow
the model to 128×128 pixels, and reduce the learning rate to
0.0001 in order to reduce overfitting and encourage a better con-
vergence. The segmentation maps of the LOS magnetograms are
upsampled to 512×512 pixels in order to match the resolution
of the original labels. In Fig. 6, samples across the full test set
are shown, where the 0.5 probability threshold is given for each
channel by contour lines. A sample of each channel and the cor-
responding segmentation maps are shown in Fig. 7. From the
resulting segmentations, the boundary variations and differences
in the detections among the different channels can be seen. A
movie of the evaluated test set can be found online (Movie 2;
https://youtu.be/lEn1DGmi2yI).

Table 1 summarizes the performance evaluation of the indi-
vidual channels of the SCAN models, the results of the CHRON-
NOS model, and the SPoCA-CH labels from Delouille et al.
(2018), as compared to the independent manual CATCH labels.
We identify coronal holes as described in Sect. 2.4 and find
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Figure 5. Samples of coronal hole detection over the test set (2010-2016; time-span of CATCH labels) of our CHRONNOS model. The red
contours indicate the 0.5 threshold of the segmentation masks. The results correspond to the unfiltered output of the neural network. An animated
version showing the full data set can be found online (Movie 1; https://youtu.be/kqkjJC3eH0c).

261 coronal holes that exceed the 1.5 · 1010 km2 area thresh-
old from the labels of CATCH and CHRONNOS. Here, the term
“recall” refers to the percentage of coronal holes in the man-
ual CATCH labels that were also detected by the method under
evaluation, “precision” to the percentage of coronal holes that
were detected by the evaluated method and are also present in the
CATCH labels, and “accuracy” to the percentage of correct coro-
nal hole detections. As can be seen from Table 1, the CHRON-
NOS model provides the best performance in terms of IoU (0.63)
and TSS (0.81), and correctly identified coronal holes (accuracy
of 98.1%). This is in agreement with the assumption that neu-

ral networks can take multi-dimensional data into account and
filter the most relevant information. The precision score of the
SPoCA-CH labels is high (99.5%), as expected from the man-
ual removal of filaments and invalid detections, but from the re-
call score it can be seen that this data set is missing about 7%
of the coronal holes that exceed the 1.5 · 1010 km2 threshold.
The best recall is achieved by the SCAN-193 model (99.2%),
but this model also shows a higher number of false positive de-
tections, with a precision of 98.5%. For the pixel-based accuracy,
the results of CHRONNOS, SCAN-193, and the semi-automatic
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Figure 6. Comparison of the coronal hole boundary for each channel as detected by the SCAN models during 2010 – 2018. We show one example
per year, each for the day November 30 (part of the test set).

SPoCA-CH labels are in the same range, where CHRONNOS
achieves a score of 97.5%.

After completing the training, all our models can operate in
real-time and independent of human supervision. Our CHRON-
NOS model provides segmentation maps of the full solar disk
within 33 ms on one graphics processing unit (GPU), and re-

quires about 0.5 seconds on four central processing unit (CPU)
cores. The results presented in this paper show the unmodified
output of our neural networks (i.e., no cleaning of very small
regions detected, etc.).
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Figure 7. Sample of the segmentation maps by our SCAN models. For each channel we separately train a SCAN model to detect coronal holes.
The segmentation maps of the individual channels are given below the corresponding input image. From left to right, AIA 94 Å, 131 Å, 171 Å,
193 Å, 211 Å, 304 Å, 335 Å, and HMI magnetogram. Sharp boundaries suggest a clear identification of coronal holes (193 Å, 211 Å), while fuzzy
boundaries suggest larger uncertainties in the detection (131 Å, 171 Å, 304 Å, magnetogram). We note the flare event at the eastern limb, which
does not affect the detections.

Table 1. Comparison of the CHRONNOS, SCAN, and manually re-
viewed SPoCA-CH labels against the manual CATCH labels. We eval-
uate pixel-wise accuracy, IoU, recall (RCL), precision (PRC), and ac-
curacy (ACC) in terms of detected coronal holes.

Pixel CH
Model ACC IoU TSS RCL PRC ACC
SCAN- 94 96.6 0.50 0.69 93.0 95.5 89.1
SCAN-131 95.5 0.40 0.53 80.6 91.9 75.2
SCAN-171 96.2 0.45 0.61 88.8 92.7 83.0
SCAN-193 97.5 0.61 0.79 99.2 98.5 97.7
SCAN-211 97.4 0.59 0.76 96.8 98.4 95.3
SCAN-304 96.1 0.49 0.69 90.5 92.0 83.9
SCAN-335 96.5 0.52 0.74 94.0 94.7 89.3
SCAN-mag 89.9 0.27 0.59 94.7 68.9 66.3
CHRONNOS 97.5 0.63 0.81 98.8 99.2 98.1
SPoCA-CH 97.8 0.61 0.72 92.6 99.5 92.1

4. Discussion

From the comparison against the independent test set provided
by CATCH (Heinemann et al. 2019), we find that our method
outperforms the original SPoCA-CH labels, from which also the
training set was separated. Although there is a significant amount
of missing coronal holes in the SPoCA-CH set (about 7%), our
CHRONNOS model shows a much more reliable detection with
only 1% missing coronal holes. From this finding, we conclude
that our neural network does not replicate the characteristics of
the SPoCA algorithm that lead to the missing samples. The net-
work shows successful generalization to the task of coronal hole
detection and neglects incorrect training samples that contain
partial or missing coronal hole detections. A similar behavior
can be seen from image denoising with neural networks, where
only noisy data were used for model training (Lehtinen et al.
2018; Baso et al. 2019).

Among the presented models, the CHRONNOS model
shows the best performance (Table 1), by clearly providing the
most reliable predictions (accuracy of 98.1%) and showing good
agreement in the detected regions with the manual CATCH la-
bels (pixel-wise accuracy of 97.5%; pixel-wise TSS of 0.81; IoU
of 0.63). We find that the 0.8% false positives by CHRONNOS
all correspond to detections close to the 1.5 · 1010 km2 thresh-
old at high latitudes, where the manual classification has larger
uncertainties. From a manual revision of the full data set, we
identified cases where the darkest parts of filament foot points

are assigned with a coronal hole label —which amounts to a
few misclassified pixels—, which are irrelevant for most practi-
cal applications (e.g., extraction of individual coronal holes, as-
sessment of the full-disk images) and have also very little effect
on the evaluation metrics. With a detection rate of 98.8%, we
conclude that our CHRONNOS model reliably identifies coro-
nal holes and distinguishes them from filaments. This is a strong
improvement and is an important advantage of our model com-
pared to others, for which the distinction of coronal holes and
filaments is a severe challenge. Reiss et al. (2015) evaluated the
coronal hole detections from two algorithms using EUV images
by comparing them with ground-based Hα images from Kanzel-
höhe Observatory to distinct filaments. These authors found that
for both the original SPoCA algorithm of Verbeeck et al. (2014)
and the intensity-based thresholding algorithm of Rotter et al.
(2012), about 15% of the identified coronal hole objects were
actually filament regions.

From the preparation of our test set, we can expect a similar
performance for novel data. We used daily observations, which
lead to a high diversity of the data set, and applied a clear tem-
poral split between test and training samples, which prevents the
model from memorizing similar data samples. This is particu-
larly important because of the long lifetime of coronal holes over
several solar rotations (e.g., Heinemann et al. 2020). With the use
of data samples from low and high solar activity, we optimized
our neural network to provide consistent detections independent
of the solar cycle and the associated highly variable EUV emis-
sion. The applied vertical flips during model training add an in-
variance for the global magnetic polarity of the Sun and thus our
models will also provide comparable coronal hole detections for
the next solar cycle.

All our segmentation maps correspond to pixel-wise proba-
bilities. Although the assignment of probability values is pixel-
wise, the multi-scale architecture provides a larger view on the
image and the network rather assigns probabilities to individual
coronal holes and also accounts for uncertainties at the bound-
ary. An example of a probability map of our CHRONNOS model
is shown in Fig. 8. The neural network provides a human-like as-
signment of probabilities: with high probability values at sharp
boundaries and for extended regions, and low probabilities at
fuzzy boundaries, at coronal holes close to the limb, at polar re-
gions and for small uncertain regions. The importance of con-
trast can be seen from the sample SCAN results in Fig. 7, where
the 94 Å, 131 Å, 171 Å, and 304 Å channels and the LOS mag-
netogram generally produce boundaries that are less sharp than
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Figure 8. Example of the trained CHRONNOS model. The neural net-
work shows high certainty at sharp boundaries, reduced probability at
fuzzy boundaries, and assigns low probability values for regions that
cannot be clearly classified.

those produced by the channels where the coronal holes are ob-
served in high contrast (193 Å, 211 Å, 335 Å). For the definition
of the coronal hole boundary, we set the probability threshold to
0.5. The majority of probability values are either close to 0 or 1.
Only 1% for CHRONNOS and a maximum of 6% for SCAN-
magnetogram lie in the range between 0.2 and 0.8, which results
in small performance variations with the change of threshold.

The precise magnetic topology of coronal holes is an active
topic of research, where methods such as the boundary detec-
tion from EUV images or extrapolation of photospheric mag-
netic fields can only provide a fraction of the information and
the true coronal hole boundary still remains elusive. For space-
weather aspects and the statistical study of coronal holes, the
estimate of the boundary is still a key component (Rotter et al.
2012; Hofmeister et al. 2019; Asvestari et al. 2019; Hewins et al.
2020). As the definition of the boundary strongly depends on
the detection method (see Reiss et al. (2021) for a compari-
son of nine different methods for CH detection) and the wave-
length range used, we argue that the consistency of the coronal
hole detection is decisive for further applications. For this rea-
son, we provide evaluations in the following sections that esti-

Figure 9. Comparison of the coronal hole areas as derived by CHRON-
NOS and the manual CATCH labels. Each data point corresponds to
an individual coronal hole, where the latitude of the center of mass of
the coronal hole is indicated by the color coding. The red line indicates
the ideal one-to-one correspondence. The areas are plotted on a dou-
ble logarithmic scale. The largest deviations occur for small and high-
latitudinal coronal holes.

mate the consistency and reliability of our CHRONNOS model.
In Sect. 4.1, we compare the coronal hole area of the manual
CATCH detections and the CHRONNOS detection in order to
identify differences and estimate the variations. Section 4.2 as-
serts the long-term consistency of our method, independent of a
ground-truth data set. The consistency over short timescales is
analyzed in Sect. 4.3, where we directly compare all three meth-
ods (SPoCA-CH, CATCH, CHRONNOS). We conclude the dis-
cussion with an analysis of the importance of the wavelength
used in the observations and samples of coronal hole detections
from LOS magnetograms (Sect. 4.4).

4.1. Coronal hole boundary (CHRONNOS)

The definition of the coronal hole boundary varies between dif-
ferent methods and also manual extractions have a certain bias
(see Sect. 4.3 for a direct comparison). Here we compare the
agreement in coronal hole area between the manual CATCH
labels and the fully automatic CHRONNOS model. We com-
pute the area of each coronal hole among the CHRONNOS and
CATCH labels as described in Sect. 2.4 and plot the derived ar-
eas against each other on a logarithmic scale (Fig. 9). In general,
the distribution shows a good agreement between the methods,
from which we conclude that our model shows no systematic
over- or underestimation of coronal hole areas. The major devia-
tions originate from small coronal holes and from coronal holes
that are close to the poles. Here, projection effects play a signif-
icant role that hinders precise identification of the boundary, in
particular also for manual classifications. Low-latitude coronal
holes, which are the major source of high-speed stream affecting
Earth and our space weather (e.g., Hofmeister et al. 2018), show
very good agreement between the methods.

We further evaluate the percentage of coronal holes, where
the difference in area is below a given threshold. The thresh-
old is computed as a fraction of the average coronal hole area
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Figure 10. Evaluation of the agreement in coronal hole area. The plot
shows the cumulative percentage of coronal holes as function of the dif-
ference in the derived areas ∆A, given in fractions of the mean coronal
hole area of the CATCH and CHRONNOS detection. The comparison
is performed in terms of the deprojected area (km2; blue) and pixel area
(orange).

(A), which is determined for each coronal hole as the mean area
between both methods. With this we omit the preference for a
specific method and treat deviations of smaller coronal holes as
equally important. In Fig. 10 the fraction of coronal holes is plot-
ted as a function of the threshold. We assess our model in terms
of area (km2) and pixels. The slightly better performance for the
pixel area originates from projection effects, which increase the
difference in areas at the poles derived in km2. Our evaluation
shows that 75% of the coronal holes have a difference in area of
<50% and that only 9% deviate by a factor two or greater (red
lines in Fig. 10).

4.2. Solar cycle stability (CHRONNOS)

We estimate the stability of our model over long timescales by
investigating the dependence of the total coronal hole area on
solar activity. During solar maximum coronal holes can appear
at all latitudes, but with shorter persistence, while during solar
minimum large polar coronal holes become dominant and can
be present over years (Cranmer 2009). From this overall rela-
tion, we expect an anti-correlation of the coronal hole area with
the total sunspot number (SSN; proxy for solar activity). We use
the trained model to obtain segmentation maps of each day from
2010-05-13 to 2020-08-25, independent of previous data set as-
signments, and compute the total coronal hole area over the full
solar disk for each observation. Figure 11 shows the resulting
time-series of coronal hole areas along with the international
sunspot numbers for the full time range under study. We note that
the last two months of each year and all results after 2017-01-01
were never considered for model training, but show a smooth
transition with the remaining time-series. The short-term varia-
tions originate from the rotation signal of single coronal holes.
We obtain the overall trend by applying a running mean filter of

13 months. A similar trend in total coronal hole area has also
been shown in Illarionov et al. (2020) using synoptic maps of
AIA 193 Å. We compare the smoothed coronal hole area of
our method xCH to the 13 month smoothed total sunspot num-
ber xS S N from Clette & Lefevre (2017) by computing the Pear-
son correlation coefficient between the two sequences, obtaining
r = −0.88, which shows the expected strong anti-correlation.
From this we conclude that our method provides consistent coro-
nal hole detections independent of solar-cycle variations.

4.3. Temporal stability (CHRONNOS)

In this section, we use daily observations to study the variation
and coherence of the coronal hole area over short timescales,
from days to weeks. From the total coronal hole area time-series
shown in Fig. 11a, we select the test set samples of 2016 (green
bars in Fig. 11a,b) and plot the total coronal hole area within
the central slice (±400") of our neural network (CHRONNOS),
the semi-automatic SPoCA-CH labels, and the manual CATCH
labels (Fig. 11c). Each method operates on single observations.
From the timescales of coronal hole evolution, we expect only
gradual changes (Heinemann et al. 2020), and therefore incon-
sistencies in the detection would appear as sudden jumps in the
time-series.

Among the considered methods, the CHRONNOS model
shows the smoothest time-series. The SPoCA-CH labels fre-
quently show steps and sudden jumps in the time-series. Sim-
ilarly, also for the manual CATCH labels we observe a lower
coherence of the time-series. As can be seen from Fig. 11c,
our method provides consistent detections for each observa-
tion day, without any human adjustments (see also the animated
version of the full data set online Movie 1; https://youtu.
be/kqkjJC3eH0c). This is an important improvement over the
semi-automatic methods (SPoCA-CH and CATCH), which both
show inconsistencies over daily samples and repeatedly fail to
provide segmentation maps because of invalid extractions or
large uncertainties.

In Fig. 11c, a discontinuity is observed on 2016-12-06 for the
SPoCA-CH and CATCH detection. Figure 12 shows the maps
of five adjacent days for comparison, which corresponds to the
blue bar in Fig. 11c. The rows show the AIA 193 Å image,
the CHRONNOS map, the CATCH map, and the SPoCA-CH
map. From a direct comparison, we can see that the CHRON-
NOS model is consistent over time and is in good agreement
with the EUV filtergrams. The CATCH maps show slight varia-
tions in the determined boundary, which causes the discontinuity
at 2016-12-06. We note that CATCH is not designed for tempo-
ral consistency and is tuned to individual coronal holes in the
center of the disk. In the SPoCA-CH maps, large coronal hole
regions are even missing, which leads to the sudden drop in Fig.
11c.

From Fig. 12 we can also compare the regions outside the
central slice (blue dashed lines) between the CHRONNOS and
SPoCA-CH maps. In this example, our CHRONNOS model still
provides accurate and consistent predictions outside the central
slice, while the SPoCA-CH method shows invalid or missing
coronal hole detections towards the solar limb. This further indi-
cates a successful generalization that outperforms the algorithm
that provided the input maps for the network training.

In summary, our CHRONNOS model provides fully auto-
matic coronal hole detections similar to the CATCH and SPoCA-
CH labels, which both required manual adjustment to exclude
filaments and to obtain a valid coronal hole boundary. The areas
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Figure 11. Analysis of the temporal consistency of the CHRONNOS model. (a) Daily variation in coronal hole area over the full disk, as given
by our model, over the full data set from 2010-05-13 to 2020-08-25 (blue) and a 13 month smoothed total coronal hole area by a mean filter
(orange). (b) 13 month smoothed series of the total sunspot number, for comparison to the coronal hole area (SILSO World Data Center 2010-
2020, http://www.sidc.be/silso/ ). (c) Time line from 2016-11-01 to 2016-12-31 for the CHRONNOS model (blue), the manual CATCH
labels (orange), and the SPoCA-CH labels (green). The areas in panel (c) are evaluated within the central slice (±400"). The last two months of
each year and all observations from 2017 onward correspond to the test set and show a smooth transition with the samples of the training set. The
blue shaded area corresponds to the samples shown in Fig. 12.

between the CHRONNOS model and the manual CATCH labels
are in good agreement overall, but the comparison of daily varia-
tions suggests that the CHRONNOS detections are more consis-
tent, robust, and reliable. As can be seen from the evaluation of
the full solar cycle, the network detections appear consistent with
our assumption about the long-term magnetic evolution, and also
provide valid detections during solar minimum where other al-
gorithms face problems. We note that all comparisons between
the different methods are carried out for the central slice (±400"),
but that our method also provides reasonable results close to the
limb (see e.g., Fig. 5 and the accompanying movie).

4.4. Channel importance (SCAN)

In order to obtain more information about the importance of each
channel for coronal hole detection, we use the SCAN models
that allow us to obtain segmentation maps for each channel sep-

arately. Although we can not fully investigate the decisions of
the neural network, the comparison of the SCAN maps allows us
to estimate the importance of the different input channels. From
the similar architecture and training of the SCAN models and
CHRONNOS, we can assume that differences in the results are
due to the available information in the corresponding input data.

From the samples in Fig. 6 and segmentation maps in Fig. 7,
it can be seen that the accuracy of the boundary depends strongly
on the input data. The 193 Å, 211 Å and 335 Å filters, give the
best single channel detections, with an IoU of 0.61, 0.59 and
0.52 and a TSS of 0.79, 0.76 and 0.74, respectively. This is an
expected result, since the training and test labels are obtained
from the 193 Å channel, but is also in agreement with the differ-
ent temperature sensitivities. The 193 Å filter has two peaks at
its response function, at 1.6 MK and 20 MK. The high temper-
ature peak is only relevant for flares, whereas the strong signal
observed by the 193 Å filter at 1.6 MK samples the quiet Sun
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Figure 12. Comparison of the segmentation maps of the three different methods for five consecutive days. The top row shows the 193 Å filtergrams
of the respective day and the rows below show the corresponding segmentation maps of our CHRONNOS model, the manual CATCH labels, and
the semi-automatic SPoCA-CH labels. The blue dashed lines refer to ±400" of the central slice. We note that the CATCH results shown are only
for the region within the slice, whereas CHRONNOS and SPoCA-CH evaluated the full solar disk.

corona. Applying the AIA differential emission measure analy-
sis, Saqri et al. (2020) showed that the typical temperatures in
coronal holes are 0.9 MK, whereas the surrounding quiet corona
shows temperatures in the range of 1.5-2.0 MK. This means that
the 193 Å filter nicely reveals the signal in the quiet ambient
corona and also provides a good contrast to the lower tempera-
ture coronal hole regions.

The 211 Å, 335 Å, and 94 Å filters are most sensitive to
plasma temperatures around 2 MK, 2.5 MK, and 6 MK, respec-
tively. In these filters, we observe a trend of decreasing perfor-
mance (IoU of 0.59, 0.52, and 0.50, respectively) with increasing
temperature (c.f. Table 1), which may be related to the decreas-
ing data numbers (counts) in the temperature response function
(Lemen et al. 2012). This results in a lower coronal hole contrast
because of the reduced emission from quiet coronal plasma, as
can be also seen from the fuzzy boundaries of the coronal holes
in the EUV filtergrams and detections in Figs. 6 and 7.

The SCAN results for 171 Å and 131 Å show the lowest per-
formance among the coronal emission lines, with an IoU of 0.45

and 0.40, respectively. The 171 Å filter samples plasma at a tem-
perature of 0.6 MK (Lemen et al. 2012). This relates to the lower
temperatures observed in coronal holes (1 MK) as compared to
the surrounding corona, and consequently shows a lower coro-
nal hole contrast. The 131 Å filter monitors plasma at the highest
temperature (10 MK), but the second temperature peak in the re-
sponse function at 0.4 MK leads to similar results to those of the
171 Å filter. By combining all the EUV channels, our method
benefits from both the high contrast of the hot channels and the
high count statistic of the cooler channels.

The AIA 304 Å images and the HMI LOS magnetograms
are associated with the upper chromosphere and photosphere,
respectively. From the IoU we can see that the boundary, as es-
timated from the 193 Å spectral line, cannot be matched from
lower atmospheric layers. For AIA 304 Å, this can also be seen
from the deviations of the coronal hole boundaries in Fig. 6.
However, SCAN-304 provides an IoU of 0.49, a TSS of 0.69,
and a coronal hole accuracy of 83.9%, that is, a good perfor-
mance that exceeds both SCAN-131 and SCAN-171, and pro-
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Figure 13. Comparison of CHRONNOS and SCAN-magnetogram model results of five consecutive days during solar minimum phase. The
positions of the coronal holes are in good agreement, while the shapes vary significantly. An additional coronal hole close to the central active
regions is detected by SCAN-magnetogram, which might be outshined in the EUV filtergram.

Figure 14. Comparison of CHRONNOS and SCAN-magnetogram model results of five consecutive days during solar maximum phase. The
SCAN-magnetogram model shows the ability to identify even small coronal holes close to active regions.

vides comparable results to SCAN-94 (c.f. Table 1). This result
suggests that the chromospheric line is suitable for use in coronal
hole detections.

The SCAN-magnetogram model uses a different architecture
and training from the SCAN models for the EUV filtergrams. We
find that the SCAN-EUV training procedure is prone to under-
estimating coronal holes when applied to LOS magnetograms,
which we associate with the deviations between the segmenta-
tion masks and the data. We also find that the 512×512 pixel
magnetograms do not result in more detailed boundaries. With
the reduced architecture we avoid overfitting and obtain segmen-
tation maps at an appropriate level of resolution. The evaluation
of individual coronal holes shows that 94.7% were correctly de-
tected, but that about 30% are false detections. There are two in-
terpretations of this result. First, the SCAN-magnetogram results

could be less reliable and therefore frequently lead to false detec-
tions. Second, the detections could be associate to open magnetic
field structures in the photosphere that are outshined by active re-
gions in the corona, which might hamper the CH detections in
the coronal EUV filters. An argument that supports the second
interpretation is that, for channels that contain less coronal hole
information, we find lower recall scores (e.g., 80.6% for AIA
131 Å), although this could also be due to the different model
architecture. We note that the false detections also include dif-
ferences in size, which can be substantial at the poles where the
model generally predicts larger regions (see Fig. 6).

The direct detection of coronal holes from LOS magne-
tograms is particularly interesting for ground-based observa-
tions, where coronal imaging is not possible, but magnetograms

Article number, page 14 of 19



R. Jarolim et al.: Multi-channel coronal hole detection

Figure 15. Sample of the SCAN models and
CHRONNOS from 2015-11-19. The rows
show images of (from left to right): (1) 94 Å,
131 Å, 171 Å; (2) 211 Å, CHRONNOS,
304 Å; (3) 193 Å, 335 Å, and the LOS mag-
netogram. The model detections are shown
as red contour lines for the corresponding
channels. The combined channel result of
CHRONNOS (center) is plotted as an over-
lay onto 193 Å but is obtained from the com-
bined set of channels. The animated version
of this figure can be found online (Movie 2;
https://youtu.be/lEn1DGmi2yI).

can be obtained on a regular basis (Harvey et al. 1996). Magne-
tograms are used for coronal hole detection with the use of mag-
netic field extrapolation (Pomoell & Poedts 2018; Pizzo et al.
2011; Asvestari et al. 2019; Jeong et al. 2020). Here we use a dif-
ferent approach, by directly estimating the coronal hole bound-
ary from photospheric magnetograms. As can be seen from Figs.
13 and 14, this is a non-trivial task for a human, but surprisingly
accurate detections are obtained by the neural network. Also, the
network is able to correctly identify the general magnetic config-
uration of coronal holes as compared to the surrounding area and
to find a mapping between the magnetic field information and
EUV representation of the coronal holes (cf. Kim et al. 2019).

Figures 13 and 14 show examples of SCAN-magnetogram
alongside the CHRONNOS detections. The top row shows the
multi-channel detection of CHRONNOS and the bottom row the
detection made from the LOS magnetograms only. The samples
show observations from five consecutive days taken during so-
lar minimum (2017) and solar maximum (2014). The first thing
to notice about the magnetograms is that they provide a much
coarser detection than CHRONNOS. As we are training our neu-
ral network with segmentation maps from EUV observations, the
boundary cannot be detected precisely and the network assigns
larger regions. We expect that SCAN-magnetogram adjusts the
coronal hole boundary for the expansion with height of the mag-
netic structure, which could explain the detection of different
shapes, as can be seen from the coronal hole close to the disk
center in Fig. 13, while the position of the coronal holes is in
good agreement between both methods and appears consistent
in time.

The observations in Fig. 13 show that the SCAN-
magnetogram model detects an additional coronal hole close to
the central active region (eastern limb on 2017-11-15). While
there is no evidence for the existence of a coronal hole in the
EUV observation (top row), the active region could outshine the
adjacent coronal hole. The appearance near the edge of magnet-
ically complex regions is frequently observed for low-latitude
coronal holes (Cranmer 2009). In addition, we can see from
Fig. 14 that our network is capable of detecting coronal holes
close to active regions, which supports the detection in Fig. 13.
This example illustrates that further analysis with multi-point
observations (STEREO) and their temporal evolution is required
for verification of such detections.

From our evaluation we find that we obtain the best results
by compiling the full information into a single segmentation map
(CHRONNOS; Table 1). Figure 15 shows a side-by-side com-
parison of the detections from the individual channels and the
CHRONNOS detection as a contour overlay. The single-channel
detections (e.g., SCAN-193) tend to also identify regions that
are not clearly associated with coronal holes, but with the addi-
tional information of the other channels in CHRONNOS, such
false detections can be significantly reduced. In the comparison
with the CATCH test set, the 193 Å detection identified 99.2%
of the coronal holes (Table 1), but shows a substantial number
of misclassifications even for larger coronal holes (98.5% preci-
sion). The combined information approach is less prone to spu-
rious dark regions and provides more reliable detections, with a
precision of 99.2% and a slightly higher IoU.
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5. Conclusion

In this paper, we present a reliable, fully automatic, and fast
method for the detection of coronal holes using SDO/AIA and
HMI full-disk images. We apply an extensive evaluation of our
primary method (CHRONNOS), in comparison to an indepen-
dent manually labeled data set. We provide the first method for
coronal hole detection that is thoroughly assessed for reliability
and temporal stability, enables the study of large coronal hole
data sets over different phases of the solar cycle, and allows au-
tonomous monitoring of the Sun. The developed neural network
offers efficient training and is designed to provide detections
based on a maximum amount of spectral and spatial informa-
tion.

We verified 261 individual coronal hole detections that ex-
ceed an area of 1.5 · 1010 km2 ( 0.5% of the visible solar sur-
face) in the time-period between 2010 and 2016 and show that
in 98.1% of the cases the detection by our CHRONNOS model is
correct. Our neural network shows high reliability and has suc-
cessfully learnt to distinguish filaments from coronal holes, with
only 0.8% coronal hole detections that are not overlapping with
the test set and that all correspond to uncertain identifications of
regions close to the poles.

Our primary model (CHRONNOS) achieves an IoU of 0.63,
a TSS of 0.81, and correctly classifies 97.5% of the pixels on av-
erage. From a direct comparison of the coronal hole areas (Sect.
4.1) we observe that errors are mainly due to differences in the
definition of the boundary between the methods. The temporal
evolution over short timescales shows that our neural network
provides a smooth and coherent variation across daily samples,
whereas the other methods show discontinuities in the time evo-
lution of the coronal hole areas (Sect. 4.3). In addition, we com-
pared the variation of total coronal hole area (i.e., summed over
the solar disk) over the full solar cycle no. 24 and find a strong
anti-correlation with the total sunspot number of r = −0.88, in
agreement with the expected long-term evolution. These findings
demonstrate that our method shows high temporal consistency
over long and short timescales.

Our method shows successful generalization and outper-
forms the manually filtered SPoCA-CH labels of Delouille et al.
(2018), from which we separated our training set. A compari-
son of the individual detection methods shows that our method
even exceeds human performance in terms of consistency, and
in addition provides reasonable detections of coronal holes close
to the solar limb and during solar minimum conditions (Fig. 5,
11) that could not be reliably extracted by manual labeling using
CATCH.

With the separate analysis of the different EUV channels and
the LOS magnetic field map, we are able to obtain a better in-
terpretation of the importance of individual channels for coronal
hole segmentation, and find that neural networks can efficiently
combine multi-channel information. We show that the detections
strongly depend on the temperature peak in the AIA response
function, that the combined spectral information leads to the best
results, and that a coarse coronal hole detection can also be di-
rectly carried out using LOS magnetograms alone.
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Table A.1. Value range and stretch function for the data normalization
of the EUV filtergrams and the LOS magnetogram.

Channel Min Max Stretch
94 Å 0 445.50 asinh

131 Å 0 981.30 asinh
171 Å 0 6,457.50 asinh
193 Å 0 7,757.31 asinh
211 Å 0 6,539.00 asinh
304 Å 0 3,756.00 asinh
335 Å 0 915.00 asinh

Magnetogram -100.00 100.00 linear

Appendix A: Data normalization

Table A.1 shows the data range and the applied stretch func-
tion that is used for the image normalization of each channel.
The upper limit of the data range is determined by the average
maximum-value across the full data set and the lower limit is set
to zero as default. The data normalization is applied after correc-
tion for exposure time and device degradation by normalizing
the data based on the value range, cropping values outside the
range and applying the stretch function.

The asinh stretch is computed by:

x̂ =
asinh(x/a)
asinh(1/a)

, (A.1)

where x refers to the input data, x̂ to the scaled data, and a to a
constant that we set to a = 0.005.

Appendix B: Model architecture

A ConvBlock consists of a fixed number of 2D convolutional
layers, and a 2D convolutional layer with strides. For all con-
volutions we use a kernel size of 3, a bias term, and reflec-
tion padding. After each convolution we apply a batch normal-
ization, followed by a leaky-ReLU activation function with 0.2
and a dropout layer with 0.2. For downsampling ConvBlocks,
we apply a stride-2 convolution at the end and use the previous
layer for the skip-connection. For upsampling ConvBlocks, we
apply a stride-1/2 convolution (transposed convolutional layer
with stride-2) as first layer and concatenate the upsampled fea-
tures to the features from the skip-connection. For downsam-
pling convolutions we double the number of filters, while for
upsampling convolutions we halve the number of filters. For the
output convolutional layer we omit the normalization and apply
a sigmoid activation function. In Table B.1 an overview of the
fully assembled CHRONNOS and SCAN model is given. The
fully assembled CHRONNOS model contains 67.44 M train-
able parameters. The architecture of the fully assembled SCAN-
magnetogram model is given in Table B.2 and contains 1.03 M
trainable parameters.
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Table B.1. Overview of the fully assembled CHRONNOS model. For the SCAN model the input channels are set to 1. The superscript numbers
of the input- and output-tensors indicate the skip-connections. Tensor shapes are given in channels-first format. Convs refers to the number of
convolutional layers in the ConvBlock.

Layer Convs Filters Sampling Input Tensor Shape Output Tensor Shape
Input - 16 - (8/1, 512, 512) (16, 512, 512)

ConvBlock 1 16 down (16, 512, 512) (16, 512, 512)1; (32, 256, 256)
ConvBlock 2 32 down (32, 256, 256) (32, 256, 256)2; (64, 128, 128)
ConvBlock 2 64 down (64, 128, 128) (64, 128, 128)3; (128, 64, 64)
ConvBlock 2 128 down (128, 64, 64) (128, 64, 64)4; (256, 32, 32)
ConvBlock 3 256 down (256, 32, 32) (256, 32, 32)5; (512, 16, 16)
ConvBlock 3 512 down (512, 16, 16) (512, 16, 16)6; (1024, 8, 8)
ConvBlock 3 1024 - (1024, 8, 8) (1024, 8, 8)
ConvBlock 3 512 up (1024, 8, 8); (512, 16, 16)6 (512, 16, 16)
ConvBlock 3 256 up (512, 16, 16); (256, 32, 32)5 (256, 32, 32)
ConvBlock 2 128 up (256, 32, 32); (128, 64, 64)4 (128, 64, 64)
ConvBlock 2 64 up (128, 64, 64); (64, 128, 128)3 (64, 128, 128)
ConvBlock 2 32 up (64, 128, 128); (32, 256, 256)2 (32, 256, 256)
ConvBlock 1 16 up (32, 256, 256); (16, 512, 512)1 (16, 512, 512)

Output - 1 - (16, 512, 512) (1, 512, 512)

Table B.2. Overview of the SCAN-magnetogram model. The superscript number for the input- and output-tensors indicate the skip-connections.
Tensor shapes are given in channels-first format. Convs refers to the number of convolutional layers in the ConvBlock.

Layer Convs Filters Sampling Input Tensor Shape Output Tensor Shape
Input - 16 - (1, 128, 128) (16, 128, 128)

ConvBlock 1 16 down (16, 128, 128) (16, 128, 128)1; (32, 64, 64)
ConvBlock 2 32 down (32, 64, 64) (32, 64, 64)2; (64, 32, 32)
ConvBlock 3 64 down (64, 32, 32) (64, 32, 32)3; (128, 16, 16)
ConvBlock 3 128 - (128, 16, 16) (128, 16, 16)
ConvBlock 3 64 up (128, 16, 16); (64, 32, 32)3 (64, 32, 32)
ConvBlock 2 32 up (64, 32, 32); (32, 64, 64)2 (32, 64, 64)
ConvBlock 1 16 up (32, 64, 64); (16, 128, 128)1 (16, 128, 128)

Output - 1 - (16, 128, 128) (1, 128, 128)
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