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Toward next-generation learned robot manipulation
Jinda Cui* and Jeff Trinkle

The ever-changing nature of human environments presents great challenges to robot manipulation. Objects that 
robots must manipulate vary in shape, weight, and configuration. Important properties of the robot, such as surface 
friction and motor torque constants, also vary over time. Before robot manipulators can work gracefully in homes 
and businesses, they must be adaptive to such variations. This survey summarizes types of variations that robots 
may encounter in human environments and categorizes, compares, and contrasts the ways in which learning has 
been applied to manipulation problems through the lens of adaptability. Promising avenues for future research 
are proposed at the end.

INTRODUCTION
“Have we ever built a robot as capable as an ant, at any scale?” asked 
Mason (1) when talking about the variety and refinement of ant 
manipulation skills in his inspiring overview paper. The brain sizes 
of insects and animals are often much smaller than humans’, yet they 
can still demonstrate incredible manipulation skills. For example, 
octopuses can sense live crabs in plugged transparent jars and open 
them (2). They can also escape when trapped in containers closed 
with screw-on lids (3) or carry coconut halves with all tentacles 
while walking rapidly on the sea floor (4, 5).

As one might infer from the examples above, this review focuses 
on manipulation tasks that would be most naturally performed 
through contact between an agent (possibly a robot) and its envi-
ronment. To be clear, we adopt Mason’s definition: “Manipulation 
refers to an agent’s control of its environment through selective 
contact.” (1) noting that “agent” refers to a human, animal, or robot. 
For example, the octopus contacts the jar and its lid, making use of 
its contacts to rotate the lid relative to the jar.

We have yet to see a robot as dexterous and versatile as ants, 
octopuses, and many other animals. We can hand engineer robots to 
perform certain manipulation tasks well in controlled environments, 
but we have not yet been able to build a general robot that can adapt 
to substantial variations in task or environment. By contrast, adapt-
ability comes naturally to humans. For example, in pick-and-place 
tasks, our hands can adapt to novel objects quickly. When handling 
heavy objects, we can naturally use other body parts or even external 
supports such as a wall to brace them. Furthermore, our manipulation 
abilities are not easily disrupted by changes in the environment: We 
can pick up a pen illuminated with yellow or white light, whether it 
is on a table or on a shelf, and often we do not even need to see it. All 
these adaptations seem effortless to us but are still challenging to 
autonomous robots. As it was seen in the 2015 DARPA Robotics 
Challenge Finals (6–8), the uncertain nature of unstructured envi-
ronments posed great challenges for the robots as they competed to 
perform tasks that would have been easy for people, such as turning a 
valve or climbing into a car. Video clips online (9) show million-dollar 
robots tumbling to the ground, because their controllers got over-
whelmed with errors resulting from something that humans can 
easily contend with, such as a near miss in grasping a handle. How 

long will it be before robots are able to work gracefully and produc-
tively in our homes and workplaces?

The current inadequacy of manipulation skills of autonomous 
robots in unstructured environments is a huge stumbling block for 
their adoption in businesses and homes. Because the current state of 
the art has been achieved with the benefit of about 50 years of 
approaches using traditional engineering modeling and analysis 
techniques, this review focuses on learning-based methods whose 
application to manipulation problems is still in their infancy.

Two recent surveys discuss robot learning for manipulation broadly 
and at a high level. Mason’s paper, mentioned above, provides an 
interesting high-level discussion of many problems faced by robot 
manipulation researchers and gives intriguing insights from many 
perspectives. In the end, he suggests that the development of new 
learning methods designed for learning manipulation tasks is likely 
to expand the repertoire of manipulation tasks that robots can do. 
The review of Kroemer et al. (10) discusses results from over 400 papers, 
thoroughly covering a broad array of learning techniques and 
manipulation problems. On the basis of their broad views, they pro-
posed a formal statement of manipulation learning problems. They 
conclude with a list of specific manipulation challenges and suggest 
that existing learning methods are not sufficient to solve them. In 
agreement with Mason, they suggest that new learning methods 
need to be developed specifically for manipulation problems.

Similar to the Mason and Kroemer papers, ours covers robot 
learning for manipulation broadly, rather than focusing on a subarea. 
However, we attempt to contribute a unique perspective to the discus-
sion by focusing on the adaptability of learned manipulation skills. 
Adaptability is a strength of human beings and other animals that is 
critical to their survival in the world. Similarly, adaptability will 
be critical to the long-term survival of personal robots as human 
companions and helpers in the ever-changing human environment. 
By summarizing and connecting relevant studies to adaptability, we 
hope to provide the readers with a unified view of possible research 
directions to enhance the adaptability of learned manipulation skills.

The rest of this paper is organized as follows: In the second section, 
we discuss the challenges in robot manipulation to highlight the 
difficult problems and the variations to which robots must adapt. In 
the third section, we overview learned robot manipulation skills 
and identify the research frontiers of adaptability. In the fourth and 
the fifth sections, we start to review intensively by linking scattered 
research to the frontiers for achieving adaptability. In the final section, 
we put the puzzles together to illustrate promising directions for 
future developments.
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CHALLENGES IN ROBOT MANIPULATION
In general, there are two primary sources of challenges in traditional 
approaches to robot manipulation: (i) handling of complex contact 
mechanics and (ii) designing planning and control algorithms that 
are robust to variations that will be encountered in real-world 
deployments.

Challenges from contact
Consider a robot, objects to be manipulated, and the environment 
as a system. In this setting, a task is represented by a set of points 
representing the start and goal states and the constraints to be 
imposed on transition states. The robot’s manipulation skill can be 
viewed as its ability to connect the start states to the goal states 
through consecutive actions. The robot is said to be skilled if it can 
accomplish a task quickly and reliably in the face of uncertainty.

To accomplish a manipulation task, the robot is required to make 
and break contacts and possibly use controlled sliding or rolling. 
Changes in the state of each contact among colliding, sticking, sliding, 
and separating change the underlying dynamics of the system. This 
gives mathematical models of manipulation a hybrid structure, with 
a different dynamic model corresponding to each contact mode, 
where contact mode is defined as the state of all the contacts. For 
example, if there are two sticking contacts, then (because collision is 
impossible) there are three possible future contact states (stick, slip, 
or separate) for each contact and therefore nine for the pair. One 
possible mode is (stick, separate) and another is (slip, slip). If there 
are n existing contacts, then there are 3n possible contact modes; the 
number grows exponentially with the number of contacts.

Challenges from variations in human environments
Kemp et al. (11) summarized the challenges in human environments 
for robot manipulation. One word that kept reappearing was 
“variation.” In general, human environments are highly unstructured. 
In contrast to controlled environments such as factories and laboratories, 
robots in human environments such as homes and businesses face 
challenges from “variations,” because models used and assumptions 
made during algorithm design or learning differ from reality.

To overcome them, it is important to understand when and where 
variations may occur. On the “when,” in general, it is safe to say 
variations can happen at any time during task execution in human 
environments. This implies that the variations can be either static 
(occur at the beginning of a new task) or dynamic (occur during a 
task execution). Regarding “where,” from a robot’s perspective, we 
can categorize variations into internal or external variations.

Internal variations are the intrinsic changes to a robot after 
deployment that may affect its capability and functionality:

1) Robot body variations. A robot’s physical properties change 
naturally over time due to wear and tear. Modifications or malfunc-
tions on its parts can also be expected, e.g., a jammed joint motor 
removes at least one degree of freedom of a robot. In these cases, we 
may still want the robot to maintain its manipulation skills, at least 
to a certain level. Big variations may even make a robot to be con-
sidered as another class of robot. In fact, different classes of robots, 
such as industrial robot arms, humanoids, and quadrotors, may all be 
suitable for some manipulation tasks. Ideally, the manipulation skill, 
hand- designed or learned, can be transferred to a new embodiment.

2) Robot “brain” variations. Software modifications can also 
change a robot’s behavior, e.g., a change of the gain or frequency of a 
robot’s controller affects its dynamic performance.

3) Robot perception variations. Perception is a crucial inter-
face between the robot and its environment. Variations in sensor 
modality, capacity, quality, and perspective substantially affect a 
robot’s understanding of the system’s state.

External variations are the changes that can also happen in the 
environment:

1) Object variations. Both objects being manipulated and ob-
jects in the background can vary (i) within the same object class and 
(ii) across object classes. In-class variations may be handled by updat-
ing existing models through perception, but cross-class variations 
may require the construction of new models. The configuration of 
objects (position and orientation) can also vary and may impose 
challenges to the robot, e.g., background objects fall over and form 
a cluster which blocks the target object. These variations often 
happen dynamically during task executions.

2) Environmental variations. The properties of the environment, 
such as workspace layout, wall/floor evenness, lighting condition, 
temperature, humidity, and noise level, are subjected to changes. 
These variations also may affect the task execution, e.g., changes in 
humidity may result in changes in friction properties in contact 
interfaces between a robot’s hand and an object.

3) Task variations. With humans in the loop, users may want to 
tune different aspects of task executions, which may change the 
task specification, e.g., a user may want the robot to approach the 
target object faster or slower. What is more, a user may change 
the task composition by letting the robot perform a new task that 
may reuse all or part of its existing skills.

Another critical aspect of variations is novelty; some variations 
can be anticipated, whereas others cannot. Known variations can be 
taken care of during the development of manipulation skills, e.g., in 
robot grasping, we can anticipate some object variations and make 
sure the skill generalizes to them. However, it is always possible to 
encounter unexpected variations in human environments. Ideally, 
the robot could acknowledge and adapt to these novel variations 
and complete the intended task.

As shown in Fig. 1, the space of variations can be represented as 
four quadrants in the plane. For robots to gracefully work in human 
environments, they have to be adaptable to the variations in all 
quadrants. An example is shown in Fig. 2 to illustrate different types 
of variations that may occur after robot deployment. In the top row, 
there are four objects on the table, and the table is in the center of a 
large room. In the bottom row, two new objects are introduced, 
making the environment more cluttered. In addition, the robot and 

Fig. 1. The variation quadrants for robot manipulation in human environments. 
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the table are now moved to a smaller room, so the robot must be 
careful not to hit a wall while working.

LEARNED ROBOT MANIPULATION AND ADAPTABILITY
Learning approaches have gained in popularity over the past few years. 
Deep neural networks as universal function approximators (12) along 
with other powerful tools in machine learning boost the use of learn-
ing in robot manipulation. Some successful examples are door opening 
(13), knot tying (14), and picking up of daily objects (15–17).

If we say that the key to traditional model–based methods is 
human intelligence, then the key to machine learning is data. Instead 
of developing models and devising manipulation algorithms through 
human intelligence, learning approaches shift these loads to computers 
to automatically find them from data. In learning, the challenges 
from contact modeling and analysis become implicit: A learner can 
learn its internal representation of the data and derive its own way 
of processing them, which alleviates the usually challenging manual 
designing process. As a result, human efforts will be put into design-
ing and setting up learning processes to acquire manipulation skills.

The challenges from variations in human environments, however, 
are still prominent. Learned manipulation skills, after robot deploy-
ment, still face the aforementioned types of variations. Following the 
variation quadrants, learned manipulation skills should have the 
following adaptabilities: (i) the adaptabilities to internal and external 
variations and (ii) the adaptability to known and novel variations. 
All of these adaptabilities contribute to the robustness of learned 
manipulation skills.

It is worth noting that the adaptability to internal variations, in 
some sense, is equivalent to the learned skill’s transferability across 
robot embodiment: One can think that a change on a robot makes 
it “another” robot, so that adapting to the change is equal to 

transferring the skill to another robot. The two groups of adaptabil-
ities complement each other and are integral to manipulation skills: 
A skill robust to internal and external variations must be able to 
handle known (expected) and novel (unexpected) variations.

Although the notion of adaptability is not often mentioned in 
learning for manipulation literature, they all deal with it to some 
extent. For example, generalization is fundamental to all learning 
methods, which depends on the “known” variations conveyed by the 
training data. In the following sections, we will go through previous 
research in learning for manipulation to uncover what they did to 
adapt to known and novel variations and talk about internal and 
external variations they handle in between.

ADAPTATION VIA GENERALIZATION
A fundamental goal for machine learning is to obtain generalized 
information (also called knowledge or concepts in this paper), namely, 
to create systems with the ability to capture abstract information, 
which generalizes to unseen data, and to do this from a finite amount 
of training data (18, 19). Mitchell et al. (18) categorized generalization 
into two forms: (i) similarity-based generalization, which exploits 
similarities in the training data and relies on the inductive bias to 
make the search more efficient. The inductive bias (20) is usually a 
mild guidance, e.g., a feature selection. Still, a learner needs to process 
a large amount of data, and the resulting generalization lacks context 
for explanation; (ii) explanation-based generalization, which uses 
successful examples to learn abstract high-level structures (e.g., a 
logical structure) to connect together scattered, preacquired domain 
knowledge. Here, the high-level structure is the generalized infor-
mation captured by learning. For example, in a task “pick up the 
banana and place it on the plate,” the high-level logic is (object A is 
picked up) → (object A is on top of object B) → (object A is released) → 
(object A is picked up and placed on object B). If the robot is 
equipped with skills to pick up objects, transport objects, place objects, 
and determine the spatial relationship among objects, then the 
learned high-level logic can use these skills to perform the task on 
any objects within the skills’ capacity, not only on the banana and 
the plate. Compared with similarity-based generalization, this form 
of generalization is much more sample efficient but requires the 
possession of all related domain knowledge (such as the skills we 
mentioned in the example).

By using similarity-based methods in conjunction with explanation- 
based methods, the hybrid approach can leverage the best of both 
worlds, e.g., individual skills in the previous example can be learned 
through similarity-based methods. In this case, however, the trade-
off between generalizability and explainability needs to be balanced, 
because the generalization of knowledge learned from similarity- 
based methods is still unexplained. The notion of explainability will 
be discussed later in this section.

The term explanation-based generalization was coined back in 
the 1980s, so it may not be called the same in recent studies. For 
example, Doumas et al. (21) named it “human-like generalization” 
in their paper studying predicate-based learning. Explanation-based 
generalization has seen wide usage in learning from demonstration 
problems, which will also be discussed.

Capturing generalized information
In similarity-based generalization, inductive bias is used to narrow 
down the search in the hypothesis space of the learning model to 

Fig. 2. Example of variations in human environments. (Top left) A Kinova GEN3 
robot is trying to grasp a banana (the target object is the yellow banana; background 
objects are in green and red colors). (Top right) Top-down view of the scene on the 
left. (Bottom left) Externally, background objects are altered: Objects’ configurations 
are changed, new objects are introduced (cylindrical can, plate), the banana is 
placed on the plate, and the table is rotated by 90°; an environmental property is 
also changed: The light now comes from a different direction and casts shadows. 
Internally and dynamically, the robot’s third joint (marked in blue) becomes jammed 
while it is moving. (Bottom right) Top-down view of the scene on the left. The whole 
setup has been moved to a smaller room.
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a good region, which contains a local minimum that generalizes 
beyond observed data (20, 22). There are many ways to introduce 
bias into learning, such as cross-validation (23), nearest neighbors 
(24), and maximum margin (25). One popular approach is particularly 
useful in robot learning for manipulation: engineering the repre-
sentation of the data.
Representation learning
One can view the representation as a collection of features extracted 
from observations (the inputs of the learning model), on which the 
quality and efficiency of learning often depend. A good representa-
tion can focus the learning on aspects of the data that are pertinent 
to the target knowledge.

Representations can be hand-engineered, but the ease of automatic 
representation discovery offered by learning techniques is often 
preferred in unstructured environments. Representations can be 
learned in probabilistic ways by recovering latent variables describing 
observations, such as seen in Boltzmann machine and its variants 
(26–28). Usually, the learning targets are deterministic numerical 
feature values, in which case learning a parametric map from 
observations to representations through computation graphs, e.g., 
deep neural networks, is easier (29). Certain neural network structures 
are particularly suitable for some representations. For example, the 
convolutional layers in convolutional neural networks (CNNs) are 
very good at extracting translation-invariant local features (30–32); 
recurrent neural networks (RNNs) and its variants, e.g., long short-
term memory, are good at extracting features with temporal patterns 
(33, 34). Attention mechanism–based methods, e.g., transformer, 
can relax RNNs’ dependency on long-term sequential data and suit 
data/computation parallelism (35). The above structures are often 
integral parts of larger neural networks and are trained all together, 
e.g., end-to-end learning of visuomotor skills. Although one can sep-
arate learned representations and transfer them to other neural net-
works (36) with careful identification, some architectures can 
produce representations explicitly, e.g., the autoencoder and its 
variants (37, 38). Autoencoders are good at dimension reduction (39). 
They are often trained in a self-supervised manner: Observations 
are propagated through an encoder structure to produce a “code,” or a 
latent representation, and then propagated through a decoder struc-
ture. The output from the decoder is then compared with the input, 
and errors are propagated back to minimize the difference between 
the input and the output. The encoder can be used as a feature map 
accordingly. See (29) for a detailed review of representation learning.

Learned visual representations have seen wide use in robot 
manipulation. Vision-based tasks often rely on dimension reductions 
from learned representations. For example, Levine et al. (40) pro-
posed a deep neural network to learn visuomotor control policies, 
in which convolutional layers were used to extract low dimensional 
feature points from image pixels to better capture objects’ spatial 
information. The network was trained in an end-to-end fashion with 
a lot of data. Building on a similar architecture, Finn et al. (41) de-
composed training into a two-stage sample-efficient process: First, 
a CNN-based deep autoencoder is trained to extract position infor-
mation in a self-supervised manner. The features produced by the 
encoder are then used as a part of the state observations in the re-
inforcement learning of visuomotor skills.

Traditionally, nonvisual sensing modalities are also important to 
robot manipulation (42). They have started to gain attention in recent 
learning for manipulation research. For example, Fazeli et al. (43) 
enabled a robot to play Jenga using force sensors along with visual 

sensors. When interacting with a block, the normal force, the block 
rotation, and the block extraction were used to estimate the abstract 
status of the block (no move, small resistance, etc.), which is hence 
used as inputs of a Bayesian neural network representing the state 
transition of the block. Cui et al. (44) used three-dimensional (3D) 
convolutional layers to interface with time-series measurements of 
visual and tactile signals. Their method handles the two modalities 
at a different frequency and fuses them together to produce classifi-
cations of grasping status of deformable objects. Hogan et al. (42) 
used human intuition to segment primitive manipulation actions 
based on tactile measurements, but they also pointed out that repre-
sentations of these primitives can be learned. In a similar vein, 
Edmonds et al. (45) learned embodied haptic representations of 
manipulation actions using tactile and force sensors to identify the 
same actions performed by different agents.

Learned representations can also be used in analytical methods. 
For example, Mahler et al. (46) trained a CNN-based neural network 
to compute a similarity measure between 3D objects. Combining 
this with hand-designed features, they can query their Dex-Net 1.0 
dataset, which contains object models and corresponding robust 
grasps, and efficiently select the best grasp for new objects. Learned 
representations can also go beyond the perception level. Kwiatkowski 
and Lipson (47) used a deep neural network consisting of recurrent, 
convolutional, and fully connected layers to learn a representation 
of sequences of state-action pairs, which essentially approximates a 
robot arm’s forward kinematics under joint and self-collision con-
straints. A review of representations in robot learning for manipu-
lation can be found in (10).
Data, simulation, and reality gap
A suitable bias leads to efficient searching, but without appropriate 
data, it lacks contexts to learn. To obtain manipulation skills robust to 
future variations, a learner needs to capture generalized information 
that covers these variations. A straightforward solution is to infuse 
variations into the training data to encompass as many future 
variations as possible. Researchers working on learned robot ma-
nipulation have tried to enrich training data for better generalization 
in hardware experiments. For example, in (48) and (49), objects were 
placed in various locations in training, so that learned manipulation 
trajectories can generalize to the variations in object locations. 
Regarding object shape variations, Yahya et al. (13) developed a dis-
tributed reinforcement learning method and used multiple robots 
in parallel to learn and complete door opening tasks under door 
handle variations.

Because of equipment cost and long duration in real-world 
experiments, it is often more desirable to gather data or learn in 
simulation. For example, Mahler et al. (50) upgraded their Dex-Net 
1.0 to 2.0 by infusing a large amount of synthetic point clouds to 
the dataset and successfully learned a grasp robustness function 
Grasp Quality Convolutional Neural Network (GQ-CNN) from it.

Learning manipulation skills in simulation adds another layer of 
complication: The reality gap, although we have seen remarkable 
advances in simulation that produce efficient and life-like physical 
effects (51–53), none of them match 100% to real-world physics. 
Thus, skills learned in virtual environments do not generalize directly 
to real-world scenarios. Moreover, simulating contact events in robot 
manipulation can be much more challenging than regular physical 
events (54), which expands the reality gap even further. To over-
come the reality gap, Tobin et al. (55) advocated a straightforward 
technique called domain randomization. This technique randomly 
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injects a wide range of variations during training and hopes that 
these variations (i) capture the differences between simulation and 
reality and (ii) encourage the learner to learn more generalizable 
(domain-invariant) skills. In the same light, Chebotar et al. (56) 
invoked a massive amount of simulations in parallel to learn cabinet 
opening and swing-peg-in-hole tasks with simulation parameters 
randomly sampled from their distributions. The difference between 
Chebotar et al.’s method and a naive domain randomization is that 
the parameter distributions are not static but are brought closer to 
reality through distribution updates following a few real-world rollouts 
of the learned policy.

Sometimes, hardware designs with compliant mechanisms can 
simplify robot manipulation and reduce the reality gap. A represent-
ative design is remote center compliance, developed in the 1970s. It 
uses fully passive compliant mechanisms to make peg-in-hole assembly 
robust to lateral and angular misalignment (57). More modern 
adaptive robot hands, which are often soft or underactuated, enable 
stable grasping of a wide variety of objects (58–60). When used in 
learning, the adaptability of these devices is inherited by the learned 
skills, making them more generalizable. Manipulation also becomes 
more straightforward with these designs. For example, with an 
adaptive hand, grasping can be simplified into correctly posing the 
hand with respect to the object, rather than figuring out each contact 
point (61). When simulating these tasks, contact dynamics can be 
replaced by geometric constraints, which markedly reduces simula-
tion difficulty and narrows the reality gap. However, for tasks that 
require accurate contact physics, e.g., dexterous in-hand manipula-
tion, the reality gap can be even worse because these mechanisms are 
challenging to simulate accurately due to their deformability and 
compliance. The reality gap can be viewed as a domain adaptation 
problem, on which we have more discussions in a later section.

Learned correspondence
In Dex-Net 1.0 (46), object observations were mapped into a metric 
space, in which point-wise distances correspond to the similarity be-
tween objects. This is a version of metric learning (62). As mentioned 
in (10), such similarity measure can be established at different levels 
between objects, parts, and points.

Some recent research brought dense correspondence learning 
into robot manipulation. The word “correspondence” comes from 
correspondence estimation, which is widely used in computer vision 
to determine corresponding parts across different images. The word 
“dense” means such correspondences are determined at the pixel 
level, i.e., a pixel in one image corresponds to a pixel in another 
image. Putting together, dense correspondence learning seeks to 
learn a descriptor in a metric space for each pixel. The distance be-
tween two pixels represents their similarity: The closer they are in 
the metric space, the more similar they are in the images (63, 64).

A dense correspondence descriptor can benefit robot manipulation 
if pixels are coupled with useful information. For example, a pixel 
on a mug’s handle in an image represents a small surface region on 
the actual handle, which is tied to its physical properties such as the 
position in the world frame and contact conditions. Florence et  al. 
(15) presented a method that provides users great flexibility in 
choosing grasping points for object pickup. They developed an 
automated training pipeline to learn dense descriptors for a single 
object, mixed objects within the same object class, and mixed objects 
from different classes. When a user selects a point from an object’s 
reference image, the dense descriptor can return a corresponding 

point in the freshly taken image. The robot will then grasp and lift 
the object according to the 3D position of the selected point queried 
using the accompanying depth image. Similarly, Zakka et al. (65) 
leveraged dense descriptors to determine and match positions and 
orientations of objects in 2.5D kit assembly problems and demon-
strated generalization to some unseen kits.

Unlike end-to-end learning, the above examples only used learning 
for dense correspondence, leaving the majority parts of manipula-
tion to traditional analytical modules. The impressive applications 
enabled by learned dense correspondence suggest that learning, even 
at a module level, may make notable improvements to robot manip-
ulation. Although there is no consensus in the community on what 
part of manipulation should be learned, there are many interesting 
approaches and trade-offs to consider.

Modularity, transferability, customizability, 
and explainability
Bengio et al. (29) observed that learned representations capture 
underlying knowledge of observations, thus, when shared, can enable 
multitasking, transfer learning, and domain adaptation. This 
essentially treats learned representations as modules of “domain 
knowledge.” As discussed at the beginning of this section, the 
explanation-based generalization learns and generalizes an explainable 
high-level structure based on scattered domain knowledge. The 
domain knowledge can be replaced by learned representations to 
form a hybrid scheme of explanation-based and similarity-based 
generalization.

To benefit from this, appropriate representations for manipulation 
tasks must be designed. There are many ways to decompose a task 
into subtasks. In addition, subtasks may also have internal structures 
that can be further decomposed. Eventually, a task can be broken 
down into a task structure of atomic action primitives. However, in 
robot manipulation, action primitives are robot dependent. As 
Zech et al. (66) pointed out, a representation of action in robotics is 
tied to perception, embodiment, and actuation of the robot. For 
example, action primitives can be drawn from a robot’s mobility, 
sensing, and control primitives. To achieve better generalization, a task 
representation must balance the granularity of task decomposition.

For example, a representation most robust to internal variations 
should be independent of agents’ specifics, so that it can generalize 
across agent classes in a “zero-shot” manner (67), e.g., transferring 
a learned manipulation skill from a human being to a robot without 
training the robot. Edmonds et al. (45) proposed a high-level task 
representation for a medicine bottle opening task, in which the robot 
learns from human demonstrations to deal with tricky cap locking 
mechanisms. Each human action, e.g., twisting the cap, is measured 
haptically, and low-dimensional representations of the measurements 
are learned using an autoencoder. Another encoder is trained to map 
haptic measurements from robot actions to the learned representa-
tions of the equivalent human actions. This results in agent-agnostic 
representations such that the learning of the high-level decision 
graph is separated from low-level actions. In addition, the learned 
decision graph can command the robot to perform the task directly 
without training the robot.

Modularity also enables customizability. For example, Araki et al. 
(68) proposed a neural network architecture based on linear temporal 
logic and value iteration network. They learn a policy using a 
two-level task representation, with a high-level finite-state automaton 
(FSA), and a low-level Markov decision process. By modifying the 
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transition matrix of the FSA, they can modify the task composition, e.g., 
change the robot’s task from “pick up and pack the burger first, then 
the banana” to “pick up and pack the banana first, then the burger.”

Another benefit of modularity is explainability. In machine 
learning, explainability is used to describe the ability to explain the 
learned model in contrast to “black-box” models such as fully con-
nected neural networks. The Merriam-Webster definitions (69) 
of the word “explain” as a transitive verb are: 1.a. “to make known”; 
1.b. “to make plain or understandable”; 2. “to give the reason for or 
cause of”; 3. “to show the logical development or relationships of.” 
When asked, “explain the machine learning model,” on the basis of 
the definitions, it refers to expressing the internal mechanisms of 
the model in human-understandable terms and logic, and this 
naturally requires modularity in the model.

The two examples above demonstrate certain levels of explain-
ability. The learned decision graph in (45) is explainable because it 
directs the robot to conduct actions with semantic meanings so that 
a task execution can be explained in human-understandable terms, 
e.g., “The robot pushed the cap and rotated it for three times, and 
the bottle is opened.” In the second example (68), the explainability 
comes from the high-level FSA in which each state is human under-
standable, e.g., “robot has grasped a banana.”

Growing attention has been paid to modularizing control policies 
for manipulation tasks by introducing policy hierarchies. Starting 
from primitive actions, Riedmiller et al. (70) learned middle-level 
manipulation skills named “intentions” and a high-level scheduler 
to sequence the skills for task completion. In a similar vein, 
Hausman et al. (71) learned diverse middle-level manipulation skills 
using an entropy-regularized method in a multitask setting. They 
created handles of skills in a low-dimensional space to efficiently 
recomposed learned skills for new tasks. With a maximum-entropy 
policy, Eysenbach et al. (72) further pushed the diversity of learned 
middle-level skills. More levels are also possible. For example, 
Levy et al. (73) learned multiple levels of control policies, with higher- 
level policies imposing subgoals to lower-level policies. Hindsight (74) 
transitions for both goals and actions were used to solve the non-
stationary state transition problem during off-policy learning. Although 
these studies have demonstrated the viability of using various levels 
of abstractions to represent learned robot manipulation, the adapt-
ability that may come along with these representations was not ex-
tensively studied, especially on overcoming the internal variations.

ADAPTATION BEYOND GENERALIZATION
Adaptability via generalization is based on the assumption that the 
knowledge a robot learned in the training environment (source 
domain) generalizes to the variations in the new environment (target 
domain). However, it is always possible to encounter novel variations 
in human environments to which old knowledge will not cover. The 
adaptation to them demands more than generalization. Specifically, 
the following two abilities are required: (i) the ability to continually 
adapt to novel variations and (ii) the ability to remember and build 
upon previously acquired skills.

The first ability is more fundamental: It is the first step for a 
robot to accommodate the ever-changing human environment. To 
achieve it, gathering data about novel variations and learning from 
them is important. A solution is to use learning methods that can 
actively explore and gather such data, e.g., reinforcement learning and 
online learning. Sometimes, exploration can be difficult, e.g., exploring 

a space in which objects are sparsely distributed. Thus, sometimes, 
learning through examples of task executions is desirable.

The second ability augments the first by enabling learning without 
forgetting. More formally, it addresses a critical problem in continual 
learning called catastrophic forgetting, or catastrophic interference, 
in which training on new data may overwrite already learned skills. 
This problem is primarily studied in the lifelong learning paradigm, 
which is yet to be applied to robot manipulation at scale. Common 
approaches to catastrophic forgetting are memory-based augmen-
tation, expansion-based retraining, and regularization-based retrain-
ing. All these methods are facing challenges from dimensionality, 
performance, and training difficulty and are being improved actively 
by the community. Here, we focus on the first ability. Readers interested 
in catastrophic forgetting can get further information from (75).

Domain adaptation techniques
In the face of novel variations, a straightforward way of adaptation 
is to gather more data for extended training sessions, as seen in the 
work of Kwiatkowski and Lipson (47) dealing with internal varia-
tions: When a novel change on the robot body occurred, i.e., a link 
of the robot is replaced by a longer link with an angle difference, the 
previously learned neural network can be incrementally trained with 
a relatively small new training set to restore the functionality.

The amount of new training data can be substantially reduced if 
the skills being adapted have “learned to learn.” Finn et al. (76) 
introduced model-agnostic meta-learning (MAML) to the field in 
2017. The basic idea is similar to domain randomization: By infusing 
more domain variations during the training phase, the learner may 
learn more abstract knowledge, which generalizes better to future 
variations. The difference is the fact that MAML does not immedi-
ately update a learner’s parameters after training on each variation. 
Instead, at each update, it gathers losses from all sampled variations 
in a training-validation style. Intuitively, updates in MAML are 
“fairer” to all variations, which may force the learner to learn adap-
tation skills instead of memorizing variations shown in the training 
data. In their other work, one-shot adaptation (adapt to a new vari-
ation using only one new training example) across manipulation task 
variations was achieved using a variant of MAML (77).

As mentioned before, the modularity of learned skills may con-
tribute to domain adaptation. When the difference between the 
source domain and the target domain is at the perception level, 
instead of incremental training, one can try to reduce the difference 
between the source domain and the target domain, e.g., convert ob-
servations in the source domain to match observations in the target 
domain (78). This approach is particularly useful for crossing the 
reality gap, where perception differences can be substantial between 
simulator and reality. For example, Bousmalis et al. (79) trained a 
generative adversarial network (GraspGAN) to render simulated 
scenes to visually match the reality in an end-to-end grasp learning 
problem. They also augmented DANN (80) to learn domain-invariant 
features, which further enabled the efficient transfer of learned 
grasping skills from simulation to hardware. For further reading, 
Tobin et al. (55) have an insightful discussion of domain adaptation 
in the related works section.

Active learning and exploration
Domain adaptation can be data efficient. However, learning from 
scratch is sometimes inevitable when the variations are too big. Active 
learning methods provide nice solutions in such cases.
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The term “active learning” was coined by Cohn et al. (81) in the 
1990s to describe learning methods that have control over the inputs 
they train on. This ability enables autonomous data gathering and 
learning, which suits the practical scenarios very well: After robot 
deployment, it is often the case that users will not have the equip-
ment and the ability to gather data and train the robot by themselves.

When learning for manipulation, usually, the goal is a control 
policy that can command a robot to complete a task through con-
secutive observations and actions. Closed-loop policies are important 
because robots need to react to both static and dynamic changes in 
human environments (82, 83). The policies are often approximated 
by deep neural networks. To find a good policy, one can directly 
search in the hypothesis space (or policy space, space spanned by the 
variables of a neural network modeling the policy). The most naive 
method is random search, which is the antithesis of active learning: 
Policies are generated by randomly choosing learning models and 
assigning their parameters (84). A reward function is often used to 
evaluate policy rollouts for policy selection. Because this method can 
potentially search the entire hypothesis space, there is a possibility 
that a globally optimal policy is obtained. However, the chance is 
usually extremely low, given the large hypothesis space of deep neural 
networks. More systematic and “active” searching use heuristics 
such as evolutionary algorithms and use rewards more actively to 
guide the search (85, 86). Gradient-based optimizations, such as 
back-propagation with stochastic gradient descent, are often integrated 
with active learning frameworks, e.g., in most deep reinforcement 
learning methods. Compared with the aforementioned examples, 
reinforcement learning usually explores the hypothesis space on a 
finer scale in terms of policy updates: Whether the specific method 
is “on-policy” or “off-policy,” the policy is usually updated immedi-
ately or shortly after each action is taken. A good survey on rein-
forcement learning in robotics can be found in (87).

Active learning methods are subjected to trade-offs between 
exploration and exploitation. They usually start with exploration to 
search wildly across the hypothesis landscape to sparsely cover its 
breadth. Exploitation, on the other hand, refines the search in a sub-
region so that the policy may lastly converge to a local minimum, 
regarding a specific reward function. Generally speaking, explora-
tion is difficult even for humans, e.g., it is challenging for us to learn 
a new subject of study or a new sport from scratch. Specifically, the 
key challenges in exploration-based methods are (i) how to explore 
efficiently and effectively (ii) when to transition from exploration to 
exploitation—if the exploration stops prematurely, e.g., before any 
contact was made in between of the robot and the target object, 
exploitation will not make substantial progress toward grasping of 
the object. On the other hand, exploration should not continue 
forever without converging to a solution.

A summary for exploration strategies can be found in (10). Basi-
cally, research in this area aims to address the following questions: 
(i) how to make sure exploration makes progress, (ii) how to make 
sure exploration is thorough, and (iii) how to make sure exploration 
is efficient. A prerequisite for exploration to make progress is conti-
nuity: The agent needs to be able to explore continually. OpenAI 
and coauthors have demonstrated learned in-hand dexterous ma-
nipulation of solid cubes (88) and Rubik’s cubes (89). However, their 
results were under the assumption that the robot hand is palm up. 
If the hand is palm down, then the object might be dropped fre-
quently during exploration, which breaks the continuity. In the 
same light, a branch of research studies safe exploration strategies to 

prevent damage to the robot or irrecoverable failures during explo-
ration. Some directly enforce a set of safety rules to prevent certain 
actions leading to unsafe states (90); some encode task safety speci-
fications in the reward function to encourage agents to explore safely 
(91). An overview for safe exploration in reinforcement learning 
can be found in (92). Although safe exploration reduces exploration 
failures, which helps maintain exploration continuity, it may limit 
exploration to a subspace so that the search may not be thorough (93). 
For example, imposing distance thresholds for collision avoidance 
may prevent the robot from finding narrow passages.

Thoroughness in exploration is also challenging. One can argue 
that the most thorough exploration is a uniform random search in 
the space of all possible policy representations and their parameters. 
This might be probabilistically complete, but it may take forever to 
find a good solution. Instead of probabilistic completeness, what 
might be more interesting is the ability to explore without getting 
trapped in local minima, which is crucial for continual improvements 
of learned policies. Popular reinforcement learning methods, such 
as Q-learning variants (94, 95), often use -greedy strategies with 
decay, which start with an exploration stage with more random 
actions and then transit toward the exploitation stage with more 
actions from the policy. Often, this process is irreversible: Once it 
converges, it is stuck in the local minimum. More sophisticated 
methods use adaptive strategies to balance exploration and exploita-
tion, by allowing reentering of the exploration stage when the agent 
is uncertain about its decision-making (96, 97). These methods are 
more stable and may converge to better local minima, but they 
depend on heuristics, i.e., the uncertainty measure. Policy gradient 
methods (98, 99) explore by following gradients with noise, which 
may provide smoother convergence; however, they usually take a 
long time and still face challenges from local minima.

At the end of the day, the efficiency of the exploration is also 
important. Can a method yield a reasonably good policy within a 
relatively short amount of time? Exploration may not be challenging 
for certain tasks such as simple nonprehensile manipulation (pushing, 
tilting, etc.) and regular pick and place. However, for tasks involving 
extensive contact mode switching, a learner may unavoidably explore 
a large space of contact modes, whose size grows exponentially with 
the number of contacts. Computing techniques may provide alter-
native solutions even in the worst case when an exhaustive search is 
needed: When learning is performed in simulated environments, it 
can benefit from data parallelism by using a massive number of 
simulators to gather data at the same time. Successful approaches 
have been seen in the form of parallel computing (100) and distrib-
uted systems (101, 102). Although these approaches improve sam-
pling efficiency, more systematic analyses are needed to thoroughly 
understand the relationship between sampling efficiency and learn-
ing performance.

Learning from demonstrations
Active learning is not the only way to acquire new skills. In fact, 
when people learn, we often leverage external guidance: Written 
descriptions, verbal instructions, visual demonstrations, hands-on 
guidance, etc., all can boost the efficiency of learning. Similarly, when 
new situations require robots to adapt rapidly, instead of exploring 
tirelessly by themselves, they can query successful examples and 
learn critical information that might be hard to find through explo-
ration. As seen in the work of Edmonds et al. (45), to open medicine 
bottles, the robot may need to turn the cap while pressing it down, 
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which is hard-to-discover information through exploration. How-
ever, this information can be extracted from human demonstrations. 
Methods that transfer skills to robots through task execution exam-
ples are often under one of the following names, which are used 
interchangeably: programming by demonstration, learning from 
demonstration, imitation learning, learning from observation, be-
havior cloning, etc.

Kinesthetic teaching is a popular method that allows robots 
to experience tasks directly, e.g., dragging the robot around or 
teleoperating it to complete a task. Often, trajectories of sensor 
measurements, such as joint encoder readings and force/torque 
sensor readings, are recorded as training data.

Indirect teaching methods often require robots to observe demon-
strations from other agents. Various levels of information can be 
extracted from such observations: Similar to kinesthetic teaching, 
one can obtain trajectories from demonstrations, e.g., state-space 
trajectories of the end effector using a motion capture system; obtain 
a high-level structure that links task primitives, e.g., a finite state 
machine with learned transitions as in (68); or learn a reward function 
that can be used in exploration-based learning, e.g., inverse rein-
forcement learning (103). For general information in this area, 
Argall et al. (104) give a comprehensive review regarding demon-
stration methods and policy derivation; Ravichandar et al. (105) 
provide a systematic categorization in terms of learning input and 
outcome for more recent works.

Details aside, demonstration-based learning can be boiled down to 
this question: What information can be extracted from the examples 
and transferred to the learner? Generally speaking, successful task 
completion requires sufficient coverage of all necessary task condi-
tions. For manipulation tasks, these necessary conditions are often 
object-centric: We only care about target objects’ configuration 
during and after a task. Skill transfer based on robot joint trajectories 
is the most straightforward, but it relies on the assumption that 
object state changes are coupled with robot joint state changes (be-
cause of contact), which is not guaranteed. For example, Ugur and 
Girgin (106) use dynamic motion primitives and parametric hidden 
Markov models to learn joint space trajectories with force coupling 
for external guidance. In the manipulation tasks they present, either 
contact is assumed, i.e., the robot and the cabinet handle are 
attached at the beginning, or the gripper needs to be positioned to 
the pregrasping location through human guidance. Similarly, in (107), 
the robot needs human collaboration to make contact with objects 
in cocktail bottle shaking and painting tasks.

Although trajectory-based learning is efficient for the straight-
forward transfer of skills, it does not fit complex tasks. For example, 
Zhang et al. (108) show a trajectory-based, end-to-end visuomotor 
policy learning for more sophisticated tasks, e.g., pick a ball, place it 
in a plate, and then push the plate to a target location. However, 
their method is only suitable for tasks with sequential action com-
position. To learn/transfer more complex tasks that may have 
task hierarchy and/or decision-making logic, one must extract the 
information at a higher level than trajectories.

The research discussed, when talking about modularity, serves as 
good examples here: In the FSA of Araki et al. (68), state transition 
probabilities are learned so that the robot can execute actions in a 
nondeterministic manner similar to humans (recall that in a lunch 
box packing task, one may pick up and pack the banana first, then 
the burger, or pack them in the reverse order); Edmonds et al. (45) 
learned a high-level decision graph, which is a symbolic stochastic 

manipulation grammar [see (109) for more details about manipulation 
grammar] to capture human decision-making under various situa-
tions during the opening of medicine bottles, e.g., if pinch open 
does not work, then try press and twist.

The above examples depend on manual segmentation and anno-
tation of task states and actions, which are possible to be learned. 
Given joint space trajectory demonstrations, abrupt changes can be 
used to segment motions, e.g., substantial changes in position and 
velocity (110). Similarly, to learn manipulation actions, state changes 
of objects can be used as cues for action identification. Zampogiannis 
et al. (111) use objects’ spatial relationship during manipulation to 
represent atomic actions for automatic action classification. Based 
on an object classifier and an action classifier, Yang et al. (112) learn a 
probabilistic action grammar similar to the work of Araki et al. (68).

Learning from demonstration for robot manipulation is still in 
its early stage, leaving open research questions. We will discuss this 
along with opportunities in other areas in the next section.

DISCUSSIONS
In previous sections, we have gone through, broadly, approaches 
that contribute to the adaptability of learned robot manipulation. 
Representation learning and data acquisition were discussed for 
efficient and effective capturing of generalized information. Learned 
dense correspondence demonstrated the power of learned modules 
in catalyzing robot manipulation applications. Further discussions 
were made to show that modularized representations may enable 
transferability, customizability, and explainability. In the face of novel 
variations, active learning and learning from demonstration methods 
provide potential solutions. They both allow robots to learn new 
manipulation skills, but key problems are still open, e.g., learned 
dexterous manipulation and continual skill improvement after 
deployment.

To push forward the capacity and adaptability of learned robot 
manipulation, the following questions can be asked: (i) Which part 
of manipulation should be learned, and what software and hardware 
advancements are needed to support that? (ii) What to do to better 
capture generalized information? Use special training techniques, 
innovative architectures, representation engineering, or augmented 
datasets? (iii) How to enable the transfer of knowledge in the case of 
external, internal, and novel variations? (iv) How to extend active 
learning or learning from demonstration methods to enable continual 
adaptation? (v) What can be done, either on software or hardware, 
to boost the efficiency of the learning process? To date, these ques-
tions were only partially answered, leaving great opportunities for 
further exploration, as summarized below:

1) Representation learning with more sensing modalities. Most 
previous studies focus on visual sensing. Indeed, it is arguably the 
most important sensing modality for robots; however, there is a key 
limitation that makes vision, by itself, unable to cover all manipu-
lation scenarios: It cannot sense contact if the contact region is 
visually blocked. In fact, humans use multimodal sensory signals 
during manipulation (113), which includes but is not limited to 
tactile, auditory, and temperature signals. Adding representations of 
these sensing modalities would provide learned robot manipulation 
more holistic understanding of current system states, thus boost 
the learning performance.

2) Advanced simulators for manipulation. Before robots and sen-
sors, such as industrial-grade robot arms and high-resolution tactile 
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sensor arrays, become much cheaper and safer for contact events, 
physical simulators are crucial for manipulation learning. Ideally, 
we hope simulators to be as fast and as realistic as possible. By mak-
ing compromises in physical accuracy, we can enjoy fast (faster 
than real time in many cases) simulations already, e.g., MuJoCo (51). 
However, realistic physics is still a challenging goal for state-of-the-
art simulators, especially when it comes to contact modeling (54), 
which becomes even more challenging when deformable objects and 
robots come into play. What is more, it is desired to have simula-
tions for more manipulation scenarios (liquid manipulation, cutting/
breaking of objects, etc.) and more physical modalities (sound, 
temperature, etc.).

3) Task/skill customization. As a source of external variations, 
robot users may change the task composition or task specification. 
As discussed before, the modularity of manipulation and domain 
adaptation techniques should be exploited for these customizations.

4) “Portable” task representations. Previous studies primarily 
focus on the generalization over external variations, leaving the 
adaptation to internal variations barely touched. As discussed, a key 
to such adaptation is to identify a proper level of abstraction (repre-
sentation) of the manipulation task. When the task representation 
is disentangled from specific embodiment, the learned representa-
tion can be transferred across agents. Here, the interesting question 
is how abstract the representations should be for internal variations 
that occur at different levels of task decomposition.

5) Informed exploration for manipulation. Active learning 
methods can find new skills for novel variations. Random sampling- 
based exploration worked well in motion planning [e.g., Rapidly- 
exploring Random Tree (114)]. However, because of the sparse nature 
of contact events, it is very inefficient for manipulation tasks. 
The sparsity of contact events, on the other hand, imposes a strong 
motivation to adopt informed exploration similar to informed sam-
pling methods seen in motion planning, such as goal-driven and 
obstacle-aware methods (115–117). Usually, reinforcement learning 
agents obtain such information from reward functions, which 
can be difficult to hand design. Hindsight experience replay (74) 
demonstrates that, for some simple tasks such as reaching and 
pushing, skills can be learned even with sparse rewards. However, the 
theoretical guarantee of convergence and the applicability to more 
complex manipulation tasks require further study.

6) Continual exploration. As mentioned before, it is challenging 
for a learned skill to improve continually after robot deployment. A 
naive way to achieve this is to keep a simulation thread busy learn-
ing for novel variations while using the best policy available on the 
physical robot. However, more sophisticated methodologies must 
exist and are waiting to be found.

7) Massively distributed/parallel active learning. When learn-
ing skills from scratch, efficiency is a critical metric. Most previous 
research adopts data parallelism to extend single-thread active learn-
ing methods. However, the relationship between sampling efficiency 
and learning performance is unclear, which demands more rigor-
ous studies. What is more, new active learning methods that can 
benefit from both data and model parallelism are desired to improve 
efficiency further.

8) Hardware innovation. As discussed, hardware designs with 
compliant mechanisms (57–61) may simplify robot manipulation and 
increase adaptability, but they are often limited to tasks with simple 
contact events, e.g., static grasping. Additional studies are needed to 
simplify more challenging manipulation tasks, e.g., in-hand dexterous 

manipulation. Some early designs are the Shadow Dexterous Hand 
(118) and the JamHand (119). The former is almost fully actuated 
(only 4 of 24 joints are underactuated), whereas the latter is not, 
but, nevertheless, is capable of basic dexterous manipulations. What 
is more, although these devices’ deformability and compliance 
bring safety and robustness, they are challenging to be accurately 
and efficiently simulated. For achieving good learning results in 
simulation, it would be worthwhile to seek simulation-friendly de-
signs and materials. More discussions on hardware design for ro-
bot manipulation can be found in the review paper of Billard and 
Kragic (120).

9) Real-time performance. Eventually, learned manipulation skills 
will be tested in the real world. The latency and frequency of robots’ 
control loops are critical, especially in dynamic scenes. Developing 
fast learning models and algorithms is essential. For example, 
Morrison et  al. (16,  83) proposed a light-weight neural network 
(Generative Grasping Convolutional Neural Network), which 
enabled a closed-loop control of 50 Hz (often much slower in previous 
research) for vision-based grasping. In addition to software speedup, 
hardware is also critical for further enhancing learned robot manipula-
tion. Fast perception, communication, and actuation are prerequisites 
for complex dexterous manipulation tasks, which may require low 
latency control iterations with a frequency as high as 1  kHz or 
even higher.

Here, although we have aimed to be as comprehensive as possible, 
it is impossible for us to find and review all remarkable works related 
to this broad topic. That said, by illustrating the idea of adaptability 
in learned robot manipulation with reviews of state-of-the-art studies, 
we hope that we have provided a unique perspective to the manipu-
lation community, which would generate more discussions and ideas 
leading to a brighter future of robot manipulation.
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