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Abstract—Objective: Multiple Sclerosis (MS) is one of the most
common neurological conditions worldwide whose prevalence is
now greatest among people 50-60 years of age. While clinical
presentations of MS are highly heterogeneous, mobility limita-
tions is one of the most frequent symptoms. The aims of this
study were to examine MS and disability related changes in
spatiotemporal and kinetic gait features after normalization; and
evaluate the effectiveness of a gait data-based machine learning
(ML) framework for MS prediction (GML4MS). Methods: In this
study, gait data during self-paced walking on an instrumented
treadmill from 20 persons with MS and 20 age, weight, height and
gender-matched healthy older adults (HOA) were obtained. We
explored two normalization strategies, namely size-N (standard
body size-based normalization) and regress-N (regression-based
normalization using scaling factors derived by regressing gait
features on multiple subject demographics) to minimize the
dependency of derived gait features on the subject demographics;
and proposed GML4MS, a ML based methodology to classify
individual strides of older persons with MS (PwMS) from healthy
controls, so as to generalize across different walking tasks and
subjects after gait normalization. Results: We observed that
regress-N improved the accuracy of identifying pathological gait
using ML when compared to size-N. When generalizing from
comfortable walking to walking while talking, gradient boosting
machine achieved the optimal subject classification accuracy and
AUC of 94.3% and 1.0, respectively and for subject generalization,
a multilayer perceptron resulted in the best accuracy and AUC of
80% and 0.86, respectively, both with regress-N normalized data.
Conclusion: The integration of gait data and ML to predict MS
may provide a viable patient-centric approach to aid clinicians
in disease monitoring and relapse treatment. This work is the
first attempt to employ and demonstrate the potential of ML for
this domain. Significance: The results of this study have future
implications for the way regression normalized gait features may
be clinically used to design ML-based disease prediction strategies
and monitor disease progression in PwMS.

Index Terms– Multiple sclerosis, Gait, Machine learning,
Conditional entropy, Progression space
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MULTIPLE Sclerosis (MS) is a chronic demyelinating
and neurodegenerative disorder that impairs the central

nervous system. It can affect a range of cognitive, physical,
and psychiatric processes [1], [2]. Severe symptoms include
impairment of vision and sensory abilities, muscle paralysis,
and depression [3], with mobility impairments being one of the
most frequent signs [4]. MS affects approximately 1 million
people in the United States (US) and more than 2 million
globally [5]. Peak prevalence is in adults 50-60 years of age
[6]. Direct medical treatment expenses and indirect costs in
terms of lost productivity, additional need for caretakers and
amenities for persons with MS (PwMS) are estimated to be
$24 billion annually in the US [7].

Walking and balance difficulties are one of the most com-
mon indicators in PwMS; nearly 85% of PwMS describe
gait disorders as a major complication [8] and roughly 50%
patients need walking assistance within 15 years of MS
onset [9]. Secondary effects often include fear of falling,
significantly impacting the quality of life of PwMS [10]. In
contrast to the monitoring of most underlying manifestations
of MS, which require neurological examinations by a trained
practitioner, gait can be quickly and remotely monitored. Thus,
objective gait monitoring, which expands upon typical clinical
tests [11], may be important for designing disease prediction
and progression strategies in PwMS. Past research on MS
assessment with gait-related dynamics has typically relied
upon statistical inferences that may not be able to gauge
the heterogeneity present in the disease [12]–[16]. Given that
subtle and heterogeneous patterns of gait changes may arise in
PwMS over time, a machine learning (ML) approach will be
valuable for monitoring MS-related changes in older adults.

This study aims to examine MS and disability related
changes in spatiotemporal and kinetic gait features after
normalization; and evaluate the effectiveness of a gait data-
based machine learning (ML) framework for MS prediction
(GML4MS), an ML-based methodology to classify strides of
older PwMS from healthy controls, so as to generalize across
different walking tasks and subjects after gait normalization.
Building upon prior work examining MS-related variations
in gait characteristics [17], we categorized PwMS using the
following two classification designs (see Figure 1):
(a) Task generalization establishing the generality over dif-

ferent tasks. In these tasks, we train binary (healthy vs.
MS) classifiers on walking (W) trials and apply them to
walking while talking (WT) trials. Task generalization
results will hopefully reflect how classifiers trained in
supervised lab conditions might work in real-world gait
tasks with challenges of divided attention. To monitor
disease progression and relapses, task generality is vital
as normative data collected in a clinic or lab could be
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used as a basis to assess gait data collected using wearable
sensors in a home-based setting.

(b) Subject generalization demonstrating the generality over
different subjects. In these tasks, we train binary (healthy
vs. MS) classifiers (with a balanced collection of W and
WT tasks) on some test subjects and apply them to the
withheld separate set of test subjects. These results may
have implications in detection of MS in new patients.

Fig. 1. Top: Task generalization model, Bottom: Subject generalization
design. Healthy older adults (HOA) and PwMS are depicted in shades of
green and red, respectively. The indices (1, 2, 3, · · ·) along with HOA and
PwMS are used as a reference for dummy subjects identifiers.

II. RELATED RESULTS AND CONTEXT

Several studies have identified gait performance declines
in PwMS, particularly as disability increases [12], [18], [19].
Most gait-based methods for identifying MS have relied upon
traditional statistical techniques to examine differences in
spatiotemporal features and correlations with disability [12]–
[16]. Supervised ML methodologies such as random forest and
artificial neural networks have already been used in human
gait analysis across other neurological populations [20], [21].
A few prior works have explored ML to classify MS using
gait data [22], [23]. However, to the best of our knowledge,
there is no study utilizing ML on spatiotemporal and kinetic
gait characteristics for MS prediction. Despite model-based
statistical practices presenting transparency and explainabil-
ity regarding the contribution of independent features, ML
approaches may improve performance by addressing high-
dimensional and non-linear feature interactions in a model-free
way. Further, transforming statistical inference to prediction
classes requires defining sensitive classification thresholds.

Distinctive physical characteristics across subjects inher-
ently enhance the variability in raw gait parameters and thus
limit the efficiency of learning true reliable trends in a feature
differentiating healthy and pathological gait [24]. Referring to
the performance improvements in previous studies examining
neurological diagnosis [21], [25], two normalization strategies,
namely size-N (standard body size-based normalization) and
regress-N (regression-based normalization using scaling fac-
tors derived by regressing gait features on multiple subject
demographics) were explored to minimize the dependency of
gait features on the subject demographics.

The proposed application of ML classifiers to recognize gait
patterns of PwMS across tasks and over new subjects is a step
forward towards the identification of a tipping point for older
people with MS, and worsening of symptoms in the near term.
Moreover, we discuss the importance of spatiotemporal and
kinetic features, encompassing valuable domain knowledge, in
the classification performance. Attributing to prior evidence
of gait changes with MS impairment [12], [26], [27], we
construct an MS progression space by unsupervised cluster-
ing of reduced gait feature space in PwMS to examine the
relative correspondence of the defined subgroups to disease
severity. This analysis may facilitate strategies to monitor
disease progression and evaluate the effectiveness of disease
modifying interventions. The proposed methodology is an
advancement towards developing an assessment marker for
medical professionals to predict older PwMS who are likely to
have a worsening of symptoms in the near term. Our ultimate
objective is a system to automatically identify inflection points
in the disease progression of older PwMS.

III. EXPERIMENTAL DESIGN: SETUP AND SUBJECTS

The protocol for this study was approved under the Uni-
versity of Illinois at Urbana-Champaign Institutional Review
Board number 15674 on 4/3/2015.

A. Experimental paradigm

An instrumented treadmill (C-Mill, Motekforce Link,
Culemborg, The Netherlands) in self-paced mode was utilized
to allow subjects to walk at their preferred speed. To allow for
unbiased force recordings, subjects were instructed to restrain
from holding the handrails while walking on the treadmill. For
safety purposes, all subjects wore a ceiling-mounted harness
and had access to an emergency stop button during all the
walking trials. Supplementary figure S1 illustrates the gait
data acquisition setup. All subjects walked one trial under two
different task conditions, namely single-task condition, W and
dual-task paradigm, WT. For the WT task, subjects were asked
to walk while reciting alternate letters of the alphabet (i.e.
a, c, e, ...), coordinating equal attention between mobility and
the cognitive interference exercise to depreciate the influence
of task prioritization. The divided attention dual-task walking
in a laboratory environment has been demonstrated to be
more analogous (as compared to usual walking) to every-day
walking in the older adults and hence provides a competent
framework to generalize adequacy towards daily-living gait
for 24/7 monitoring scenarios [28]. Further, the attention
demanding WT task has been examined by researchers for
practical implications in designing mobility risk assessment
procedures and predicting the risk of falls and fall-related
injuries in older adults and individuals with other cognitive
or movement disorders [29]. For each trial, subjects were
instructed to walk at a comfortable pace for up to 75 seconds
(s), after being provided with a brief training session. CueFors
2 software [30] was used to collect gait event data (i.e., left and
right heel strike, mid-stance, and toe-off position coordinates
and time stamps) and raw data (i.e., vertical ground reaction
forces, treadmill speed and center of pressure (CoP) position
coordinates at a 500 Hz frequency) during each walking trial.
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To facilitate the online identification of gait events, an online
pattern recognition algorithm detects maxima and minima in
the butterfly patterns (see section IV-B4) of the CoP profiles,
that are collected in real time via an embedded force plate
in the treadmill [31]. Supplementary table S2 describes the
collected raw features.

B. Study participants

Twenty individuals from each cohort, MS patients (age:
61.05± 6.87 years [49− 75 years], weight: 74.89± 24.52 kg
[21.6 − 135 kg], height: 1.68 ± 0.09 m [1.6 − 1.93 m],
male/female: 5/15) and healthy older adults (HOA) (age:
61.2± 5.87 years [48− 68 years], weight: 76.17± 19.24 kg
[52.1 − 121 kg], height: 1.70 ± 0.07 m [1.56 − 1.90 m],
male/female: 5/15) were recruited from the local community.
All subjects were medically stable, right-side dominant, had
no lower limb injury in the past six months and had normal or
corrected to normal vision. MS subjects had mild to moderate
disability (4.3±1.62 [1.0−6.0] as evaluated by the Kurtzke’s
Expanded Disability Status Scale (EDSS) [32]), were relapse-
free for at least a month prior to experimental trials and
had no other cognitive dysfunction or neurological disorders.
EDSS, monitoring sensory, motor, brain stem, visual, cere-
bellar, bowel and bladder, pyramidal and other functions, is
an accepted method to quantify disability in PwMS. For this
work, we divided PwMS into three sub groups based on their
EDSS score: mild (1.0-2.5), mild-to-moderate (3.0-4.5) and
moderate (5.0-6.0). No significant differences (at significance
level α = 0.05) in age, weight, height, gender and education
levels were observed between the two cohorts. Two HOA and
three PwMS were excluded from the analysis for holding the
handrails (biasing the raw force data).

IV. EXPERIMENTAL DESIGN: DATA ANALYSIS

A. Gait terminology and mathematical notation

A typical walking gait comprises of recurrent gait cycles
(GC). A gait cycle or stride is measured from a foot’s heel
strike to the subsequent heel strike of the same foot. For
our analysis, a stride was characterized by the following gait
events: HSR: heel strike right, TOL: toe-off left, MidSSR:
midstance right, HSL: heel strike left, TOR: toe-off right,
MidSSL: midstance left, with the next HSR starting a new
stride. A stride is a consolidation of two steps (i.e. HSR-
HSL and HSL-HSR), where a step is marked from a foot’s
heel strike to the following heel strike of the opposite foot.
Supplementary figure S3 demonstrates the longitudinal plane
view of a GC. The following are frequently used mathematical
notations:
• Let Ns be the total number of valid strides recorded during

a subject’s complete walking trial on the treadmill
• Let (S̃,≤s) where S̃ def

= {sk, k = 1, 2, . . . , Ns} be an or-
dered set of valid strides during the complete walk where
sm ≤s sn essentially means that stride sm appeared prior
in the subject’s walk to stride sn. Since the strides derived
from a trial are ordered in time, sm ≤s sn if m≤ n defines
a natural order on S̃. Clearly, cardinality | S̃ |= Ns.

• Let (E,C) be an ordered set of six gait events observed
during a stride

E def
= {HSR, TOL, MidSSR, HSL, TOR, MidSSL}

where the order C is defined as follows:
HSR C TOL C MidSSR C HSL C TOR C MidSSL

• Let Traw
def
=
{

δ t, t = 0, 1, 2, . . . , Twalk
0.002

}
be the times (in

s) corresponding to raw force and CoP recordings where
δ = 0.002, Twalk = 75 since the raw data is collected every
0.002 s and each trial lasted for 75 s. For each time stamp
t ∈ Traw, define:

– S(t) as the treadmill speed (in m/s)
– FZ(t) as the ground reaction force (in Newton (N))
– (CoPX(t),CoPY (t)) as the CoP positions in x and

y-directions (in m)
• Define the Cartesian product (E× S̃,≺) where E× S̃ =
{(e, sk) : e ∈ E and sk ∈ S̃} as the set of ordered pairs
(e, sk) corresponding to event e of stride sk for every e ∈
E and sk ∈ S̃ where eq. 1 defines the ordering on E× S̃.

(e, sm)≺ ( f , sn) if

{
sm <s sn for m 6= n
e C f for m = n

(1)

For each gait event and stride (e, sk) ∈ E× S̃, define:

– T (sk)
e as the elapsed time (in s) from the start of data

recording to (e, sk)

–
(

X (sk)
e , Y (sk)

e

)
as the x and y-coordinates (relative to

origin of the treadmill) for the detected (e, sk)

– T̃ (sk)
e

def
= min{t : t > T (sk)

e and t ∈ Traw} as the closest
time in Traw (corresponding to the recorded raw
forces and CoP positions) to the marked time T (sk)

e

– F(e,sk)
Z

def
= FZ(T̃

(sk)
e ) as the reaction force at (e,sk)

– ĈoP
(sk),(sm)

e, f as the CoP trajectory between
(e, sk), ( f , sm) ∈ E× S̃ (events e and f of strides sk
and sm, respectively) where (e, sk)≺ ( f , sm) (eq. 1)

ĈoP
(sk),(sm)

e, f
def
=
{
(CoPX(t),CoPY (t)) : T̃ (sk)

e ≤ t ≤ T̃ (sm)
f

}
B. Gait feature extraction for MS characterization

To examine cohort related variations in the gait patterns,
characteristic kinematic and kinetic features were extracted
across strides from the raw gait data using Python 3.6 (see
supplementary figure S4 for our workflow pipeline). The
derived features can be categorized as follows:

1) Temporal features: 7 temporal gait features, namely
stride time, stance time, swing time, supporting (right single,
initial double and terminal double) times (in s) and cadence
(in steps/min) were computed for each stride.
• Stride time is the time between two successive heel strikes

of the same foot i.e. HSR-HSR. ST (eq. 2) denotes the
set of stride times for a complete trial.

ST = {ST (sk) : sk ∈ S̃} where ST (sk) = T (sk+1)
HSR −T (sk)

HSR (2)

• Stance time (StT (sk) = T (sk)
TOR−T (sk)

HSR) is the time between
heel strike and toe-off (from stride sk ∈ S̃) of the same
foot i.e. HSR-TOR.
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• Swing time (SwT (sk) = T (sk+1)
HSR − T (sk)

TOR) is measured be-
tween the toe-off (TOR, sk) and heel strike (HSR, sk+1)
of the same foot.

• Support can be categorized as single or double depending
on whether only one or both of the subject’s feet are in
contact with the treadmill’s belt, respectively.
Single support can further be classified as left/right de-
pending on which one foot supports the subject’s body.

– Left single supporting time (SS(sk)
L = T (sk+1)

HSR −T (sk)
TOR)

is the time between toe-off (TOR, sk) and heel strike
(HSR, sk+1) of the right foot for stride sk ∈ S̃. This
is identical to swing time.

– Right single supporting time (SS(sk)
R = T (sk)

HSL−T (sk)
TOL)

is the time between toe-off (TOL, sk) and heel strike
(HSL, sk) of the left foot for stride sk ∈ S̃.

Double support can be identified as initial/terminal based
on it’s onset in the stance phase.

– Initial double supporting time (DS(sk)
I = T (sk)

TOL−T (sk)
HSR)

is the time amid heel strike of supporting foot and
toe-off of other foot i.e. HSR-TOL from stride sk ∈ S̃.

– Terminal double supporting time (DS(sk)
T ) is calcu-

lated between heel strike of the other foot and toe-off
of the supporting foot i.e. HSL-TOR from stride sk.

DST = {DS(sk)
T : sk ∈ S̃} where DS(sk)

T = T (sk)
TOR−T (sk)

HSL

• Cadence (C(sk) = 60×2
/(

T (sk+1)
HSR −T (sk)

HSR

)
) is the walk-

ing rate or number of steps taken in a minute (min) i.e.
twice the inverse of stride time (in min) for stride sk ∈ S̃.

2) Spatial features: The stride-wise extracted 4 spatial
(distance dimension) gait attributes included stride length,
stride width (in m) and the dimensionless left and right
foot progression angles. Since the foot comes back to its
initial position after each stride while walking on a tread-
mill belt, the y-coordinate of position for the current and
next stride event, HSR for instance, will be approximately
the same each time. Therefore, to report accurate spatial
measures, y-position coordinates were corrected to account
for the relative treadmill belt travel (BT). Mathematically,

BT ((e,sm),( f ,sn)) =
∫ t2=T̃ (sn)

f

t1=T̃ (sm)
e

S(t)dt is computed as the area
under the speed-time curve bounded by the closest times
(corresponding to recorded speeds) to the marked times of gait
events (e, sm) and ( f , sn) ∈ E× S̃ where (e, sm)≺ ( f , sn) and
dt = 0.002. The above integral is numerically approximated
via the trapezoidal rule. Hence, the relative y-coordinate for
( f ,sn) w.r.t (e,sm) is given by eq. 3.

Ŷ (sn)
f = Y (sn)

f +BT ((e,sm),( f ,sn)) (3)
Now, let’s define the derived spatial gait markers.
• Stride length (SL(sk)) is the horizontal distance in the

walking plane between two subsequent heel strikes of the
same foot i.e. between (HSR, sk) and (HSR, sk+1).

SL = {SL(sk) : sk ∈ S̃} where SL(sk) = Ŷ (sk+1)
HSR −Y (sk)

HSR

where Ŷ are adjusted for belt travel relative to (HSR,sk).
• Stride width (SW (sk)) is the medio-lateral distance be-

tween the two feet i.e. perpendicular distance between
the line connecting two consecutive heel strikes of the

same foot i.e. (HSR, sk) and (HSR, sk+1) and the heel
strike of the contralateral foot i.e. (HSL, sk).

SW (sk) =
1

D(sk)

∣∣(X (sk+1)
HSR −X (sk)

HSR

)(
Y (sk)

HSR− Ŷ (sk)
HSL

)
−
(

X (sk)
HSR−X (sk)

HSL

)(
Ŷ (sk+1)

HSR −Y (sk)
HSR

)∣∣
where D(sk) =

√(
X (sk+1)

HSR −X (sk)
HSR

)2
+
(

Ŷ (sk+1)
HSR −Y (sk)

HSR

)2

and Ŷ are adjusted for belt travel relative to (HSR,sk).
• Foot progression angle (FPA) for the right/left
(θ

(sk)
R /θ

(sk)
L ) foot is defined as the angle between

the progression vector (PR/PL) (joining two consecutive
heel strikes of the right/left foot) and the foot vector
(FR/FL) (drawn between the right/left foot’s heel strike
and toe-off) for stride sk [33]. Since staggered walking
in PwMS might show significant fluctuations in FPAs,
we elected it as a potential feature correlating to MS
gait. Mathematically, we have:

θ∗ =

{
θ
(sk)
∗ = (−1)x tan−1

Y (sk)
P∗

X (sk)
P∗

+ ...

(−1)y tan−1

Y (sk)
F∗

X (sk)
F∗

 : sk ∈ S̃

}
(

X (sk)
F∗ , Y (sk)

F∗

)
=
(

X
(sk1 )

TO∗ −X (sk)
HS∗, Ŷ

(sk1 )

TO∗ −Y (sk)
HS∗

)
and(

X (sk)
P∗ , Y (sk)

P∗

)
=
(

X (sk)
HS∗−X (sk−1)

HS∗ , Ŷ (sk)
HS∗−Y (sk−1)

HS∗

)
where Ŷ are adjusted y-coordinates relative to the belt
travel (eq. 3), ∗ indicates left (L) or right (R) and sk1
denotes sk+1 and sk for L and R, respectively. Exponents
x, y are defined as 1, 2 respectively for L and 2, 1
respectively for R. Supplementary figure S5 summarizes
these definitions on an overground view of the GCs.

3) Spatiotemporal features: Derived from the above defined
temporal and spatial features, 2 additional spatiotemporal
markers, namely stride speed (in m/s) and walk ratio (in
m/strides/min) were defined for each GC.

• Stride speed (SS(sk) = SL(sk)/ST (sk)) is defined as the ratio
of stride length and stride time for strides sk ∈ S̃.

• Walk ratio (W (sk) = 2×SL(sk)/C(sk)) is computed as the
ratio of stride length to the number of strides walked per
minute (i.e. half the cadence) for GCs sk ∈ S̃.

4) Kinetic features: 8 kinetic gait parameters, namely the
six forces, one at each gait event (in N) and two butterfly
diagram-based features (in m) were identified for each GC.

• Forces (F(e,sk)
Z ) at each of the six gait events (e∈ E) were

recorded for every stride sk. Thus, for a trial, we have

Fe
Z =

{
F(e,sk)

Z : (e,sk) ∈ {e}× S̃
}
∀ e ∈ E

• Butterfly diagram (BD) reflects the repeated CoP trajec-
tory for multiple continuous strides during a subject’s
walk. The BD derived features, especially in the anterior-
posterior (AP) and lateral directions, have been associated
with important neurological functions in PwMS [34]
(Figure 2). First, the intersection point (IP) of the CoP tra-
jectory for stride sk ∈ S̃ is calculated: CoPX (sk)

ip ,CoPY (sk)
ip .
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Then, the lateral and AP shift in the IP for a trial are given
by:

βL = {β (sk)
L : sk ∈ S̃}, βAP = {β (sk)

AP : sk ∈ S̃}

Define (CoPXip,CoPYip) =

(
∑

Ns
k=1 CoPX

(sk)
ip

Ns
,

∑
Ns
k=1 CoPY

(sk)
ip

Ns

)
as the mean IP. The set of lateral and AP squared
deviation from the mean IP for a trial are given by:

αL = {α(sk)
L = (CoPX (sk)

ip −CoPXip)
2 : sk ∈ S̃}

αAP = {α(sk)
AP = (CoPY (sk)

ip −CoPYip)
2 : sk ∈ S̃}

The lateral (ηL) and AP (ηAP) asymmetry can then be
defined as the mean lateral and AP shift in the IPs,
respectively. Similarly, the lateral (σL) and AP (σAP)
variability are defined as the lateral and AP standard
deviation (SD) in the IPs, respectively. We selected βL
and αL as the two characteristic features of ML variability
for our analysis.

Note that all features except the FPAs are always non-negative.
Before deriving the stride-wise features, GCs with missing
or invalid gait events were eliminated. Since several features,
namely stride, swing times, stride length, width and angles will
generate erroneous estimates for nonconsecutive strides, such
values were dropped during data processing. Overall, 1654
(HOA: 905, PwMS: 749) and 1576 (HOA: 878, PwMS: 698)
strides were retrieved from W and WT trials, respectively,
across 35 subjects (HOA: 18, PwMS: 17).

Fig. 2. Butterfly diagram. Left: HOA, Right: PwMS with EDSS = 5.5,
Top: Trial W, Bottom: Trial WT. The curves illustrate the BD during the
entire 75 s walk where the thicker black line and yellow circle depicts the
mean trajectory and mean IP, respectively. Here, x and y axis represent the
CoP position coordinates. The variability (red dashed lines) and asymmetry
in the AP (σAP/ηAP) and lateral (σL/ηL) directions are reported in mm.

C. Data normalization techniques

The demographic differences between subjects may intrinsi-
cally influence the dynamics of gait variability and hence bias
the MS gait differentiation efficiency. Thus, prior to classifica-
tion, we normalized the subject’s derived gait characteristics
using the following two approaches:

1) Body size-based dimensionless normalization (Size-
N): The extracted gait variables were normalized to non-
dimensional forms by dividing via their corresponding
dimension-matched body size-based scaling factors (proposed
in [35]) in order to adjust for the inherent inter-subject physical

differences. For instance, the acquired lengths, namely stride
length and width were scaled by the subject’s respective
height. FPAs are dimensionless and thus require no scaling.
Let w, h, Ssize and g denote the body weight (in kg), height (m),
shoe size (m) and acceleration of gravity (9.81m/s2), respec-
tively, then table I summarizes scaled dimensionless quantities
with regards to features obtained for both cohorts and tri-
als where L ∈ {SL, SW}, T ∈ {SSR, DSR, DSL, ST, StT, SwT},
Fe

z ∀ e ∈ E, θ ∈ {θL, θR} and P ∈ {βL, αL}.
TABLE I

SIZE-N NORMALIZATION FOR THE EXTRACTED GAIT FEATURES
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2) Multiple regression-based normalization (Regress-N):
Gait variables from both walking trials of the 35 subjects
(in III-B) were normalized by regressing the baseline gait
features of normative walking data from 30 additional healthy
older adults on multiple demographic characteristics. These
additional healthy older adults (age: 67.6±10.34 years [50−
87 years], weight: 71.61±14.52 kg [52.97−103 kg], height:
1.68± 0.17 m [1.01− 1.96 m], male/female: 9/21) were re-
cruited from the local community. All controls walked for 200
s on the treadmill and yielded 21 gait features from a total of
3923 valid strides. A regression model was fitted to each gait
feature with subject-wise averaged gait parameter values as
a dependent variable and their corresponding demographics
(weight, height, gender and age) as independent variables.
All independent variables were assessed while fitting the
regression since the variance inflation factor for each was
lower than 5, hence ignoring the concern of multicollinearity.
Further, the Spearman’s rank correlation coefficients among
the independent variables presented no strong associations. For
each gait feature, backward elimination was used to determine
M statistically significant predictors (p < 0.1) and an optimal
combination of predictors with the minimum corrected Akaike
information criterion was selected out of 2M possibilities. Sub-
sequently, robust regression models minimizing the Tukey’s
biweight loss of the standard Gaussian residual errors were
fit (see supplementary table S6 for the regression coefficients
and the corresponding root mean squared errors). Gait features
from both trials of the 35 study subjects (in III-B) were then
normalized to dimensionless quantities with their predicted
values obtained via their corresponding fit and subject de-
mographics. Scaling relative to the regression predictors and
coefficients computed from normative walking data of other
healthy older adults aids in minimizing data spread among the
gait features for the controls and association with individual
demographic characteristics, and thus improve detection of MS
vs. subject-related changes in gait.

D. Statistical analysis

To examine cohort-related differences and the corresponding
effect of normalization strategies on gait feature characteristics
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(i.e. mean, SD and range), a two tailed t-test and F-test
was used to identify significant MS-related differences at
α = 0.05. The statistical assumptions of independence (since
all subject observations were independent), normality (via the
Shapiro Wilk test) and homoscedasticity (via Levene’s test)
were verified for the t-test. Mann-Whitney U-test and Welch’s
t-test were used, respectively, if normality or homoscedasticity,
respectively failed. Similarly for the F-test, independence and
normality were examined, and Levene’s test was implemented
if normality failed. Spearman’s correlation (r) between the
mean gait parameters and physical characteristics (weight, age,
height and gender) of subjects in both trials were compared
for raw (rraw), body size (rs), and regression (rreg) normalized
data to study the dependence of gait features (and thus the
performance of ML models) on subject demographics. Further,
among PwMS we explored the association and directionality
of raw and normalized gait variables with disease severity us-
ing Spearman’s correlations (redss) to motivate the applications
of gait in learning MS progression with time.

E. Classification models and evaluation

MS prediction was studied across two classification designs,
namely task and subject generalization (Figure 1). In both task
and subject generalization, binary supervised learning classi-
fiers were trained to differentiate strides corresponding to HOA
and PwMS. ML models were trained on 1654 strides across
all 35 subjects in W trials and tested to categorize 1576 strides
of the same subjects in WT trials for task generalization. Since
our data set was limited to 35 subjects, we used a 7-fold cross-
validation (CV) for subject generalization. In each scenario, all
models were examined with both size-N and regress-N normal-
ized features. Z-score normalization was applied to all features
to eliminate the influence of variable feature ranges. For both
classification architectures, the performance of nine notable
supervised classifiers, i.e. decision tree (DT), random forest
(RF), support vector machine with linear (LSVM) and radial
basis function (RBF SVM) kernels, gradient boosting ma-
chine (GBM), adaptive boosting (AdaBoost), eXtreme gradient
boosting (XGBoost), multilayer perceptron (MLP) and logistic
regression (LR) were compared (see supplementary section
S7 for details on these algorithms). Prediction efficiency for
the task and subject generalization classifiers were weighed
via the test set and mean CV precision, recall, accuracy, F1
score and area under receiver operating characteristic (ROC)
curve (AUC) metrics, respectively. Both setups were evaluated
at stride and subject level categorizations, where majority
voting was used to classify subjects into HOA vs. PwMS.
Thus, a correctly classified subject’s walk had more than 50%
of strides accurately detected as of the appropriate cohort.
Precisely, we annotate the stride and subject-level classification
metrics with str (i.e. Pstr, Rstr, Astr, F1str, AUCstr) and sub (i.e.
Psub, Rsub, Asub, F1sub, AUCsub) in the subscript, respectively.

F. MS progression space

We attempt to describe the progression stage in PwMS by
clustering their strides in distinct and multifaceted progression
subgroups. Dimensionality reduction via rank-2 non-negative

matrix factorization (NMF) was implemented on 21 regress-
N features with 749 and 698 available strides of PwMS
in trials W and WT, respectively to define a progression
space for MS summarizing the influence of gait features in
2 dimensions (2D) across multiple stages. To impose non-
negativity, all regress-N features were normalized between 0
and 1. Across both trials, NMF deconstructed the data into
two matrices, namely progression vectors and the progression
indicators. Progression vectors were used to construct the 2D
MS progression space (2D-MSPS). The 21 gait features were
correlated to the two axes of the progression space using
the magnitude of coefficients observed in the progression
indicator vectors. Next, by applying unsupervised Gaussian
mixture model (GMM) on the 2D-MSPS, we algorithmically
parsed the progression space into three hidden subtypes within
PwMS, representing the disease rate progressors. For each
identified cluster, we study the number of strides and their
share percentage in three severity subgroups (defined in III-B)
based on the EDSS of MS subjects. Further, we look at the
weights of the features to define a projection mapping for
gait variables to the new 2D MSPS axes and thus find latent
features describing the reduced progression space.

V. EXPERIMENTAL RESULTS

Overall, PwMS reported longer and more dispersed stride,
stance and double support times but a shortened single support
on average in both the trials. Further, PwMS walked with
a reduced stride length, cadence, self-controlled speed and a
wider lateral distance between the two feet. PwMS reported
higher median and spread in the BD extracted lateral shift
(βL) and squared deviation (αL). In general, no individual or
combination of features exhibit clear non-overlapping patterns
characterizing MS. Any statistical model for MS prediction
would thus be very high dimensional and prone to substantial
scale and validation concerns. Therefore, ML-based investiga-
tion is an appropriate approach for the MS identification task.

A. Statistical analysis

1) Statistical significance: Subject-wise averaged raw and
normalized features were compared between HOA and PwMS
for significance of difference in means and variances. Con-
sidering trial W, statistically significant difference between
means were observed in raw left FPA (6.4 times higher
(6.4×) on average in HOA), lateral shift (1.7× in PwMS)
and squared deviation (1.9× in PwMS). After the body size-
based normalization, terminal double support (1.4× in PwMS),
force on TOL (1.1× in PwMS), left FPA (6.4× in HOA),
lateral shift (1.6× in PwMS) and squared deviation (1.9×
in PwMS) demonstrated significance. When normalized using
the regression technique, significant differences were noted in
terminal double support (1.4× in PwMS), lateral shift (1.6× in
PwMS) and squared deviation (1.8× in PwMS). With respect
to trial WT, only raw terminal double support (1.5× in PwMS)
and lateral shift (1.6× in PwMS) were significant and using the
size-N data, terminal double support (1.5× in PwMS), lateral
shift (1.6× in PwMS) and squared deviation (2.7× in PwMS)
exhibited statistical significance. Similar to size-N, regress-N
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terminal double support (1.5× in PwMS), lateral shift (1.6×
in PwMS) and squared deviation (2.6× in PwMS) showed
significance in trial WT. 8 raw, 10 size-N and 12 regress-N
features in trial W and 11 raw, 14 size-N and 14 regress-N
features in trial WT indicated significant differences between
variances (see supplementary table S8 for the list). In essence,
both the normalization increased the number of parameters that
exhibit significant difference between means and variances of
the two cohorts.

2) Correlation with physical features: To explore the de-
pendency of gait features on demographics, correlation (r) of
physical properties with raw (rraw), size-N (rs) and regress-
N (rreg) parameters were compared. Across both trials, the
range of correlations with raw data (W: −0.41≤ rW

raw ≤ 0.91,
WT: −0.46 ≤ rWT

raw ≤ 0.89) lowered with size-N (−0.46 ≤
rW

s ≤ 0.56, −0.49 ≤ rWT
s ≤ 0.53) and further declined with

regress-N features (−0.41≤ rW
reg≤ 0.41, −0.44≤ rWT

reg ≤ 0.51).
Figure 3 plots some of these absolute correlations for trial W.
For instance, size-N toe-off forces demonstrated significantly
weaker correlations (0.13≤ |rs| ≤ 0.22) with subject’s height
than their raw counterparts (0.4 ≤ |rraw| ≤ 0.43). A similar
trend was observed for the heel strike forces as well along
with a further decrease for regress-N forces. High correlations
between raw forces and subject’s weight (0.81≤ |rraw| ≤ 0.91)
and gender (0.42≤ |rraw| ≤ 0.62) weakened considerably with
size-N to 0.03≤ |rs| ≤ 0.46 and 0.12≤ |rs| ≤ 0.19, respectively
and with regress-N forces to 0.01 ≤ |rreg| ≤ 0.51 and 0.01 ≤
|rreg| ≤ 0.41, respectively. Interestingly, interaction between
single support and gender heightened from 0.1≤ |rraw| ≤ 0.3
to 0.24 ≤ |rs| ≤ 0.41 with size-based normalization. Regress-
N weakened (|rreg| ≤ 0.25) most associations with very in-
frequently realizing moderate values (0.25 < |rreg| ≤ 0.51)
over both trials. Specifically, prominent correlations between
weight and stride width (|rW

raw|= 0.61, |rWT
raw |= 0.62), left FPA

(|rWT
raw | = 0.46) and right FPA (|rW

raw| = 0.24, |rWT
raw | = 0.52)

distinctly lowered to 0.02 ≤ |rreg| ≤ 0.32. Size-N could not
assist in diminishing these high associations between stride
width, left/right FPA and weight. All high correlations (|r| ≥
0.7) reduced to moderate (0.5 ≤ |r| ≤ 0.7) or low (|r| ≤ 0.5)
values with normalization. Thus, normalization reduced the

Fig. 3. Correlation with demographics. Absolute correlation of raw (red),
size-N (blue) and regress-N (green) features with physical characteristics in
trial W.

inherent subject specific differences associated with physical
characteristics in the gait features, potentially enabling the
ML models to focus on learning to differentiate only disease-
specific characteristics present in the gait parameters and
consecutively increase their test set generalizability.

3) Correlation with disease severity: To explore the as-
sociation of gait parameters with severity among PwMS,
correlation (redss) of EDSS with raw and normalized features
was studied. Figure 4 plots the correlations for trial W. The

Fig. 4. EDSS Correlation. Bar plot illustrating the correlation of raw (red),
size-N (blue) and regress-N (green) features with EDSS in trial W. Statistically
significant correlations are marked with diamonds of respective colors.

directionality of redss matched our instinct with speed, length
and cadence inversely correlating; and stride, stance, double
support times and lateral shift positively interacting with
disability. With respect to all three data streams, EDSS showed
the strongest negative correlations (redss ≤ −0.7) with stride
length and speed in both the trials, additionally with walk ratio
in trial W and cadence in trial WT. The strongest positive
correlations (redss ≥ 0.7) were illustrated with double support
and stance times in both trials and also with stride time in
trial WT. Cadence in trial W and walk ratio in trial WT ex-
hibited moderate negative associations (−0.7 < redss ≤−0.5).
Moderate positive interactions (0.5≤ redss < 0.7) were shown
by lateral shift and only normalized forces at MidSSR in both
trials as well as stride time in trial W and lateral deviation,
force at MidSSL in trial WT. The computed correlations were
statistically significant for nine raw and normalized parameters
(SL, SS, C, W , ST , StT , DSI , DST and αL) in both trials
and two additional variables (FMidSSL and βL) in trial WT.
The correlation of forces at MidSSR demonstrated significance
only after normalization. Significant correlations between gait
characteristics and EDSS motivate the applications of gait in
learning the progression space and clinical stages of MS.

B. Prediction Models

Nine classifiers were compared with size-N and regress-N
data to categorize strides and subjects between HOA and MS
cohorts for task (V-B1) and subject (V-B2) generalization.

1) Task generalization: To examine the differences of sin-
gle and dual-task walking on individual gait characteristics
in older adults with and without MS, we used a linear
mixed effects model. Overall, all individuals demonstrated a
significant increase in stance time, initial and terminal double
supports and forces at MidSSR and TOR, and a significant
decrease in stride length and speed when going from W to
WT trials. A significant two-way interaction between cohort
and task indicates greater increases in stride, stance, swing and
right single support times, stride length, speed and walk ratio
for PwMS during WT trials compared to HOA during W trials.
A significant decrease in stride width, cadence and forces at
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TABLE II
TASK GENERALIZATION: STRIDE- AND SUBJECT-WISE TEST SET PERFORMANCE FOR TOP-5 ALGORITHMS

Stride-based Subject-based

Algorithm Data Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

RF Size-N 0.743 0.730 0.666 0.697 0.841 0.829 0.923 0.706 0.80 0.935
Regress-N 0.792 0.796 0.713 0.752 0.886 0.943 1.0 0.882 0.938 0.987

RBF
SVM

Size-N 0.744 0.686 0.779 0.730 0.819 0.857 0.833 0.882 0.857 0.980
Regress-N 0.785 0.720 0.841 0.776 0.868 0.943 0.941 0.941 0.941 0.997

GBM Size-N 0.787 0.784 0.716 0.749 0.867 0.943 1.0 0.882 0.938 1.0
Regress-N 0.824 0.853 0.729 0.786 0.910 0.943 1.0 0.882 0.938 1.0

XGBoost Size-N 0.784 0.770 0.732 0.750 0.867 0.886 0.933 0.824 0.875 0.980
Regress-N 0.815 0.827 0.735 0.778 0.901 0.914 1.0 0.824 0.903 1.0

MLP Size-N 0.746 0.742 0.652 0.694 0.820 0.829 0.923 0.706 0.80 0.951
Regress-N 0.795 0.854 0.648 0.737 0.878 0.886 1.0 0.765 0.867 0.974

HSR, TOL, MidSSR and HSL was observed for PwMS in WT
compared to HOA under W trials.

Table II summarizes the stride- and subject-wise evaluation
metrics for top-5 task generalization classifiers on categorizing
the test set strides of trial WT (see supplementary table S9 for
hyperparameter exploration). Clearly, aggregated performance
of all the subject’s strides via majority voting improved upon
the accuracy of individual stride-wise predictions, for instance
from 74.3% to 82.9% and 79.2% to 94.3% on RF with
size-N and regress-N data, respectively. The classification
performances of all algorithms were higher across all metrics
with the regress-N data except only for GBM with equal
subject-wise metrics when using the size-N and regress-N data.
LR, DT, linear SVM and AdaBoost are absent from table II of
top-5 classifiers. RF, RBF SVM and GBM achieved a subject
classification accuracy (Asub) of 94.3% with the regress-N data
while Asub for XGBoost and MLP were 91.4% and 88.6%,
respectively with the regression normalized data. RF, RBF
SVM, XGBoost and MLP resulted in an Asub of less than
90% with the size-N data except GBM that matched the 94.3%
accuracy of regress-N. The maximum stride classification AUC
(AUCstr) was 0.91 followed by 0.90 using the regress-N data
on GBM and XGBoost, respectively whereas the optimal
AUCstr with the size-N data was 0.87 on GBM and XGBoost.
RF, RBF SVM and MLP had an AUCstr of less that 0.85 when
using the size-N data. Considering all evaluation metrics in
table II, GBM with regress-N data performed the best with an
accuracy, F1 and AUC of 82.4%, 0.79 and 0.91, respectively
at stride-level and 94.3%, 0.94 and 1.0, respectively at subject-
level classification, followed by RF and RBF SVM on regress-
N with a matching subject-level accuracy. Boosting algorithms
sequentially optimized the current DT by adapting to the errors
on the data of prior weak learners as compared to RF training
DTs in parallel on bootstrap samples, thus GBM significantly
improved the performance of learners with low variance but
high bias. Gradient boosters iteratively regress over negative
gradients of any generic differentiable loss function to boost
the weak learning DTs whereas AdaBoost reweighing the
previously mistaken data points higher specifically optimizes
an exponential loss. MLPs are efficient to form disconnected
decision regions and learn any arbitrary complicated boundary,
as suggested by the universal approximation theorem. The
optimal task generalization algorithm was GBM trained on

regress-N data with 150 boosting stages, depth of 7, learning
rate of 0.15 and considered 5 features for checking the best
split (see supplementary figure S10 for its confusion matrix).
Only two PwMS were miss-classified as HOA.

2) Subject generalization: Table III summarizes the mean
and SD of 7-fold CV performance metrics for the top-5 subject
generalization classifiers (see S9 for optimal hyperparameters).
All algorithms except AdaBoost with regression normalization
surpassed the diagnostic performance when using the standard
size-based normalization. LR, linear/RBF SVM and XGBoost
did not make it to top-5. The best mean Asub was 80% (95%
confidence interval (CI): [75, 85]) using the regress-N data
with MLP while RF and MLP had the maximum Asub of
57.1% with the size-N data. Overall in table III, MLP with
regress-N data performed the best with a mean accuracy, F1
and AUC of 62.1%, 0.57 and 0.68, respectively at stride-
level and 80%, 0.78 (95% CI: [0.72, 0.83]) and 0.86 (95%
CI: [0.78, 0.93]), respectively at subject-level classification.
Tree-based models handle highly correlated variables to avoid
overfitting better than kernel SVM. Unlike traditional ML
algorithms relying wholly on hand-crafted features, MLPs
are capable of incrementally learning latent characteristics
of the data and discover novel inherent feature hierarchies
with increasing complexity of the design. Our optimal MLP
architecture with 7 fully connected layers and ReLU non-
linearity was trained for 200 epochs using the adaptive moment
estimation (Adam) optimizer with an adaptive learning rate
initially set to 0.001 and the cross entropy loss (see S10 for its
confusion matrix). Four PwMS and three HOA got incorrectly
classified. Thus, GBM achieved the best Asub (94.3%) for task
generalization, whereas MLP performed the best (80%) for
subject generalization.

C. Post hoc analysis

Note that for further analysis, we adhered to only using
regress-N data for it demonstrated superior performance across
both task and subject generalization model designs.

1) Ablation study: We compared the task and subject
generalization performance on several subsets of regress-N
features, namely 4 spatial (S), 7 temporal (T), 8 kinetic (K), 13
spatiotemporal (ST), 12 spatial-kinetic (S+K) and 15 temporal-
kinetic (T+K) parameters, to that of using all 21 variables
for MS prediction. All ML models were tuned from scratch
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TABLE III
SUBJECT GENERALIZATION: STRIDE- AND SUBJECT-WISE MEAN CV PERFORMANCE FOR TOP-5 ALGORITHMS

Stride-based Subject-based

Algorithm Data Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

DT Size-N 0.504±0.12 0.50±0.25 0.459±0.20 0.427±0.15 0.538±0.12 0.514±0.34 0.429±0.43 0.429±0.42 0.410±0.39 0.690±0.38
Regress-N 0.541±0.08 0.526±0.22 0.512±0.19 0.467±0.11 0.597±0.11 0.60±0.24 0.476±0.38 0.50±0.38 0.462±0.34 0.679±0.27

RF Size-N 0.533±0.16 0.547±0.28 0.418±0.24 0.408±0.19 0.635±0.23 0.571±0.25 0.548±0.34 0.548±0.33 0.514±0.29 0.69±0.27
Regress-N 0.563±0.11 0.557±0.25 0.463±0.23 0.449±0.16 0.643±0.16 0.60±0.19 0.571±0.32 0.524±0.27 0.519±0.24 0.643±0.19

GBM Size-N 0.538±0.18 0.557±0.29 0.453±0.25 0.434±0.20 0.617±0.22 0.486±0.28 0.333±0.36 0.429±0.42 0.371±0.38 0.726±0.29
Regress-N 0.584±0.12 0.580±0.24 0.518±0.23 0.486±0.17 0.654±0.14 0.60±0.24 0.452±0.33 0.50±0.38 0.471±0.35 0.798±0.20

AdaBoost Size-N 0.592±0.15 0.595±0.23 0.440±0.24 0.451±0.19 0.644±0.18 0.543±0.18 0.429±0.32 0.357±0.23 0.381±0.25 0.774±0.15
Regress-N 0.586±0.10 0.562±0.28 0.432±0.19 0.459±0.17 0.598±0.19 0.60±0.21 0.524±0.38 0.452±0.33 0.467±0.32 0.631±0.30

MLP Size-N 0.524±0.14 0.534±0.28 0.362±0.24 0.366±0.19 0.598±0.20 0.571±0.20 0.524±0.38 0.405±0.32 0.424±0.29 0.762±0.28
Regress-N 0.621±0.10 0.579±0.22 0.619±0.20 0.565±0.14 0.682±0.15 0.80±0.15 0.833±0.20 0.786±0.25 0.776±0.17 0.857±0.23

TABLE IV
ABLATION STUDY: TASK AND SUBJECT GENERALIZATION MODELS

Task generalization Subject generalization

Data Best
Algorithm

Asub Psub Rsub F1sub AUCsub Best
Algorithm

Asub Psub Rsub F1sub AUCsub

S RF 0.74 0.75 0.71 0.73 0.83 GBM 0.63±0.17 0.64±0.44 0.32±0.22 0.41±0.28 0.54±0.19
T XGBoost 0.80 0.86 0.71 0.77 0.91 MLP 0.66±0.21 0.71±0.22 0.33±0.45 0.45±0.29 0.61±0.26
K GBM 0.83 0.92 0.71 0.80 0.92 MLP 0.69±0.21 0.69±0.33 0.63±0.37 0.61±0.31 0.77±0.25
ST GBM 0.94 0.94 0.94 0.94 0.98 RBF SVM 0.63±0.20 0.57±0.49 0.26±0.23 0.36±0.31 0.56±0.16
S+K RBF SVM 0.91 1.0 0.82 0.90 0.94 AdaBoost 0.71±0.18 0.81±0.35 0.51±0.35 0.58±0.30 0.71±0.25
T+K MLP 0.91 1.0 0.82 0.90 0.98 AdaBoost 0.71±0.21 0.76±0.34 0.63±0.37 0.64±0.31 0.80±0.23
All GBM 0.94 1.0 0.88 0.94 1.0 MLP 0.80±0.15 0.833±0.20 0.786±0.25 0.776±0.17 0.857±0.23

on these data streams for comparison. Table IV illustrates
the subject-wise metrics for the best performing algorithm on
each subset across both the task and subject generalization
schemes. Across both model designs, LR, DT and linear
SVM were never the top performers. Overall, GBM and MLP
followed by AdaBoost are the most prominent algorithms in
table IV for task and subject generalization, respectively. Task
generalization revealed the best performance when using all
21 features with GBM (Asub: 0.94, AUCsub: 1.0) followed by
spatiotemporal also with GBM (Asub: 0.94, AUCsub: 0.98) and
temporal-kinetic parameters with MLP (Asub: 0.91, AUCsub:
0.98). For subject generalization, MLP with all features had
the best mean results (Asub: 0.80, AUCsub: 0.86) followed by
temporal-kinetic with AdaBoost (Asub: 0.71, AUCsub: 0.80)
and spatial-kinetic also with AdaBoost (Asub: 0.71, AUCsub:
0.71). In both model designs, ML algorithms had a better
performance using all features, thus these ablation results
indeed support our decision to use all the extracted gait
features for prediction.

2) Analysis of feature importance: We first investigated
the importance of features via conditional entropy (CE).
The CE of labels Y , taking binary values, with respect
to the discretized feature X , taking values in a finite
set X , was defined as: ∑(x,y)∈X×{0,1} pX ,Y (x,y) ln 1

pX ,Y (x,y)
−

∑x∈X pX (x) ln 1
pX (x)

, where pX ,Y is the joint probability mass
function of (X ,Y ) and pX is the probability mass function
of X . Features with a low entropy reflect less randomness and
hence are more predictive of labels. Figure 5 depicts the CE of
all features in trials W and WT. The most informative features

with the least CE were (in order) SL> SS>C >FTOL > SwT in
trial W and SS > FTOR > FTOL > SL >W in trial WT. Cadence
followed by swing time in trial W and terminal double support
followed by stance time in WT showed the most reduction in
entropy among temporal features. Stride length followed by
width from spatial, stride speed out of spatiotemporal and toe-
off forces from kinetic features delivered the most predictive
power in both trials. Overall, stride speed, length and forces
at the toe-off were found to be the most valuable features
across both trials. FPAs and lateral deviation with a high
CE in both trials were least predictive of the labels. Given

Fig. 5. The entropy present in the labels given regress-N gait features in
trials W (left) and WT (right). Temporal, spatial, spatiotemporal and kinetic
features are grouped in blue, green, plum and red colors, respectively.

that our best ML algorithms, GBM and MLP for task and
subject generalization, respectively, used all 21 features, we
also investigated feature importance by studying the decrease
in performance of optimally tuned GBM and MLP models



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.3048142, IEEE
Transactions on Biomedical Engineering

when only including features from specific subsets. Apart from
subsets S, T, K, ST, S+K and T+K considered in section V-C1,
we defined another group as features obtainable from wearable
sensors for this analysis. All defined gait features except the
BD-based parameters could be derived from wearable foot
switches or inertial sensors [36]. Figure 6 depicts the AUCsub
for optimal task (GBM) and subject (MLP) generalization
models with features from several data domains. For both

Fig. 6. Feature importance. AUCsub for task and subject generalization mod-
els with different data domains are represented in blue and red, respectively.

models, using all features yielded the best AUCsub, followed
by wearable-derivable measures (0.998) and spatiotemporal
(0.977) features for task generalization and by spatiotemporal
(0.738) and wearable-derivable/kinetic (0.726) parameters for
subject generalization. In both frameworks, no one set of
features outperformed or matched the performance of using
all features collectively. Especially for subject generalization,
all features together are essential to diagnose the heterogeneity
present in new subjects.

D. MS progression space

Promising correlations between gait features and EDSS
(section V-A3) motivated exploring gait-based characteristics
to describe the MS progression space. To define hidden clinical
subtypes within PwMS, unsupervised GMM was used to parti-
tion the NMF reduced 2D-MSPS. In both trials, three optimum
number of underlying clusters for GMM were attained using
the Bayesian information criterion (BIC). Figure 7 depicts the
three identified clusters in strides of PwMS with distribution
in strides of controls superimposed for visualization in both
trials. For each identified cluster, table V summarizes the

Fig. 7. Constructed 2D-MSPS. Left: Trial W, Right: Trial WT. Three
clusters (shown in green, blue and red) are identified in strides of PwMS
and distribution of HOA strides is depicted in black outlines.

number of strides and their share percentage in three severity
subgroups based on the EDSS of MS subjects. Cluster 1

TABLE V
COUNT AND RATIO OF STRIDES RELATIVE TO EDSS IN EACH CLUSTER.

CLUSTERS 1, 2 AND 3 ARE ABBREVIATED AS C1, C2 AND C3, RESP.

Trial W Trial WT

EDSS C1 C2 C3 C1 C2 C3

1.0-2.5 (mild) 131
(0.29)

17
(0.07)

0
(0.0)

149
(0.31)

12
(0.07)

0
(0.0)

3.0-4.5 (mild-to-moderate) 317
(0.69)

23
(0.09)

0
(0.0)

308
(0.65)

11
(0.06)

0
(0.0)

5.0-6.0 (moderate) 11
(0.02)

204
(0.84)

46
(1.0)

18
(0.04)

148
(0.87)

52
(1.0)

(green) is dominated by strides of mild and mild-to-moderate
severity patients. Cluster 2 (blue) is majority of moderate
PwMS strides covering around 84% in trial W and 87%
in WT of cluster observations and cluster 3 (red) has no
mild or mild-to-moderate strides and contains only strides
of moderate PwMS. The share of mild and mild-to-moderate
strides is decreasing with an increase in the progression rate.
Visually, distribution of control strides most overlaps with
cluster 1 dominated by strides from mild and mild-to-moderate
subgroups. Further, we looked at the weights of the 21 features
to define a projection mapping for gait variables to the new 2D
MSPS axes (see supplementary figure S11). For both trials, the
horizontal axis was dominated by stride speed and its related
components and vertical axis corresponded to force related
features. Interestingly, gait speed and force measures were the
top predictive power features too (as found in section V-C2).

VI. DISCUSSION

This study examined MS and disability related changes in
spatiotemporal and kinetic gait features after normalization;
and evaluated the effectiveness of GML4MS to classify strides
of PwMS from healthy controls, and generalize across dif-
ferent walking tasks and subjects after gait normalization. A
few other works have explored ML to classify MS based on
gait data. Gait features extracted from 3D ground reaction
force data were adopted to discriminate healthy, cerebral palsy
and MS subjects using two ML methods, namely nearest
neighbours and MLP [22]. However, a very modest dataset
with only four PwMS was employed for this study and
thus limits the generalization of the classification results.
Further, the study is limited in examining only force data
and not exploring any tree-based ML algorithms. A recent
study used smartphone and smartwatch sensors data and ML
to distinguish among healthy controls, mildly (PwMSmild) and
moderately (PwMSmod) disabled PwMS during a two-minute
walk test [23]. Although this work investigates three well-
known algorithms, namely, LR, SVM and RF to achieve the
best accuracy of 82% differentiating PwMSmod from HOA and
from PwMSmild and 66% identifying PwMSmild from HOA;
the analysis on boosting algorithms, which have known to
outperform RF in most applications, is missing. Moreover, our
study utilizes up to 75 s of data for analysis, as compared to
the longer data sample of two-minute walk in [23]. Another
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recent work analyzed a long short-term memory approach to
classify fall risk in PwMS using accelerometers [37]. To the
best of our knowledge, this is the first study utilizing data
driven ML for classification of individual strides of older
PwMS using both spatiotemporal and kinetic features while
walking. Our stride-based feature extraction approach derived
multiple samples from a single subject, thus augmenting and
introducing significant variations to our dataset to improve the
generality of ML classifiers, which may allow for frequent and
even real-time inferences.

The instrumented treadmill adopted for this study allowed
for continuous gait monitoring of longer durations and dis-
tances within a compact footprint, relative to overground
walking, and the capture of deviations from several successive
strides [38]. While PwMS in this study were able to walk inde-
pendently, the ceiling mounted harness, rails, and emergency
stop provide essential tools for safety in PwMS with balance
and fatigue concerns. Further, the integration of a built-in force
plate supported kinetic data acquisition and allowed for online
detection of gait events [31]. While walking on a treadmill can
affect gait performance [39], these differences are generally
within the normal variability of gait parameters and may be
further diminished after an appropriate accommodation period
to treadmill walking [40]. Our treadmill training before actual
data collection and adaptive speed control helped subjects to
more closely resemble natural walking.

Our work examined the benefits of regression normal-
ized gait features on the accuracy of MS prediction using
stride-based ML classification algorithms. Both the size- and
regression-based normalization schemes increased the number
of parameters demonstrating statistical significance between
HOA and PwMS. The ability of regress-N normalization to
reduce the association between gait features and personal
demographics is crucial towards boosting the performance and
generalizability of ML classifiers aimed at MS prediction.
We have used statistical insights from admittedly a small
number of test subjects. However, through the extraction of
regress-N gait features, our approach mitigates some of the
concerns related to small sample sizes since we are reducing
the bias in the data by increasing independence (see section
V-A2). Compared to past studies on regression normalization
in ML for other neurological disorders [21], [25] using the
same controls in their classification set to extract regression
coefficients, we used a normative dataset separate from our
35 study subjects to derive regression models for the gait
features, hence prohibiting any divulgence of information from
validation to training set.

Our proposed task generality framework demonstrates the
feasibility of training on data collected in a lab-based walking
task, and prediction on a walking while talking task, which
paves the way for further inquiry into prediction using data
collected in naturalistic and ecologically valid scenarios. We
conclude that regress-N data with GBM and MLP were the
optimal ML frameworks for task and subject generalization,
respectively. An ablation study on the set of features supported
using all the extracted gait features for better predictability
in both model designs. From a clinical perspective, stride
level classification allows for the use of a single stride, or

brief duration walking trial, to serve as the basis for disease
progression monitoring, which may be well suited for clinical
settings with limited space and time. Further, as an effort
towards the explainability of our ML-based study, we explored
conditional entropy and decreases in performance of optimal
GBM and MLP models. When only including a subset of
features to examine the most relevant features driving the ML
performance, we found that stride speed, length and forces
at the toe-off were the most valuable features across both
trials. Furthermore, we find that the use of wearable-derivable
features is closely behind all features in terms of classification
performance, which provides preliminary evidence of the
feasibility of using wearable sensor data collected at home
or local community in future telemedicine or rural health
applications. Our study also examined how well normalized
gait features could predict disability in PwMS. Significant cor-
relations between gait characteristics and disability in PwMS
(see section V-A3) motivated the application of regress-N gait
features in learning the progression space of MS (see section
V-D). Of particular significance, the two reduced dimensions
arising after NMF were dominated by stride speed and force,
which were also the most predictive features of MS-related
changes.

The current work designs a domain knowledge-based MS
screening model but the small cohort size recruited for this
study limits making generalized interpretations for the het-
erogeneous MS community. Although, the features selected
for predictive models in this study, namely, spatiotemporal
characteristics (see [12]–[16]), FPAs [33], BD-based variables
[12], [34] and forces [17], have been clinically shown and
commonly adopted in the past to quantify gait impairments
in PwMS, yet, by pre-selecting a specific set of domain
knowledge-based features, we might be at a risk of introducing
certain investigator bias in our ML models. Future work
should focus on carefully characterizing the potentially missed
information represented by the non-selected variables. ML ex-
plainability analysis in section V-C serves as an initial estimate
to demonstrate the influence of our feature selection on the
model prediction performance. For an ideal understanding of
dynamics from the inherently continuous gait data stream [41],
we would need further exploration on non-linear dynamical
features characterizing the human movement. Future research
should examine associations of gait parameters with addi-
tional demographic and clinical factors to design improved
normalization techniques. Further evaluation of GML4MS on a
separate MS dataset with additional concurrent tasks, or while
walking at home or in the community would be essential to
establish robustness and improve sensitivity. Exploring hidden
Markov and recurrent neural network predictive models by
using tensors of independent strides will be vital to gauge the
temporal component present in the continuous gait data. Future
work is needed to identify prospective fall risk in MS subjects
and assess the performance of our approach with remotely
acquired gait data [23] and wearable sensors [37]. Further,
observed correlations of gait parameters with disability may
help identify older PwMS advancing into sudden worsening,
which may provide improved personalized care, and merits
future investigation.
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VII. CONCLUSIONS

We present GML4MS, a novel ML pipeline for classification
of PwMS using gait dynamics. The expression of MS over
time and aging is heterogeneous, making the identification
of sudden changes in PwMS, particularly difficult. In this
work, we extracted normalized spatiotemporal and kinetic
gait features and demonstrated the benefits of regress-N to
differentiate MS and disability related changes. Further, we
evaluated the effectiveness of GML4MS to generalize across
different walking tasks and subjects. With a larger data set,
generalization of subjects in one test environment to new
subjects in a different environment would need to be validated.
The current study on prediction and progression space in
MS may aid neurologists to understand advancing disease
with aging and identify meaningful ML-based strategies for
identifying PwMS. Given that we have more older adults
with MS than younger adults, and the expected continual
shift of the peak prevalence of MS into older age groups, the
prediction of a tipping point for older PwMS advancing into
sudden worsening may provide improved personalized care.
Early detection of these inflection points in older PwMS may
lead to concise and effective detection strategies and in turn
benefit both patients as well as clinicians to curtail MS therapy
expenses.
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