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ABSTRACT
Government agencies are embracing machine learning to support
a variety of resource allocation decisions. The U.S. Environmen-
tal Protection Agency (EPA), for example, has engaged academic
research labs to test the use of machine learning in support of an
important national initiative to reduce Clean Water Act violations.
We evaluate prototypical risk prediction models that can support
compliance interventions and demonstrate how critical algorithmic
design choices can generate or mitigate disparate impact in envi-
ronmental enforcement. First, we show that the de�nition of which
facilities to focus on through this national compliance initiative
hinges on arbitrary di�erences in state-level permitting schemes,
causing a shift in environmental protection away from areas with
more minority populations. Second, the policy objective to reduce
the noncompliance rate is encoded in a classi�cation model, which
does not account for the extent of pollution beyond the permitted
limit. We hence compare allocation schemes between regression
and classi�cation, and show that the latter directs attention towards
facilities in more rural and white areas. Overall, our study illus-
trates that as machine learning enters government, algorithmic
design can both embed and elucidate sources of administrative
policy discretion with discernable distributional consequences.
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1 INTRODUCTION
Governments are rapidly experimenting with machine learning
for public policy, raising signi�cant questions about accountability,
fairness, and governance [12, 29, 38]. One emerging application
area is in environmental sustainability [36]. Serious noncompliance
exists across environmental programs [19], and machine learning
o�ers the promise to help predict sources of noncompliance and
thereby target environmental compliance e�orts [20, 22].

This paper considers the case of a National Compliance Initiative
(NCI) for the Environmental Protection Agency (EPA). This NCI
aims to reduce signi�cant noncompliance (SNC) under the Clean
Water Act, the nation’s premier piece of legislation to protect the
waterways of the United States. EPA’s goal is to reduce the SNC
rate by 50% from 2019 to 2022, relative to a baseline from 2018
[35]. The NCI was pioneering in scope relative to previous enforce-
ment e�orts that tended to be sector or facility-type speci�c. Most
importantly, as we document below, EPA extended the scope of
enforcement priorities by including both major and minor facilities
and engaged in a comprehensive assessment of programmatic ef-
forts to secure compliance [3]. In support of this NCI and broader
environmental compliance goals, the EPA has laudably engaged the
academic community to discern how machine learning methods
can contribute.

These engagements o�er a fruitful opportunity to study distribu-
tive implications in this important public policy domain. We show
that two key elements of policy and algorithmic design may have
considerable distributive e�ects, in�uencing who bears the burden
of excess pollution and how intensely. First, the NCI was designed
to measure compliance across a subset of permitted facilities under
the Clean Water Act. Notwithstanding the major expansion of cov-
erage under the NCI to include minor facilities, the same type of
facility (e.g., a wastewater treatment plant) may be included or ex-
cluded from the purview of the NCI due to variations in how states
implement their pollution permitting process. We show that this
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decision in e�ect converts an ambitious and well-intentioned na-
tional compliance initiative into a more of a patchwork compliance
initiative that functionally concentrates on only a handful of states
and communities. In e�ect, environmental federalism impedes the
national goal. Second, the NCI targets the rate of noncompliance,
regardless of how much individual facilities discharge above their
permitted limits. In machine learning terms, this policy choice leads
to classi�cation of facilities into whether they are likely to be in
SNC status, not regression of predicted discharges above the limit.
We show that this objective shifts resources away from the most
severe violators in higher minority areas towards smaller facilities
in areas with fewer minorities as a share of the overall population.
We also compare these e�ects against an “oracle test” and show
that ML models may increase or decrease disparate impact relative
to the case with full knowledge of realized outcomes.

Our study illustrates that fair algorithmic designwill increasingly
be intertwined with policy discretion. While government use of
predictive algorithms can unwittingly reinforce prior discretionary
policy choices, formalization in algorithmic design can also provide
a chance to study the potential for disparate impact associated with
such policy choices.

The rest of the paper proceeds as follows. Section 2 discusses the
related literature, and Section 3 provides background on the policy
setting. Section 4 details our methods, particularly the development
of the risk model and tests for demographic bias. Section 5 provides
results and Section 6 concludes.

2 RELATED LITERATURE
Our work contributes to several distinct literatures. First, as the
public sector has rapidly adopted machine learning systems [12, 29],
core questions have focused on the accountability of algorithmic de-
cision tools in the face of public law constraints [10, 24, 26]. While
much attention has focused on the use of risk assessment scores
and facial recognition technology in criminal justice, far fewer in-
depth investigations and case studies exist of the adoption of such
decision tools in civil justice [for important exceptions, see 6, 7, 17].
Chouldechova et al., for instance, examines fairness of an algorith-
mic decision making tool for child welfare determinations. Few
works in the the FATML community concern the use of algorithms
in environmental sustainability, however, and our study provides an
in-depth case study of algorithmic design, policy, and accountabil-
ity in this policy domain. Our results also contribute to questions
about the perceived trade-o� between accuracy and explainabil-
ity in machine learning. Despite the fact that our data draws on
rich information from hundreds of millions of EPA records, we
show that relatively simple models provide much of the predictive
performance in this particular domain.

Second, our study relates to a growing literature, albeit one that
is largely disconnected from machine learning, about the distri-
butional consequences of environmental resource allocation. Wik-
strom et al. employ the CalEnviroScreen EJ monitoring tool – a
tool that combines data on environmental burdens with sociodemo-
graphic data – to assess how water resource allocation policies in
the form of cutbacks during drought di�erentially a�ect minority
communities highly ranked in the EJ assessment. Maguire and Sher-
i� characterize the evolution of the term of Environmental Justice,

Figure 1: Census Block Groups with NPDES permitted fa-
cilities tend to fall in the lower tail of the income distribu-
tion in a given county, as illustrated by mapping the loca-
tion ofNPDESpermittees (inmap, orange dots; in histogram,
salmon-colored bins) within the distribution of median in-
comes, in the example case of SanMateo County, California.

as well as techniques to study and surface the possibility dispropor-
tionate environmental harms that may arise from the regulatory
rulemaking. The economists Banzhaf et al. review the spatial nature
of environmental justice concerns and characterize the multiple
mechanisms that can give rise to disproportionate harm and ex-
posure landing on some communities over others. Much of this
literature has attempted to understand the causal factors of envi-
ronmental injustice, often using retrospective observational studies.
Yet, as the concept of environmental justice becomes institutional-
ized, it is also critical to understand what can be done about these
disparities prospectively. EPA established the O�ce of Environ-
mental Equity in 1994 to address concerns that “racial minority and
low-income populations bear a higher environmental risk burden
than the general population.” In the same year, all federal agencies
were tasked to examine the disproportionate harms their programs
may have low-income and minority communities through an ex-
ecutive order on environmental justice [8]. Our case study shows
how algorithmic decisions that are actively being developed may
exacerbate or mitigate disparate impact depending on key design
decisions.

Third, related to the broader environmental justice literature, an
extensive body of work has speci�cally investigated disparities in
the siting of polluting activities. Figure 1, for instance, speaks to
some of these concerns by plotting the Clean Water Act permitted
facilities in San Mateo County, California, illustrating that such fa-
cilities are disproportionately sited in lower income areas. Banzhaf
et al. review the complex causal dynamics driving these disparities.
We contribute to this literature by examining whether, conditional
on siting decisions, the implementation of the NCI may have a fur-
ther distributive e�ect on which communities are protected from
pollution.

Last, our study contributes to the literature on regulatory enforce-
ment. Hindin and Silberman focuses on mechanisms to improve
rule design to promote compliance. Konisky examines whether

91



Environmental Compliance FAccT ’21, March 3–10, 2021, Virtual Event, Canada

the number of enforcement actions taken by state EPAs is corre-
lated with demographics at the county-level. And many studies
have speculated that algorithmic decision tools may improve the
accuracy and consistency of regulatory enforcement. Hino et al.,
for instance, illustrate how protoypical machine learning models
applied on publicly available data about permitted facilities under
the Clean Water Act could help more e�ectively target facilities
at risk of violation. Engstrom and Ho consider whether algorith-
mic decision tools may improve the quality of enforcement actions
by the Securities and Exchange Commission and determinations
by the Social Security Administration, where a central concern
of administrative law has been about the consistency of decision
making.

This paper seeks to bridge these distinct literatures — spanning
economics, legal studies, environmental studies, geography, public
administration, and machine learning — to better understand how
algorithmic design a�ects how and where resources to manage
environmental quality are allocated.

3 POLICY BACKGROUND
The Clean Water Act (CWA) is the principal legislation govern-
ing surface water pollution in the United States [31]. Its primary
objective is to “restore and maintain the chemical, physical, and
biological integrity of the Nation’s waters.” The CWA endows the
EPA with the authority to implement pollution control programs
as well as set standards for wastewater and surface water quality.
One of the key ways EPA implements these tasks is through the
National Pollutant Discharge Elimination System (NPDES) permit
program.

For any discharge from a point source (e.g., a pipe) into U.S.
surface waters, facilities must apply for a NPDES permit. That per-
mit speci�es the conditions under which facilities can discharge,
setting limits on water quality parameters (e.g., the quantity or
concentration of nitrogen, phosphorous, or metals; acidity (pH);
and temperature). Discharges in violation of the CWA are subject to
civil and criminal penalties, with the goal of incentivizing facilities
to adopt advanced water treatment and pollution reduction tech-
nologies. The primary monitoring mechanism for the CWA comes
through reporting obligations on facilities. Permitted facilities are
required to self-report information on the water quality of their
discharges, typically monthly, to environmental authorities. These
“discharge monitoring reports” (DMRs) provide information on the
results of water quality tests on features such as temperature, pH
values, and the quantity and concentration of, for example, solids
that can transport pollutants or inhibit marine life. As with much
U.S. environmental law, the CWA is an arrangement of cooperative
federalism. For 47 states (and one territory), EPA has delegated the
authority to state environmental agencies to administer the NPDES
programs.

Despite the ambition of the CWA, noncompliance under the
CWA remains pervasive. Based on self-reported DMRs, between
60-75% of facilities are in noncompliance each year, contributing
to water quality impairment that can render streams and rivers
unswimmable or un�shable. Because of these patterns, EPA’s �ve-
year strategic plan highlighted the CWA as an area of enforcement
focus and established the goal of cutting signi�cant noncompliance

in half over a three year term. In support of its broader enforcement
goals, EPA has already engaged multiple academic labs to develop
machine learning methods that leverage the large-scale adminis-
trative data within the EPA – estimated by one analyst to be “the
largest federal government database outside those of the Internal
Revenue Service” – and facilitate early interventions (enforcement
actions). Rather than reacting to facilities that are already noncom-
pliant, the EPA aims to use predictive risk assessment techniques to
target and then prevent facilities from becoming noncompliant in
the �rst place. We now articulate two major policy and algorithmic
design decisions in the deployment of machine learning for this
initiative.

3.1 Targeted Population
For the purposes of the NCI, the CWA compliance rate is calculated
based on the subset of CWA-regulated facilities that submit DMRs
to federal EPA. Beginning in 2016, states were required to push elec-
tronic versions of the DMRs to the federal EPA [13]. This rule also
expanded reporting obligations from primarily ‘major’ to include
‘minor’ facilities – two classes of facilities distinguished principally
based on daily �ow. Previously, only major permits typically re-
ported DMRs and the reporting was not necessarily conducted
electronically, but the inclusion of minor permits was a substantial
and important expansion of the scope of enforcement priorities (by
nearly seven-fold, as indicated in Table 1). At the same time, the
�rst phase of this “electronic reporting rule” was made applicable
only to “individual permits,” which cover a speci�c discharging
entity (e.g., a single wastewater treatment plant). States are cur-
rently not required to push DMRs for so-called “general permits,”
which are permits to cover multiple dischargers engaged in similar
activities and with similar types of e�uent [18], and will not be
required to until the next phase of the electronic reporting rule’s im-
plementation, scheduled for 2022. However, whether a wastewater
treatment facility is licensed under an individual or general permit
is largely contingent on state-level choices: the same type of facility
may be permitted as either general or individual depending on the
historical permitting decision systems made by states. Moreover,
many general permittees do in fact submit DMRs to EPA, making
it possible to study what impact the decision to delay the inclusion
of general permittees implies for the distribution of environmental
protection.

3.2 Noncompliance Rate as Objective
The second major dimension of policy design rests on the ultimate
policy objective, i.e., the focus on the reducing the rate of “signif-
icant noncompliance” (SNC). The SNC designation refers to the
most serious class of CWA violations considered to pose a threat
to U.S. waterways. As outlined in a 1995 EPA legal memorandum,
several criteria may result in a facility falling into SNC [34], includ-
ing failure to report discharges within 30 days of expected dates;
or persistent, considerable excess of permitted limits.

As Table 1 indicates, approximately 20,000 facilities (⇠30%) were
classi�ed as in SNC in �scal year 2018 (henceforth FY2018). Of the
�ve key types of SNC (outlined in [16]), this paper focuses on e�u-
ent violations, which constitute 20% of the facilities in SNC status,
and that, furthermore, pose a directly measurable threat to water
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quality. In broad brushstrokes, a facility is considered as having an
e�uent-related SNC if one of their permitted discharges exceeds its
permitted limit by any amount four times within two consecutive
quarters or exceeds a predetermined threshold twice within two
quarters [34]. The Code of Federal Regulations [9] and the 1995
memo [34] note that the predetermined SNC threshold beyond the
permitted limit for conventional pollutants (e.g., Nitrogen, Phos-
phorous, total suspended solids, detergents, oils, and total organic
carbon) is 40% and for toxic pollutants (e.g., most metals, cyanide,
and toxic organic compounds) is 20%. For simplicity of exposition,
we will use SNC to refer to e�uent SNC for the remainder of the
paper unless explicitly indicated otherwise.

Status General Indiv. Major Indiv. Minor

Total SNC 11,155 1,147 7,366
DMR Nonreceipt SNC 10,110 472 4,057
E�uent SNC 953 503 2,480
Other SNC 92 172 829
Non-SNC 26,649 2,472 17,316

Total 37,804 3,619 24,682
SNC Rate 29.5% 31.7% 29.8%

Table 1: Types and Quantities of Signi�cant Noncompliance
among General and Individual Permittees for FY2018

We examine the implications of using a rate as the policy objec-
tive in greater detail below because the current de�nition of “signif-
icant noncompliance” does not distinguish between the extent of
e�uent violations once the initial thresholds are met. For example,
Figure 2 plots the cumulative distribution of how much permittees
reporting nitrogen e�uent exceed their limits, in percent-above-
limit terms, sorted by their exceedance percent. Each of the permits
would contribute equally to the current NCI goal of reducing the
SNC rate upon returning to compliance. However, some permits ex-
ceed their permits by a much larger margin than others: the lowest
half of the individual (general) facilities �agged as with an e�uent
SNC account for 1.8% (7.9%) of the aggregate percent over limit for
the 1,590 (297) permits recording nitrogen discharges and �agged
as in e�uent SNC in FY2018. As seen on the left side of the graph,
a single individual permit contributes to 40% of the total across
all permits. In other words, a classi�cation lens considers all these
permits equal, although one could reasonably think that permittees
who far exceed their limits would generate a much higher negative
impact than those marginally overstepping their limits.

4 METHODS
4.1 Data
This work draws upon three main sources of data. First, we ex-
tract information about historical discharge volumes, compliance
history, and permit-level variables (e.g., individual versus general)
from EPA’s Integrated Compliance Information System (ICIS) on
NPDES permits [32]. A key data source within ICIS rests in the over
270 million records from Discharge Monitoring Reports (DMRs),
which are periodic self-reports submitted by facilities to state level
environmental agencies (and subsequently to the U.S. EPA) with
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0% 25% 50% 75% 100%

Cumulative % Permits with Effluent SNC
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Over Limit 
(Nitrogen)
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Figure 2: Some permits account for a much higher share
of overall e�luent exceedances than others. For example,
where the dashed lines indicate half of all evaluated per-
mits per permit type and permits are sorted by their per-
cent exceedance (high to low), the at-right half of individual
(general) permits closest to the e�luent SNC limit account
for only 1.8% (7.9%) of the aggregate percent over limit for
the 1,590 (297) permits recording nitrogen discharges and
�agged as in e�luent SNC in FY2018.

information about their compliance with permitted e�uent limits.
We draw upon data from �scal years 2015-2019 to predict risk of the
binary SNC status and the percent exceedance in the �rst quarter of
�scal year 2020 (October to December 2019; henceforth FY2020-Q1),
ultimately developing a training set that re�ects features aggre-
gated to be "as of" FY2019-Q4 (or FY2020-Q1 for test). We subset
the data to include only permits with reported discharges relevant
to the E�uent SNC calculation (discussed more in subsection 4.2.2)
and EPA-assigned SNC statuses in the target quarter (FY2020-Q1),
thus resulting in a �nal sample of 40,594 individual and general per-
mits.1 Second, socio-demographic information on race and median
household incomes at the census block group level are extracted
from the 2018 version of the �ve year American Community Survey
provided by the U.S. Census Bureau. Third, as a proxy for the degree
of environmental burdens communities face, we draw upon �gures
of population density within three miles of a permittee and the
EJcreen percentile �ag from the EPA‘s Environmental Compliance
and History Online (ECHO) tool. The EJ screen �ag, in particular,
re�ects a combination of demographic as well as environmental
data, and consistent with the EPA‘s �ag, the indicator we use �ags
areas at the 80th percentile or above across the US that are sus-
pected to have higher pre-existing potential pollution exposure
[14]. Analyses were primarily conducted in R version 4.0 [30], and
summary statistics on all variables used in our analyses are featured
alongside the data dictionary in Appendix A.2.

1Unfortunately 2,200 permittees had incorrect geocoordinates, which prevented us
from associating them with demographic information. Therefore the results that
feature demographic information re�ect a smaller total of 38,394 permittees.
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4.2 Risk Prediction Models and Objectives
To examine the distributive implications of noncompliance predic-
tion models, we investigate two di�erent ways of using predictions
to generate the priority list of noncompliant facilities to target in
FY2020-Q1, simulating how the EPAwould employ such riskmodels
using data from the previous quarter (FY2019-Q4). The �rst method
focuses on predicting permit level discharge volumes (regression)
and the second focuses on predicting the risk of falling into e�uent
SNC status (classi�cation). Both models employ a Random Forest
model [5] with the same input features; the models only vary in
the outcome variable generated. We detail the construction of each
outcome variable after a brief discussion of the common elements
between the two designs.

4.2.1 Random Forest. Our Random Forest models ingest 27 fea-
tures drawn from historical discharge volumes, time series predic-
tions of discharge volumes, historical compliance status information
over the past two years, and time-invariant permit-level characteris-
tics such as location information, industrial sector, and permit type.
Appendix Figure 7 elaborates each input feature and its de�nition.

4.2.2 Regression: Calculating Permit-Level Overages Across Pollu-
tants and Monitoring Locations. In order to both establish as well as
predict the intensity of violations with a continuous measure, we
require some aggregation across pollutants. Indeed, even the same
permitted pollutant might have a varying allowable limit over time.
Building on the nomenclature that EPA uses for monitoring and
reporting discharges that result in violations, we �rst construct an
aggregate measure of pollution overages that relies on understand-
ing the volume discharged relative to the permitted limit. Namely,
we de�ne our regression objective in terms of the exceedance per-
centage ? , that is, the ratio of the exceedance amount relative to
the corresponding limit values.

Each pollution parameter that contributes to the SNC status cal-
culation falls into one of two categories. Category 1 is comprised
of so-called ‘conventional pollutants’ such as Nitrogen and Phos-
phorous, and Category 2 is comprised of toxic materials and metals.
Practically, these two categories set two di�erent thresholds for
the percentage over the permitted limit that will trigger an SNC
violation - 40% for Category 1 and 20% for Category 2. Since the
threshold di�ers across these groups yet we still seek to develop
an aggregate measure across all SNC-eligible pollution parameters
monitored in a given permit, we construct a measure based on the
pollution parameter-speci�c percentage thresholds that can trigger
the E�uent SNC status. Where we de�ne ⇢ as total permit overage,
?8 as the percent overage for each category 1 discharge and ? 9
the percent overage for each category 2 discharge, we generate
a composite permit exceedance value that can be represented as
the weighted sum of all recorded exceedance percentages of each
parameter for a given permit:

⇢ =
’
8

?8
40

+
’
9

? 9
20

(1)

The �nal weighted sum of all exceedance percentages ⇢ for each
permit then serves as the outcome variable in the Random Forest
Regression model.

4.2.3 Classification: Constructing Synthetic E�luent SNC Status.
For ease of exposition and interpretation, we use a simpli�ed ef-
�uent SNC status de�nition that roughly approximates the federal
guidelines for the formal e�uent SNC calculation [33].

More speci�cally, we construct a synthetic e�uent SNC �ag for
permittees that aligns with the e�uent exceedance conditions EPA
uses to determine SNC. The �ag is applied under the following two
conditions. First, if a permittee discharges beyond its permitted
levels by 40% or 20% for any two category 1 and 2 parameters,
respectively, then the permittee triggers a “serious" SNC violation.
Second, if a permittee has four or more e�uent discharges that
exceed their limits in any amount over in the past two quarters,
they trigger the “chronic" SNC violation �ag.

More formally, we can represent these two SNC violation status
triggers as follows. First, where �B4A8>DB (G) is the indicator function
for serious violations based on observed parameter exceedance
values ?2 and thresholds ?⇤2 2 {40, 20} of each category 2 within a
given permit, this �ag can be determined as:

�B4A8>DB (?) =
⇢

1 if ?2 � ?⇤2 8 2 2 {1, 2}
0 otherwise (2)

Where �2⌘A>=82 (G) is the indicator function for chronic violations,
the second �ag is determined as:

�2⌘A>=82 (?) =
⇢

1 if ?2 � 0 8 2 2 {1, 2}
0 otherwise (3)

For each permit, if there is any pollutant@with
Õ<
==1 �B4A8>DB (?=) �

2 or
Õ<
==1 �2⌘A>=82 (?=) � 4, where < is the number of measure-

ments for @ across all monitoring locations in the past two quarters,
then the permit will be �agged as being in E�uent SNC. These
constructed, permit-level E�uent SNC �ags and the probability of
a given permit in being �agged with this label serve as the outcome
variable in the Random Forest classi�cation model.

This synthetic e�uent SNC �ag approximates the more complex
SNC function reasonably well, as indicated by the 92% of overlap-
ping classi�cations we determined from our measure compared
against the EPA’s records.2

4.3 Simulated Risk-Based Permit Selection
Based on the outputs of eachmodel, we select facilities to ‘target’ for
compliance e�orts as follows. In the classi�cation approach, we use
the probability of being in the SNC status as the risk score to rank
all permits. We then select the top 50% of those permits, following
the NCI objective to halve the SNC rate. In the regression approach,
we use the predicted, weighted sums of exceedance percentages
to rank all permits. We then select the same number of permittees
from the top fraction of the rank-ordered list. This risk-selection
procedure simulates actual deployment possibilities under the NCI.
The federal EPA and state partners are exploring a range of risk-
targeted interventions (e.g., noti�cations, compliance advisories,
inspections) that would shift enforcement resources toward such
risk-scored facilities with the goal of improving environmental
2We note that not all E�uent Violations that meet the Chronic or TRC threshold are
identi�ed as E�uent SNC under the o�cial EPA �ag. For example, a permit may also
independently trigger a permit compliance schedule event violation that supersedes
an E�uent SNC in EPA’s SNC categorization hierarchy. In addition, not all e�uent
violations are eligible for detection as SNC, with the full set of criteria documented in
[33].
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protection. Our aim is thus to study what the distributive impact
of regression vs. classi�cation approaches might be for a set of
facilities targeted in such interventions.

4.4 Evaluating Distributive Impacts
To evaluate distributive impacts, we �rst link each permit back to
facility-level information indicating in which census block group
(CBG) each permit is located. Next, we associate each permittee with
demographic data corresponding to their CBG, as made available in
the ACS data or, in the case of the population density information,
as extracted from ECHO. We then evaluate the distributions of
features associated with the targeted facilities in each targeting
protocol using two-sided C-tests (for means), Kolmogorov–Smirnov
(ks) tests (for distributions), and the Wilcoxon ranked sum test (for
medians).3 Finally, we graphically represent the di�erences between
select demographics of the targeted (or risk-selected) permittees in
quantile-quantile (QQ) plots.

5 RESULTS
5.1 General vs. Individual Permits
Although taking the step to expand the purview of compliance
initiatives to include minors for the �rst time marks an ambitious
seven-fold expansion in the number of facilities under such an
initiative, we now consider how delaying the inclusion of the ap-
proximately 37,000 general facilities in the National Compliance
Initiative can shape the distribution of environmental compliance
resources.

Figure 3 demonstrates the gaps created by focusing the NCI
only on individual permits. To illustrate the variation in state-level
permitting decisions even for the same type of facility, Figure 3
focuses on a subset of wastewater treatment facilities across the
United States, namely those that manage sewage (as opposed to
industrial e�uent). The top panel maps these sewage-handling
wastewater treatment plants across the US, colored by whether
they have general (orange) or individual permits (blue), and the
bottom panel zooms in on the neighboring states of Virginia and
North Carolina, illustrating seemingly arbitrary di�erences in state
permitting schemes.

Furthermore, Figure 4 suggests that the variation in individual
versus general designation are not necessarily driven by di�erences
in the amounts of e�uent characteristics that are permitted under
each type.4 Figure 4 plots the distribution of e�uent limits, i.e., the
maximum permitted value for each discharge parameter, for six
common water discharge parameters across the 10,950 general and
15,020 individual permittees shown in Figure 3. The substantial
overlapping regions between the e�uent limits suggests there is
signi�cant overlap between the e�uent characteristics of these two
types of facilities. Last, the exclusion of general permits from the
NCI is not necessarily because general permittees are always in

3This test is also known as the Mann-Whitney test.
4We acknowledge there are legitimate reasons distinguishing the issuance of individual
versus general permits. General permits are intended to be easier, cheaper, faster, as
they were designed for more standardized types of operations that, in principle, should
require less scrutiny. Where used, individual permits typically build o� the guidelines
set in general permits but are then customized to the types of e�uent that a individual
permittee may have in addition to the e�uent common among standard general
permits.

Figure 3: (a) As of FY2018, 42% of wastewater treatment fa-
cilities across the US responsible for handling sewage have
general permits rather than individual permits – and there-
fore do not count for the National Compliance Initiative.
(b) How wastewater treatment facilities are classi�ed varies
within and across states, as seen by the permit classi�cation
for Wastewater Treatment Plants that handle sewage in the
two neighboring states of Virginia and North Carolina.

compliance. Table 1 presents the compliance statistics for general
and individual permits, calculating SNC as if the NCI were applied
to all facilities. Roughly 10.5% of individual permits overall – that is,
across major and minor permits – are in e�uent SNC, compared to
3% of general permits, although that di�erence is largely a function
of higher non-reporting among general permits. The overall SNC
rate between the two permit types is comparable. In short, due
to discretionary di�erences between state permitting protocols,
the NCI excludes from its purview a large number of functionally
similar facilities.

What impact does this policy decision have? Table 2 provides
some descriptive information to understand the impacts of �rst
expanding the scope of the NCI to include individual permits, and
second, to delay the inclusion of general facilities. First, based on
eligible facilities, we can see that including individual minor facili-
ties shifted the mass of attention towards lower density areas with
fewer minority populations, on average. Second, general permits
exceed the total number of individual permits by nearly a third.
Third, both the general and individual categories have large num-
bers of wastewater treatment plants, which highlights that very
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Figure 4: Discharge limits for sewage-handling wastewater
treatment plants (WWTP) that handle sewage but are per-
mitted under the general (n=10,950) or individual (n=15,020)
category are broadly similar across a series of six commonly
reported discharge parameters.

similar facilities can be subject or exempted from the NCI, solely
due to permitting vagaries.5 Third, and most importantly, general
permittees tend to be located in denser areas with a higher share
of minority individuals, relative to the average individual permit
included in the scope of the original NCI. This shows that the de-
sign decision to exclude general permittees from the NCI itself had
disparate impact, shifting environmental remediation e�orts to-
ward non-minority regions. Last, while one rationale for excluding
general permittees might be that their e�uent SNC rate is much
lower (3%), as stated above, the total SNC rate is comparable due to
high rates of failures to submit.6 Such non-submissions are them-
selves subject to penalties under the Clean Water Act, re�ecting
the importance of information reporting under the Act.

5.2 Oracle Test
As a �rst benchmark, we consider the ‘oracle’ test, assuming that
the decision maker is omniscient about e�uent exceedances and
SNC status in the target quarter FY2020-Q1. As described above,
we select the top riskiest half of permittees expected to be in SNC
(n = 1,392) on the basis of that full information and compare the
distributive e�ects using a selection rule that focuses on top ex-
ceedances versus SNC status. This comparison mimics the regres-
sion approach (which focuses on top polluters regardless of SNC
status) and the classi�cation approach (which focuses on SNC status
regardless of the level of pollution). To understand the distributive
e�ects of choosing one approach over the other, the left panels of
Figure 6 depict QQ plots, comparing quantiles of attributes from
risk-selected facilities based on classi�cation (G-axis) and regres-
sion (~-axis). Identical selections would line up along the 45-degree
line. Instead, we observe substantial evidence of the potential for
5General permits include far more stormwater permits, which, for instance, regulate
stormwater runo� from construction and industrial activities. The dominance of
stormwater permits also suggests part of the challenge of e�ectively monitoring and
managing their violations: while some preventative measures may be taken to reduce
violations, stormwater SNCs may stem, at least in part, from stochastic weather events.
6An e�uent violation can only be ascertained if the permittee submits the DMR. Thus,
the 3% e�uent SNC rate is a function of the high rates of failure to submit. The “true”
e�uent SNC rate would likely be much higher in the counterfactual where all general
permittees submitted their DMRs.

General Indiv. Major Indiv. Minor

Number of Facilities 37,804 3,619 24,682
E�uent SNC 953 503 2,480

Facility Type*
Wastewater 16,358 3,398 23,488
Stormwater 20,034 124 738
Major 30 3,619 0

Demographics**
Avg Population Density 1,173 1,298 663
Avg Median HH Income 60,673 59,040 58,838
Avg Percent Minority 24 30 17

Table 2: Characteristics of General, IndividualMajor, and In-
dividual Minor Permits *Categories not exclusive **All dif-
ferences statistically signi�cant (p <0.001) between general
and individual permits and for population density and per-
cent minority between the two types of individual permits.

disparate impact based on this oracle test. The regression model
selects a subset of permittees with higher shares of minority popula-
tions located in more densely populated areas than the classi�cation
counterpart (top and bottom left panels). These distributional shifts
are statistically signi�cant (?-value < 0.01 based on all three tests
for both features). The regression model also focuses on a higher
fraction of areas �agged as “vulnerable”7 (18.7% versus 13.5%), in
e�ect suggesting that a higher share of communities in which these
regression-selected facilities are located already have a series of
preexisting exposures and vulnerabilities.

The oracle test illustrates the potential for disparate impact based
on the choice of regression versus classi�cation, but the impact
of model-based inferences is less clear. Depending on the model,
actual risk models may amplify or attenuate the distributive impact
identi�ed in the oracle.

5.3 Performance Assessment
We provide brief performance statistics of the RF regression and
classi�cation models here. Figure 5 provides a calibration plot for
the classi�cation model in left panel, binned by deciles. As expected,
the classi�cation model is properly calibrated, with bins falling
along the 45-degree line. The classi�cation model has an Area
Under the (ROC) Curve (AUC) of 0.93 and an AUC on the precision-
recall (PR) curve of 0.78. The right panel plots deciles of predicted
e�uent exceedances on the G-axis against the di�erence between
observed and predicted exceedances on the ~-axis from the RF
regression model. The regression predictions perform well along
all but the most extreme bin, which is driven by a small number of
extreme outliers. Including all data points results in an RMSE of
240, compared to a mean imputation baseline of 288. Once omitting
the top 3% of outliers, however, the RMSE drops to 117.

As a sanity check, we examine how facilities that were risk-
selected either via regression or classi�cation perform in the test
period on SNC and exceedance (or overage) percentage. Table 3

7That is, they are �agged as in the 80th percentile or above of the EJScreen Monitoring
Tool.
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Figure 5: Calibration plot for classi�cation model and
binned di�erence between observed and predicted values
for the regression model.

shows that, on average, the regression model identi�es more permit-
tees with large overages (aggregated over all parameters), whereas
the classi�cation model identi�es more permittees �agged as with
the e�uent SNC status. Comparing the risk-selected samples also
reveals that the models agreed for roughly half of the selected fa-
cilities. The remaining di�erences between what we observe in
these two protocols are thus all attributable to the characteristics
of the remaining facilities. Appendix B provides more detail on the
work�ow and other performance statistics.

Model Overage % SNC Status
Regression 210 87%
Classi�cation 116 97%

Table 3: ComparingModel Performance on SubstantiveMea-
sures: The Regression model identi�es more permittees
with large predicted and actual overages, aggregated over all
parameters, and the classi�cationmodel identi�esmore per-
mittees with the e�luent SNC status �ag.

5.4 Disparate Impact of Model-Based Selections
We now return to the measures of disparate impact and add these
to compare against the oracle test in Figure 6. The right column
presents the distributive shift for proportion minority, income, and
population density from classi�cation (G-axis) vs. regression (~-
axis). As before, these represent the risk-selected facilities under
either model. Under no distributional shift, the QQ plot should line
up along the 45-degree line.

Instead, we observe statistically signi�cant di�erences in the
means, medians, and distributions of the percent minority and
the population density measures. The extent of the di�erences
amounts to, on average, a 2% di�erence (?-value < 0.01) in the
share of communities with minority populations targeted under the
regression-focused approach, going from approximately 16.7% in
the classi�cation up to 19% under regression. The QQ plots further
reveal that the shift appears to be uniform across the distribution.
We observe no statistically distinguishable di�erences between the
median household income of the permittees targeted under regres-
sion versus classi�cation, with both median household incomes

resting around $57-58k (SD = 25k). The �nal panel reveals that clas-
si�cation directs relatively more attention to permittees in areas
with about 400 individuals per square mile within a 3 mile radius of
the permittee, with a notable set of permittees with 10 people per
square mile or below, whereas regression focuses on permittees in
areas with population densities that are, on average, nearly 700 peo-
ple per square mile and above. Importantly, regression prioritizes
several facilities in some of the densest places in the United States,
including nine permittees located New York, Massachusetts, and
California that feature over 10,000 people per square mile within a
3 mile radius of those facilities.

These results show that targeting environmental protection
based on the intensity of pollution exceedances would focus on
areas with higher shares of minority populations in denser, more
urban areas.

6 CONCLUSION
In this paper, we have drawn upon data on CleanWater Act permits,
historical pollution discharge and compliance records, institutional
knowledge of regulatory implementation details from extensive
engagement with federal EPA, and census data to demonstrate how
algorithmic design for environmental enforcement can identify
levers that can exacerbate or mitigate disparate impact. We sim-
ulate which sets of permittees would be targeted if EPA seeks to
focus on those with the highest emission overages (regression) com-
pared with selecting permittees the highest probability of falling
into the SNC status (classi�cation), and we show how an objective
that focuses on exceedance intensity would redirect compliance
e�orts away from more rural, smaller facilities and towards per-
mittees situated in more densely populated environments with
higher shares of minority individuals. This �nding holds with both
observed values (the oracle test) as well as the ML-based risk as-
sessment models to enable prospective interventions that prevent
and reduce signi�cant noncompliance.

While we believe that this work adds an important case study
of algorithmic fairness “in the wild,” so to speak, we also acknowl-
edge a few important limitations. First, mirroring the de�nition of
SNC, our models implicitly assume that every additional percent
exceedance can be compared with another percent exceedance of
the same category. A facility with a 100 unit limit of nitrogen that
discharges 150 units counts equally towards the SNC status trig-
ger and exceedance percent estimation as a facility with a 1000
unit limit of phosphorous that discharges 1500 units. Absent other
mechanisms to put these di�erent e�uent types and amounts on a
common scale of harm, we in e�ect assume that pollution limits
were established with solid knowledge about which amounts pollu-
tion would result in social and environmental damages in a given
area.

We recognize that the extent of harm from additional pollution
may be nonlinear and vary considerably with baseline levels of
water quality impairment and vulnerability across regions. To cap-
ture some measure of vulnerability, we include the EJScreen �ag
into our assessment of distributive implications. Even though the
EJScreen �ag is a coarse instrument, it attempts to measure areas
likely face a high degree of pre-existing cumulative exposures and
risks. Nonetheless, the goal of translating the coarse measure of
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e�uent percent exceedances into the social and environmental
harms of the context they are discharged into, is an important, if
challenging, open area of research.

Second, while we select facilities based on these coarse risk or
exceedance estimates, we do not have insight into the types of
enforcement actions based on this prioritization and their causal
e�ects. Compliance e�orts can run the gamut from inexpensive
informational interventions to careful but costly on-the-ground
facility inspections and monitoring. The extent to which this list
translates into meaningful changes in conditions on the groundmay
rest heavily on the extent to which the discharge in question poses
harms to the communities exposed to it as well as the feasibility
and costs of remediating the noncompliance.

Notwithstanding these limitations, the core of our argument is
essentially thus: the use of seemingly simple and clear objectives,
such as the 50% reduction in SNC, can mask important policy de-
cisions. In selecting the SNC rate among individual permittees as
the measure for evaluating the performance of a signature national
compliance initiative, the EPA implicitly makes a decision about
whose compliance is important, what types of violations should be
treated equivalently, and what types of compliance e�orts should be
encouraged. Although we cannot claim that every additional unit
of pollution has an equal impact (due to changes in distance from
population centers, changes in concentration stemming from dilu-
tion as well as mixing of pollution once in contact with waterways,
etc.),8 our investigation has clari�ed a basic trade-o�. Convention-
ally, whether to take an enforcement action against the facilities
that are barely out of compliance or facilities that are seriously
out of compliance might involve a calculus of the resource cost.
Barely noncompliant facilities, for example, might be cheaper to
get back into compliance. Algorithmic design shows that there is
another dimension: the largest polluters are also more likely to
reside in vulnerable and disproportionately minority communities.
By focusing the NCI on the violation rate among individual permits,
the NCI bypasses a potentially important mechanism for reducing
disproportionate harms.

Third, although we focus on e�uent-related SNC in this paper,
the NCI as a whole covers the full range of reasons why a facility
may trigger that label. Speci�cally, as presaged by Table 1, over
half of permits in SNC fall into this category due to nonreporting
of their DMRs. And if these nonreporting facilities are already sub-
stantively in compliance with their permits, the NCI could then po-
tentially be achieved without actually reducing pollution amounts.
(In actuality, many believe nonreporting tends to mask a variety of
other problems, including permit exceedances.) Accordingly, our
approach may well underestimate the distributive implications that
the overall SNC-focused NCI has compared to a speci�c discharge-
over-limit reduction goal focused on reducing harms in the places
where they matter most.

Last, while our models approximate what government agencies
are deploying [12], the models could be improved in a number of
respects. The RF regression, for instance, does not perform well for
some of the extreme outliers we observe in the data; forms of robust
regression would help to reduce the in�uence of such data points.
While we have tried one form of dimensionality reduction with

8For more on these challenges, see Olmstead.

ARIMA, sequence-based models may enable better utilization of the
underlying panel time series structure of the monthly DMR data.
Nonetheless, the application illustrates some of the key challenges
in machine learning with the complexities of real world government
data and application.

To conclude, as government agencies expand the use of algorith-
mic decision-making in guiding and executing policy decisions, the
many micro policy and engineering choices on which the top-line
objectives are implemented can themselves generate unintended
impacts. Our research has added a case study in an important area
of environmental sustainability and regulatory enforcement, where
algorithmic and policy design may be inextricably intertwined. Al-
gorithmic fairness in the regulatory state may require grappling
with the policy objectives and design themselves, but can also, if
carefully done, shed light on the impacts of prior policy choices.
Last, this case study illustrates how academic-agency collaborations
can ensure greater attention to identifying and mitigating disparate
impact in algorithmic decision making.
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APPENDIX
A ELABORATED DATA DESCRIPTIONS
A.1 Code Availability
The code used in this project is available at https://github.com/
reglab/snc-distributive

A.2 Data Dictionary
(1) Individual Permits: An Individual NPDES Permit is a per-

mit speci�cally tailored to an given facility that discharges
e�uent into US waters.

(2) General Permits: A general permit covers a group of dis-
chargers that, in principle, should have similar characteristics
within a given geographical location.

(3) Major Facilities: There are two types of major facilities,
municipal and industrial. Major municipal dischargers in-
clude all facilities with design �ows greater than one mil-
lion gallons per day and facilities with approved industrial
pretreatment programs. Major industrial facilities are deter-
mined based on speci�c ratings criteria developed by US EPA
and/or the states.

(4) Minor Facilities: A minor facility is a discharger with a
design �ow of less than one million gallons per day (MGD)
that has not been determined to have an actual or poten-
tial adverse environmental impact that would classify the
discharger as major.

(5) Stormwater Permits: the NPDES Stormwater program reg-
ulates stormwater discharges from three potential sources:
municipal separate storm sewer systems, construction ac-
tivities, and industrial activities. We identi�ed stormwater
permits based on the NPDES Program Areas outline in the
permit data.

(6) Wastewater Permits: NPDES permits establish discharge
limits and conditions for discharges from municipal wastew-
ater treatment facilities to waters of the United States. We
identi�ed which facilities are wastewater permits based on
�elds that indicate that a facility is either a Publicly Owned
Treatment Works (POTW) and/or is classi�ed as a wastewa-
ter permit under the NPDES Program Areas �eld. We identi-
�ed Wastewater Treatment Plants that handle sewage by us-
ing the Industrial Classi�cation Codes (NAICS or SIC codes)
associated with the facility. NAICS Code 221320 indicates
Sewage Treatment Facilities; SIC Code 4952 indicates Sewer-
age Systems.

(7) Median Household Income: Median Household Income
as determined by the American Community Survey of the
Census Block Group in which the facility is located.

(8) Percentage Minority: Percentage of population within a
3-mile radius of the facility that is non-white.

(9) Population Density: Persons per square mile in a 3-mile
radius of the facility.

(10) EJ Screen: The EJ (Environmental Justice) Screen was devel-
oped by the EPA to assess the potential for disproportionate
environmental impacts and other signi�cant environmental
justice concerns for populations across the country. Each EJ
index is a combination of environmental and demographic

information. The EJ Flag as used in the paper re�ects facil-
ities that rank at the eightieth percentile or above in the
EJScreen distribution.

(11) E�luent Signi�cant Non-Compliance: A facility is con-
sidered to be in e�uent SNC if, for the same pollutant pa-
rameter, either: (A) the facility exceeds the discharge limit
(by any amount) in at least 4 of the preceding 6 months (re-
ferred to as “Chronic” Violation) or (B) the facility triggers a
“Technical Review Criteria” (TRC) Violation (see de�nition
for Group 1 and 2 Pollutants) in at least 2 of the preceding 6
months.

(12) Exceedance Percentage: The amount by which the facility
exceeded the limit value for each parameter, outfall, and
monitoring location.

(13) Group 1 and 2Pollutants: The Code of Federal Regulations
[9] de�ne two main groups of pollutants with respect to the
calculation of e�uent signi�cant non-compliance. Group 1
pollutants, which are conventional pollutants (e.g., Nitro-
gen, Phosphorous, total suspended solids, detergents, oils,
and total organic carbon), are subject to a 40% threshold be-
yond the permitted limit above which an exceedance would
trigger a TRC violation. For Group 2 pollutants, which are
toxic pollutants (e.g., most metals, cyanide, and toxic organic
compounds), that threshold is 20%.

(14) Historical Quarterly Non Compliance Report (QNCR)
Statuses: The historical compliance status for each facility
at the quarterly level as indicated by the publicly available
data downloaded from [16].

(15) Limit: The speci�ed discharge allowance described in the
NPDES permit for each facility, outfall, monitoring location,
and pollution parameter.

(16) Signi�cant non-compliance (SNC): The SNC designation
refers to the most serious class of Clean Water Act vio-
lations considered to pose a threat to U.S. waters and/or
public health. There are two main categories of SNC: Non-
Reporting and E�uent. The remaining types of SNC most
frequently refer to violations of an agreed upon compliance
schedule.

(17) Statistical Base: For each limit, there is a set of de�ned
statistical analyses to be used for the limit value. Examples
include: arithmetic mean, geometric mean, median, etc. Fur-
thermore, as outlined in a 1995 EPA legal memorandum [34],
there is a distinction between monthly vs non-monthly lim-
its. Non-monthly limits refer to limits written with any other
timescale other than monthly (e.g. annual, daily, etc.)

(18) Total Design Flow Number: The �ow that a permitted
facility was designed to accommodate, expressed as millions
of gallons per day (MGD).

A.3 Summary Statistics
Our models draw upon 27 features constructed from three main
sources of data: permit-level metadata (9 features), two years of
historical compliance statuses (8 features), and time series data
from self-reported DMRs (10 features). While DMRs represent very
rich data, dimensionality quickly explodes relative to the number
of facilities, as each facility may have hundreds of parameters,
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measured monthly at distinct discharge points. We hence describe
in Section B.1.1 how we develop time series forecasts for the target
quarter to reduce dimensionality of this data. Table 4 gives detailed
descriptions and summary statistics of each feature used.

B RISK MODEL DESIGN
We now describe the full data and machine learning pipeline. We
�rst discuss the features and the feature engineering steps taken for
the model. We then describe the training and scoring procedures.
Lastly, we describe how we determine high-risk permits from both
the classi�cation and regression approaches. Figure 7 demonstrates
the work�ow graphically.

B.1 Feature Engineering
B.1.1 Using Time Series Models to Predict E�luent Volumes. To
take advantage of the rich information contained in the time series
data of the monitoring reports, we train auto-regressive integrated
moving average (ARIMA) models to forecast discharge volumes.
We then aggregated the pollutant-parameter level forecasts to the
permit level as described in Section 4.2.2. Based on the de�nition
of e�uent SNC, two quarters of data are needed to determine the
SNC status. Simulating the scenario where the EPA is making a
resource allocation and intervention decision at the end of FY2019-
Q4 about what do to for FY2020-Q1, we include the aggregated
features for FY2019-Q4 using true historical values (because we
would have already observed the data) and for FY2020-Q1 using
predicted e�uent values (because we are predicting into the future)
as inputs to the Random Forest Model.

ARIMA utilizes past values, lags, and lagged forecast errors to
forecast future values, given an order of di�erencing 3 to make the
time series stationary [4]. The general model used in our analysis
can be represented as:

.̂C = U+V1.C�1+V2.C�2+ ...+V?.C�?nC +q1nC�1+q2nC�2+ ...+q@nC�@
(4)

where .̂C re�ects the discharge volume of a given permit param-
eter for the target quarter FY2020-Q1, and .C�? is the value in any
previous monitoring period ? , e.g..C�1 is the lag 1 of the time series.
The error terms nC@ are the errors of the auto-regressive model of
the respective lags .C�? , where @ refers to the number of lagged
forecast errors that go into the ARIMA model. U is the per-permit
constant, V is the auto-regressive coe�cient, and q is the moving
average coe�cient. An ARIMAmodel is then characterized by three
terms - 3 the order of di�erencing, ? the number of . to be used
predictors, and @ the number of lagged forecast errors.

We implement the ARIMA model using the forecast package in
R [23, 30], which enables automatic selection of hyperparameters
based on measures of in-sample errors (AIC, BIC, or AICC). In our
case, each permit parameter series is treated as an independent
univariate time series and we use di�erent ARIMA models (de-
termined by the three characteristics 3 , ? , and @) for all possible
time series. Figure 8 provides examples of the signal extracted from
these time series models. The left panel plots an instance of a pa-
rameter forecast to be likely to exceed the limit (dashed line). The
right panel indicates a facility that has had historical exceedances,

but is forecast to be in compliance due to downward trends in
exceedances.

B.2 Data Processing and Modeling
To process the data, we �rst remove all known data errors in
the overage percentage column; such data errors are coded as
“2,147,483,650” and “99,999” percent [15]. Less than 0.1% of records
were removed from the DMRs based on such errors.

We then treat missing values by imputing 0 for all missing nu-
meric features and adding “missing” as an additional level to the
categorical features. This can be grounded by the assumption that
missing (numeric) values in fact represent 0 (or undetectable) lev-
els of discharges for that pollutant. For categorical variables, the
additional missing category enables decision trees to branch on
missingness.

To reduce the in�uence of extremely high values in the regression
model, we winsorize the outcome variables, capping the exceedance
percentages to be equal to or lower than 99, 999%.

After data processing, we train the Random Forest models on a
cross section of FY2019-Q4 data (n = 39,352) and test the models
on FY2020-Q1 data (n = 40,594). We use 10-fold cross validation to
tune hyper-parameters. For classi�cation, a model with 500 trees
and 5 variables tried at each split yields the best performance; for
regression, 500 trees and 9 variables yield the best performance.

C RISK MODEL PERFORMANCE
We provide more details on the predictive performance of both
the classi�cation model and regression model in this section. We
compare the prediction results with the actual SNC statuses and
exceedance percentages in FY2020-Q1.

C.1 Classi�cation
Using a 50% threshold to trigger an SNC �ag, the classi�cation
model achieves a 95% accuracy rate. In the policy setting, where
inspection resources are limited, we might want to vary the thresh-
old to prioritize a smaller set of facilities. To evaluate the predictive
performance in di�erent thresholds, the left panel in Figure 9 plots
the ROC (Receiver Operating Characteristic) curve with 0.93 as
the area under curve (AUROC). As detailed in Section B.2, our pre-
diction sample is imbalanced, with 9% of permits belonging to the
positive class. To capture the trade o� between precision and recall,
we plot the precision and recall curve in the right panel of Figure 9,
with AUC for the precision-recall (PR) curve reaching 0.78. The
PR curve retains high precision with up to 50% recall, but then
precision drops signi�cantly.

We use feature importance to assess the relative weight of inputs.
If a permit already triggered SNC in the previous quarter and the
violations are not resolved, the permit will also be under SNC in
the next quarter. This allows the EPA to get a reasonable sense
of which permits will be under SNC in the next quarter. For the
same reason, the historical status from the prior quarter has high
predictive power. The features constructed from FY2020-Q1 ARIMA
forecasts also add valuable information to the model. Permit-level
meta characteristics add important context to the model, but feature
importance is signi�cantly below that of the time varying features.
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Numerical Features

Feature Mean (SD) Range Missing Count (%)

Aggregated Time Series Features
From the Previous Quarter*

1 Measurement Count Across All Parameters 18.25 (22.16) 0 - 995 10,585 (13%)

2 Unweighted Sum of Exceedance Percentages Across
All Category 1 and 2 Parameters 407.07 (7,653.49) 0 - 999,980 10,585 (13%)

3 Weighted Sum of Exceedance Percentages Across
All Category 1 and 2 Parameters 14.28 (273.23) 0 - 27,010.43 10,585 (13%)

4 Count of All E�uent Violations 0.59 (2) 0 - 73 10,585 (13%)

5 Count of Values that Exceeded 40% or 20% of Limit
Value for Category 1 or 2 Parameters Respectively 0.4 (1.62) 0 - 73 10,585 (13%)

Predicted Aggregated Time Series Features
From the Target Quarter*

6 Measurement Count Across All Parameters 17.86 (21.7) 0 - 959 9,437 (12%)

7 Unweighted Sum of Exceedance Percentages Across
All Category 1 and 2 Parameters 304.71 (6,944.86) 0 - 612,493.4 9,437 (12%)

8 Weighted Sum of Exceedance Percentages Across
All Category 1 and 2 Parameters 11.37 (266.45) 0 - 28,142.59 9,437 (12%)

9 Count of All E�uent Violations 0.51 (1.99) 0 - 56 9,437 (12%)

10 Count of Values that Exceeded 40% or 20% of Limit
Value for Category 1 or 2 Parameters Respectively 0.32 (1.54) 0 - 56 9,437 (12%)

Facility-Level Features

11 The Amount of Flow (Million Gallons per Day)
a permitted facility was designed to accommodate 3,173.83 (161,169.3) 0 - 19,800,000 44,881 (56%)

12 The Amount of Flow (Million Gallons per Day) that
the facility actually had at the time of application 5,067.7 (439,889.7) 0 - 51,000,000 57,604 (72%)

Categorical Features

Feature Category Count Mode (%) Missing Count (%)

Permit-Level Features
13 Facility Type (POTW, Non-POTW, or Federal Entity) 4 Non-POTW (66%) 1,718 (2%)
14 Individual or General Permit 3 Individual (67%) 1,716 (2%)
15 Major or Minor Permit 3 Minor (83%) 1,716 (2%)
16 Wastewater or Non-Wastewater Permit 2 Wastewater (90%) 0 (0%)
17 Sewage Treatment or Non-Sewage Permit 2 Non-Sewage (62%) 0 (0%)

18 Ownership Type of the Facility (e.g. Municipality) 15 Privately Owned
Facility (30%) 11,145 (14%)

19 Category of Water Body that the Permit Discharges to 2 Missing
(Non-303(D)-Listed) (60%) 48,341 (60%)

Historical Statuses

20 The O�cial Historical Compliance Status
One Quarter Before the Target Quarter 14 Missing

(Automatic Compliant) (32%) 25,290 (32%)

21-
27

The O�cial Historical Statuses
Two to Eight Quarters Before the Target Quarter** 14 - -

Table 4: Summary Statistics of All 27 Prediction Features in the Random Forest Model. *As the target quarter in the test set is
FY2020-Q1, the previous quarter refers to FY2019-Q4. In the training dataset (target quarter FY2019-Q4), the previous quarter
refers to FY2019-Q3. **The remaining historical status features share similar summary statistics and are thus omitted here.
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Machine Learning Flow Chart

EPA Integrated 
Compliance 
Information 

System (ICIS) - 
NPDES

Discharge Monitoring Report (DMR) 
Data

This table contains DMRs which are periodic 
self-reports submitted by facilities to state 

levelenvironmental agencies (and subsequently 
to the U.S. EPA) withinformation about their 

compliance with permitted effluent limits.
NPDES Permit ID

Pollutant Parameter

Monitoring Period Date
Limit Value
DMR Value
Exceedance Percentage

Raw Data

ARIMA 
Forecasts

Facility Data

This table contains metadata information about 
each NPDES Facility.

NPDES Permit ID
Location (e.g. Lat/Long, Census Block Group, 
etc.)
Permit Type (e.g. Wastewater vs Stormwater, 
Individual vs General)

EPA Region
Total Design Flow Number: The flow that a 
permitted facility was designed to accommodate, 
expressed as millions of gallons per day (MGD).

A simplified view of the underlying data. 
With the DMR Data, we observe for each 
facility and parameter, self-reported 
discharge values in each monitoring 
period and can compare these 
self-reported values to the permitted 
limits. 

We then merge the data with facility-level 
characteristics and historical quarterly 
non-compliance records to assemble the 
training data for the ML Model.

Historical Quarterly Compliance 
Status Records

This table contains historical compliance 
records (e.g. whether the facility was in SNC) on 

a quarterly basis for NPDES Permits
NPDES Permit ID
Quarter
Significant Non-compliance Status

ARIMA Forecasted Results

Forecasted discharge amount for each NPDES 
Permit and Pollutant Parameter for 2020 Q1

NPDES Permit ID

Pollutant Parameter

ARIMA Forecasted Discharge Amount
Limit Value

Using ARIMA, we forecast the discharge 
amount for each NPDES Permit and 
Pollutant Parameter for 2020 Q1. We use 
these forecasted values as features in the 
final Random Forest machine learning 
model.

ARIMA 
Forecasts

NPDES 
Permit ID

Pollutant 
Parameter

ARIMA 
Predicted 

Discharge Value

CA0001 Nitrogen 25 mg/L

CA0001 Phosphorous 10 mg/L

... ... ...

Final Dataset

Final Merge
Fully Merged Dataset

The final data set merges ARIMA Forecasts, 
Facility Level metadata, and historical 

noncompliance status at the permit level
NPDES Permit ID
Total Number of Predicted Exceedances (based 
on ARIMA Results)

Historical Quarterly Non-compliance statuses
Facility Level Metadata (e.g. Permit Type, 
Region, Total Design Flow Number, etc.
Predicted Discharge Value

The final dataset, after merging all of the 
relevant datasets, is uniquely identified at 
the facility level. ARIMA results at the 
permit and pollutant parameter level are 
aggregated to the permit level by taking 
the total number of predicted 
exceedances

NPDES 
Permit ID

Total Number of 
Predicted 

Violations, based 
on ARIMA (both 

Chronic and 
TRC Violations)

Historical Quarterly 
Non-Compliance 
Status (Vector of 

Indicators)

Facility Level 
Characteristics

CA0001 4 1
Individual Permit, 
Wastewater, EPA 
Region 10, etc.

CA0002 2 0
General Permit, 
Stormwater, EPA 

Region 6, etc.

... ... ...

Machine 
Learning Models

We train both Random Forest models 
using 2019 Q4 data and test on 2020 Q1 
data. Both the Regression and 
Classification models use the same 
feature space. The only difference is the 
outcome variable. 

Classification Model: The output is a 
binary indicator for whether the facility 
triggered Effluent SNC.

Regression Model: The output is a 
weighted sum of the total exceedance 
percentage across Group 1 and 2 
pollutant parameters for the facility.

Created by Knut M. Synstad

from the Noun Project

Random Forest Classification 
Model Created by Knut M. Synstad

from the Noun Project

Random Forest Regression 
Model

Figure 7: The �rst row provides a simpli�ed view of data drawn from the ICIS-NPDES database to construct input features in
the model. The second row represents the time series model. The third row outlines the �nal dataset used for prediction at the
permit level for both the Classi�cation and Regressionmodels, merging features constructed by di�erent data sources. Finally,
the fourth row feeds the prediction dataset into a Classi�cation and a Regression model with di�erent outcome variables.

C.2 Regression
Using the weighted sums of exceedance percentages in FY2020-
Q1 as the continuous outcome variable, the RF regression model
produces a root mean square error of 240, compared with a mean
imputation baseline of 288. As shown in Figure 5, the regression
results were driven by a small number of outliers in the last bin.
(Even that error, however, still places facilities disproportionately

into SNC territory.) Performance is more reasonable trimming the
top 3% of outliers, resulting in an RMSE of 117.

We again assess feature importance, and ARIMA forecasts have
the highest predictive power, suggesting that the ARIMA models
provide some of the most useful information in predicting e�uent
amounts.
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Figure 8: ARIMA-based feature engineering of parameters at
NPDES facilities. Dashed line represents permit limit. Solid
lines represent pollutant values over time and bands present
ARIMA-based pointwise con�dence intervals.
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Figure 9: Left Panel: Receiver Operating Characteristics
Curve (AUC = 0.93) shows that the classi�cation model can
distinguish between a true negative and a true positive fairly
well. Right Panel: Precision and Recall Curve (AUC = 0.78)
shows that the classi�cation model performs reasonably
well in the face of class imbalance.

Figure 10 shows that the ARIMA predictions in the permit-level
center around 0. Similar to the classi�cation model, historical sta-
tuses and time series features have higher predictive power than
time-invariant permit characteristics.
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Figure 10: Residuals of the regression model center at 0.
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