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In silico predictions of the properties of materials can most reli-
ably be carried out using ab initio calculations. However, their 
high computational expense and poor scalability have mostly 

limited their application to materials containing fewer than 1,000 
atoms without site disorder. A further rule of thumb is that the 
more accurate the ab initio method, the higher the computational 
expense and the poorer the scalability1–3. It is therefore no surprise 
that supervised machine learning (ML) of ab initio calculations has 
garnered substantial interest as a means to develop efficient surro-
gate models for materials property predictions4. State-of-the-art ML 
models encode structural information (for example, as graphs5,6 or 
local environmental features7–9) in addition to composition infor-
mation, allowing them to distinguish between polymorphs that may 
have vastly different properties.

Frustratingly, although building ML models from high-accuracy 
calculations or experiments would yield the greatest value, obtain-
ing sufficient data to reliably train such models is extremely chal-
lenging. For example, the number of Perdew–Burke–Ernzerhof 
(PBE)10 calculations in large, public databases such as the Materials 
Project11 and Open Quantum Materials Database12 is on the order 
of 105−106, while the number of more accurate Heyd–Scuseria–
Ernzerhof (HSE)13 calculations is at least two orders of magnitude 
fewer. Similarly, while Becke, 3-parameter, Lee–Yang–Parr (B3LYP) 
calculations are available for millions of molecules14, ‘gold standard’ 
coupled-cluster single-, double-, and perturbative triple-excitations 
(CCSD(T)) calculations are only available for perhaps thousands 
of small molecules. The number of high-quality experimental data 
points is even fewer15.

A potential approach to address this challenge is through 
multi-fidelity models16 that combine low-fidelity data with 
high-fidelity data. From the handful of previous studies utilizing 
this approach in materials properties ML, most utilize two-fidelity 
models with a co-kriging17 approach, which assumes an approxi-
mately linear relationship between targets of different fidelity. The 
training of co-kriging models scales as O(N3) (where N is the num-
ber of data points), which becomes prohibitively expensive when 
N exceeds 10,000. Further, these efforts have been limited to spe-
cific properties of single structure prototypes18,19. Similarly, trans-
fer learning and Δ-learning20 are either two-fidelity approaches or 

non-trivial21 to extend to more than two fidelities. Multi-task neural 
network models22 can handle multi-fidelity data and scale linearly 
with the number of data fidelities, but require homogeneous data 
that have all properties labeled for all the data, which is rarely the 
case in materials property data sets.

Graph networks constitute a general, composable deep learn-
ing framework that supports both relational reasoning and 
combinatorial generalization23. Previously, we have shown that 
Materials Graph Network (MEGNet) models substantially outper-
form prior ML models in predicting the properties of both mol-
ecules and crystals5. However, previous graph network and other 
state-of-the-art models, such as the crystal graph convolutional 
neural networks6 and SchNet24, are single fidelity, typically trained 
on a large PBE-computed data set, and have not been extended 
to multi-fidelity data sets of various sizes. Further, all prior mod-
els have been limited to ordered materials only. Here, we develop 
multi-fidelity graph networks as a generalized framework for mate-
rials property prediction across computational methodologies and 
experiments for both ordered and disordered materials.

Results
Multi-fidelity graph networks. Figure 1 depicts a schematic of 
the multi-fidelity graph network framework. The starting point is 
a natural graph representation of a material, where the atoms are 
the nodes and the bonds between them are the edges. The input 
atomic attributes are simply the atomic numbers of the elements 
passed to a trainable elemental embedding matrix to obtain a 
length-16 elemental embedding vector, and the bond attributes are 
the Gaussian-expanded distances. The state attribute vector provides 
a portal for structural-independent features to be incorporated into 
the model. Here, the data fidelity level (for example, computational 
method or experiment) is encoded as an integer and passed to a train-
able fidelity embedding matrix to get a length-16 fidelity embedding 
vector, forming the input state attributes. A graph network model is 
built by applying a series of graph convolutional layers that sequen-
tially exchange information between atoms, bonds and the state vec-
tor. In the final step, the latent features in the output graph are read 
out and passed into a neural network to arrive at a property predic-
tion. Further details are available in the Methods section.
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We have selected the prediction of the band gap (Eg) of crystals 
as the target problem because of its great importance in a broad 
range of technological applications—including photovoltaics and 
solar water splitting—as well as the availability of multi-fidelity 
data. To demonstrate the transferability of the approach, another 
application to the prediction of multi-fidelity molecular energies 
is demonstrated in Supplementary Section 2. The low-fidelity 
(low-fi) data set comprises 52,348 PBE band gaps from the 
Materials Project11. The high-fidelity (high-fi) computed data 
sets comprise 2,290 Gritsenko–Leeuwen–Lenthe–Baerends with 
solid correction (GLLB-SC)25–27, 472 strongly constrained and 
appropriately normed (SCAN)28,29 and 6,030 HSE13,30 band gaps. 
Experimental band gaps for 2,703 ordered crystals and 278 disor-
dered crystals31 are considered as a separate high-fi data set. The 
least computationally expensive PBE functional is well known 
to systematically underestimate the band gap32, and the high-fi 
functionals correct this to varying degrees. The data within each 
fidelity was randomly split into 80% training, 10% validation and 
10% test data and repeated six times for all models in this work. 
The statistics (mean and distribution) of the mean absolute errors 

(MAEs) on the test data sets are reported, to provide an accurate 
assessment of model reliability.

Band gaps of ordered structures. Single-fidelity, or 1-fi, graph net-
work models for the band gaps of ordered crystals were first devel-
oped for each fidelity in isolation. The MAEs of the 1-fi models (Fig. 
2a) are related to the data size as well as the mean absolute deviation 
(MAD, see Supplementary Data 1) within each data set. The PBE 
data set is the largest with a small MAD, and the 1-fi PBE mod-
els have the smallest average MAE of 0.27 eV. The average MAEs 
for the computed 1-fi models increase in the order PBE < HSE < 
GLLB-SC < SCAN, which is inverse to the data-set size order. The 
lower average MAE of the 1-fi experimental models compared with 
the 1-fi HSE models, despite having a smaller data set, could be 
attributed to the relatively large fraction of metals (with zero band 
gap) in that data set, which leads to a smaller MAD.

Multi-fidelity graph network models utilizing the large PBE 
data set with data from other fidelities can mitigate this trade-off 
between data quality/quantity and performance. Much lower 
average MAEs are achieved across all high-fi computations and  
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Fig. 1 | multi-fidelity materials graph networks. a, representation of a material in a graph network model, with atoms as the nodes, bonds as the edges 
coupled with a structure-independent global state. The input atomic feature is embedded atomic number of the element. The bond feature vector is the 
Gaussian-expanded distance. The fidelity of each data is encoded as an integer (for example, 0 for PBE, 1 for GLLB-SC, 2 for SCAN, 3 for HSE and 4 for 
experiment). b, A materials graph network model is constructed by stacking graph convolution layers. In each graph convolution layer, sequential updates 
of atomic, bond and state features are performed using information from connected neighbors in the graph. The output graph in the last layer is then read 
out and processed in a neural network to arrive at the final prediction.
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experimental predictions (Fig. 2a). The 5-fi models, that is, the 
models fitted using all available data, substantially improve on 
the average MAE on the high-fi predictions over the 2-fi models, 

at the expense of a small increase in the MAE of the low-fi PBE 
predictions. The error distributions broken down in metals and 
non-metals for the 5-fi models are shown in Extended Data Fig. 1. 
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Fig. 2 | test maes of multi-fidelity graph network model predictions on ordered crystal band gaps. a, Performance of graph network models with 
different fidelity combinations. The 4-fi models used the PBE, GLLB-SC, HSE and experimental data sets, that is, the very small SCAN data set is excluded. 
All errors were obtained on the corresponding test sets of the fidelity. The error bars show one standard deviation and the dots are the individual model 
errors. b–e, Average MAEs of GLLB-SC (b), SCAN (c), HSE (d), and experimental (e) band gaps of 2-fi models trained using sampled data sets for 
high-fidelity data and PBE data. For each sub-plot, the error line is lowered with more high-fidelity data. The x-axis is plotted on a log scale and the shaded 
areas indicate one standard deviation of the MAE. s indicates the slope for a linear fit of MAE to log10NPBE

I
.
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With the exception of the extremely small set of SCAN data on met-
als (17 data points), all model errors have a Gaussian-like distribu-
tion centered at zero.

We also explored other 2-fi, 3-fi and 4-fi models, with and with-
out PBE (Supplementary Data 1). The multi-fidelity models with-
out PBE generally have higher MAEs than the multi-fidelity models 
with PBE, though they typically still outperform the 1-fi models. 
The 4-fi models that exclude the very small SCAN data set, that is, 
models trained on PBE, GLLB-SC, HSE and experimental data, out-
perform the 5-fi models across all non-SCAN fidelities, which indi-
cates that the poor quality of the SCAN data set may have degraded 
performance. The reduction in average MAE of the 4-fi models over 
the 1-fi models range from ~22% for the experimental band gap to 
~45% for the HSE band gap. Further, an increase in the number of 
fidelities also tends to improve model consistency, that is, lower the 
standard deviation in the MAE.

The multi-fidelity graph network models substantially outper-
form prior ML models in the literature. The best reported GLLB-SC 
model has a root-mean-squared error (RMSE) of 0.95 eV (ref. 33), 
much higher than the average 4-fi RMSE of 0.68 eV on the GLLB-SC 
predictions. For experimental band gaps, Zhuo et al.31 reported an 
MAE of 0.75 eV and an RMSE of 1.46 eV for a test set of ten com-
pounds using a support vector regression model; the average MAE 
and RMSE for the 4-fi models on the experimental band gap of these 
compounds are 0.65 eV and 1.39 eV, respectively. Zhuo et al.31 also 
reported an RMSE of 0.45 eV on the entire experimental data set, 

but the data set contains duplicated band gaps for the same compo-
sition and thus is an inaccurate benchmark of model performance.

To compare alternative approaches, we have also constructed 
baseline 1-fi-stacked models, where a linear model is fitted for 
each high-fi data set to the optimized 1-fi PBE model. This is 
akin to a model stacking approach and can be justified based on 
the relatively strong correlation between the high-fi computed 
and PBE band gaps (Extended Data Fig. 2)34. The multi-fidelity 
models outperform the 1-fi-stacked models, with especially large 
reductions in average MAEs of up to 38% on arguably the most 
valuable experimental band gap predictions and 44–56% on the 
GLLB-SC and HSE predictions. Another alternative approach we 
explored is transfer learning, whereby the graph convolution lay-
ers from the PBE 1-fi models were fixed and the final output layers 
were retrained with higher fidelity data. Compared with the 2-fi 
models, the transfer learning models have somewhat lower model 
errors on the GLLB-SC and SCAN data sets but much higher 
errors on the most valuable experimental data set, as shown in 
Supplementary Data 2. It should be noted that transfer learning 
is fundamentally a two-fidelity approach and requires a two-step 
training process. The 4-fi models outperform the transfer learning 
models on the experimental data set even further. These results 
indicate that multi-fidelity graph network architecture is able to 
capture complex relationships between data sets of different fideli-
ties. The errors of other combinations of fidelities are listed in 
Supplementary Data 1.
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Fig. 3 | effect of including low-fidelity PBe data on latent structural features. a,b, Two-dimensional t-distributed stochastic neighbor embedding 
(complexity = 1,000) projection of features for 1-fi (a) and 2-fi (b) models trained using 100 experimental data points and the entire PBE data set. The 
markers are colored according to the experimental band gap. c,d, Plots of the experimental band gap difference (ΔEg) against normalized latent structural 
feature distance (dF) in arbitrary units (a.u.) for the 1-fi (c) and 2-fi (d) PBE models trained on all available experimental data. The dashed lines indicate the 
envelope of the maximum ΔEg at each dF. The scattering points are sub-sampled by a factor of 15.
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To gain insights into the effect of low-fi and high-fi data size 
on model accuracy, 2-fi models were developed using sampled 
subsets of each high-fi computed/experimental data set (Nhigh-fi) 
together with different quantities of data from the low-fi PBE data 
set (NPBE). From Fig. 2b–e, it may be observed that adding low-fi 
PBE data results in a marked decrease in the average MAEs of the 
high-fi predictions in all cases. The average MAEs of the 2-fi mod-
els follow an approximately linear relationship with log10NPBE

I
. With 

the exception of the SCAN 2-fi models, the magnitude of the slope 
decreases monotonically with an increase in Nhigh-fi, that is, the larg-
est improvements are observed in the most data-constrained mod-
els. The nearly constant slope for the 2-fi SCAN models may be 
attributed to the extremely small size of the SCAN data set as well 
as its strong correlation to the PBE data set (Extended Data Fig. 2).

Latent space visualization. We compared the latent structural fea-
tures extracted from the 1-fi and the 2-fi models trained using 100 
experimental data points without and with PBE data, respectively. 
The t-distributed stochastic neighbor embedding (t-SNE)35 2D 
projections of the latent structure features (Fig. 3a,b) show that the 
inclusion of the large PBE data set in the 2-fi model results in supe-
rior structural representations that clearly separate structures with 
large band gap differences.

This separation can be further quantified by plotting the 
band gap difference ΔEg against the distance in the normalized  

structural features dF between all 3,651,753 unique pairs of crystals 
in the experimental data (as shown in Fig. 3c,d). The 1-fi model 
for experimental band gaps has poor resolution, especially for 
large ΔEg. A wide dF range from 0.25 to 1 corresponds to a max 
ΔEg of ~10 eV, and the correspondence between dF and max ΔEg is 
extremely noisy at low values. By contrast, the 2-fi model exhibits 
an almost linear correspondence between dF and max ΔEg when 
dF is less than 1. Our conclusion is therefore that the inclusion of a 
large quantity of low-fidelity PBE data greatly assists in the learn-
ing of better latent structural features, which leads to substantially 
improved high-fidelity predictions. It should be noted, however, 
that a prerequisite for such improvements is that the low-fidelity 
data are of sufficient size and quality. For example, the 2-fi mod-
els without PBE perform worse than the 2-fi models with PBE 
(Supplementary Data 1).

Band gaps of disordered materials. The multi-fidelity graph net-
work architecture also provides a natural framework to address 
another major gap in the computational materials property predic-
tions—disordered crystals. The majority of known crystals exhibit 
site disorder. For example, of the ~ 200,000 unique crystals reported 
in the Inorganic Crystal Structure Database36, more than 120,000 
are disordered crystals. Typically, the properties of disordered crys-
tals are estimated by sampling low-energy structures among a com-
binatorial enumeration of distinct orderings within a supercell.
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In the graph network approach, we can use the learned length-16 
elemental embeddings WZ directly as the node features. In such a 
scheme, disordered sites can be represented as a linear combination 
of the elemental embeddings as Wdisordered ¼

P
i¼1xiWZi

I
, where 

xi is the occupancy of species i in the site and WZi

I
 is the element 

embedding for atomic number Zi. Using the 4-fi models for the 
ordered crystals without further retraining, the average MAE of the 
predicted band gaps of the 278 disordered crystals in our experi-
mental data set is a respectable 0.63 ± 0.14 eV, similar to the aver-
age MAE of the 1-fi-stacked model on the experimental band gaps 
of ordered crystals. By retraining with the disordered experimental 
band gap data set, the average MAE on the experimental band gaps 
of disordered crystals decreases to 0.51 ± 0.11 eV, while that of the 
ordered crystals remains approximately the same (0.37 ± 0.02 eV). 
The average MAEs for a retrained 1-fi model on the experimen-
tal band gaps of disordered and ordered crystals are 0.55 ± 0.13 eV 
and 0.50 ± 0.07 eV, respectively. Clearly, the multi-fidelity approach 
improves on the performance on disordered crystals as well as enu-
merated ordered crystals.

To demonstrate the power of the disordered multi-fidelity 
graph network models, band gap engineering data were extracted 
from the literature for AlxGa1−xN (ref. 37), ZnxCd1−xSe (ref. 38), 
MgxZn1−xO (ref. 39) and Lu3(GaxAl1−x)5O12 (ref. 40). The band gaps of 
Lu3(GaxAl1−x)5O12 were not present and only the band gaps of the 
stoichiometric endpoints for the other systems were present in our 
experimental data set. The 4-fi model performs remarkably well, 
reproducing qualitative trends in all instances and achieving near 
quantitative accuracy for most systems, as shown in Fig. 4. The 
4-fi model reproduces the concave relationship between x and the 
change in band gap ΔEg for Lu3(GaxAl1−x)5O12 (Fig. 4d) reported 
previously40. For Zn1−xMgxO, a more pronounced concave relation-
ship is predicted by the 4-fi model compared with the experimental 
measurements39. The band gap of ZnO is notoriously poorly esti-
mated by DFT techniques41, and even experimental measurements 
range from 3.1 to 3.4 eV across publications42. An additional proof 
of concept for BaySr1−yCoxFe1−xO3−δ perovskite43, a highly promising 
catalyst for the oxygen reduction reaction that exhibits disorder on 
multiple sites, is given in Extended Data Fig. 3.

Discussion
Data quality and quantity constraints are major bottlenecks to 
materials design. Multi-fidelity graph networks enable the efficient 
learning of latent structural features using large quantities of cheap 
low-fidelity computed data to achieve vastly improved predictions 
for more costly computational methods and experiments. While 
crystal band gaps have been selected as the model problem in this 
work, the multi-fidelity graph network framework is universal and 
readily applicable to other properties and to molecules. Two exam-
ples are provided in Extended Data Fig. 4, where a large number of 
low-fidelity molecular energies are shown to lead to vast improve-
ments in the high-fidelity energy predictions.

The ability to predict band gaps of disordered materials suggests 
that the learned elemental embeddings in graph network models 
encode chemistry in a way that naturally interpolates between ele-
ments. In a traditional ML model development, each element is 
represented by a vector of atomic features—for example atomic 
number, electronegativity and atomic radius. A disordered site, for 
example AlxGa1−x in AlxGa1−xN, cannot be naturally represented as 
a linear combination of such feature vectors. Therefore, this is a 
unique attribute of our graph network model that is not present in 
feature-engineered ML models. The interpolation approach bears 
some similarity to that used in the virtual crystal approximation44. 
A limitation of the virtual crystal approximation is that it may fail in 
systems that do not exhibit full disorder. In the case of multi-fidelity 
graph networks, this limitation can be mitigated to a certain 
extent by applying the highly efficient models to the interpolated  

disordered crystal as well as ordered crystals at the same composi-
tion to arrive at a range of property predictions. Thus, multi-fidelity 
graph network models provide an alternative approach to in silico 
materials design for the large class of disordered materials that is 
extremely difficult to treat with existing ab initio computations or 
ML techniques.

One potential limitation of the proposed approach is its reli-
ance on large, low-fidelity data sets for learning effective latent 
structural representations. The low-fi data set needs to reproduce 
at least general qualitative trends in the target property between dif-
ferent materials for such learning to be effective. For some proper-
ties, even low-fi data sets may not be available in sufficiently large 
quantities for effective learning. Under such instances, a transfer 
learning approach, that is, where portions of a model trained on a 
different property are retrained on the target property, may be more 
appropriate.

methods
Data collection and processing. The PBE10 data set comprising 52,348 crystal 
structures with band structure calculations was obtained from the Materials 
Project11 on 1 June 2019 using the Materials Application Programming Interface 
in the Python Materials Genomics (pymatgen) library45,46. The GLLB-SC band 
gaps from Castelli et al.27 were obtained via MPContribs47. The total number 
of GLLB-SC band gaps is 2,290 after filtering out materials that do not have 
structures in the current Materials Project database and those that failed the 
graph computations due to abnormally long bonds (>5 Å). The GLLB-SC data all 
have positive band gaps due to the constraints applied in the previous structure 
selection27. The SCAN28 band gaps for 472 nonmagnetic materials were obtained 
from a previous study by Borlido et al.29. The HSE13 band gaps with corresponding 
Materials Project structures were downloaded from the MaterialGo website30. 
After filtering out ill-converged calculations and those with a much smaller 
HSE band gap compared with the PBE band gaps, 6,030 data points remain, of 
which 2,775 are metallic. Finally, the experimental band gaps were obtained from 
work by Zhuo and colleagues31. As this data set only contains compositions, the 
experimental crystal structure for each composition was obtained by looking up 
the lowest energy polymorph for a given formula in the Materials Project, followed 
by cross-referencing with the corresponding Inorganic Crystal Structure Database 
entry36. Further, as multiple band gaps can be reported for the same composition in 
this data set, the band gaps for the duplicated entries were averaged. In total, 2,703 
ordered (938 binary, 1,306 ternary and 459 quaternary) and 278 disordered (41 
binary, 132 ternary and 105 quaternary) structure–band gap pairs were obtained. 
All data sets are publicly available48.

Materials graph networks construction. In materials graph networks, atoms 
and bonds are represented as nodes and edges in an undirected graph as (V, E, 
u). The atom attributes V are the atomic numbers Z 2 N

I
. Each atom attribute is 

associated with a row vector WZi 2 R16

I
 in the element embedding matrix WZ = 

[W0; W1; W2; … W94] where W0 is a dummy vector. The bond attribute is the set of 
Gaussian-expanded distances. For the k-th bond in the structure, the attributes are

ek;m ¼ exp�ðdk � μmÞ2
σ2

; 8dk≤Rc

where dk is the length of the bond k formed by atom indices rk and sk; Rc is the cutoff 
radius and μm ¼ m

nbf�1 μmax

I
 for m = {0, 1, 2, … nbf − 1} and nbf is the number of bond 

features. In this work, Rc = 5 Å, μmax = 6 Å, and nbf = 100. The graphs are constructed 
using an edge list representation, and the edge set of the graph is represented as 
E = {(ek, rk, sk)}. The state attributes u are fidelity levels F 2 N

I
. Similar to atom 

attributes, fidelity Fi is associated with a row vector Wf
Fi

I
 in the fidelity embedding 

matrix WF ¼ ½Wf
0;W

f
1;W

f
2;W

f
3;W

f
4

I
. Both embedding matrices WZ and WF 

are trainable in the models, except in disordered models where the elemental 
embedding matrix WZ is fixed to previously obtained values.

In each graph convolution layer, the graph networks are propagated 
sequentially as follows:
•	 The attributes of each bond k in the graph are updated as

e0k ¼ ϕeðvsk  vrk  ek  uÞ

where ϕe is the bond update function, vsk
I

 and vrk
I

 are the atomic attributes of 
the two atoms forming the bond k, and ⊕ is the concatenation function.

•	 Each atom i is then updated as

v0i ¼ ϕvð�vei  vi  uÞ

where ϕv is the atomic update function, and �vei ¼ averagekðe0kÞ; 8rk ¼ i
I

 is the 
averaged bond attributes from all bonds connected to atom i.

NatuRe COmPutatiONaL SCieNCe | VOL 1 | JANUAry 2021 | 46–53 | www.nature.com/natcomputsci 51

http://www.nature.com/natcomputsci


Articles NAturE ComPutAtioNAl SCiENCE

•	 Finally, the state attributes are updated as

u0 ¼ ϕuð�ue  �uv  uÞ

where ϕu is the state update function, and �ue ¼ averagekðe0kÞ
I

 and 
�uv ¼ averageiðv0iÞ
I

 are the averaged attributes from all atoms and bonds, 
respectively.

Experimental set-up. The models were constructed using TensorFlow49. Three 
graph convolution layers and the Set2Set readout function with two steps are used 
in the model training5. The update functions in each graph convolutional layer 
were chosen to be multi-layer perceptron models with [64, 64, 32] hidden neurons 
and shifted softplus function lnðex þ 1Þ � lnð2Þ

I
 as the non-linear activation 

function.
We split the data into 80:10:10 train:validation:test ratios randomly for each 

fidelity independently and repeated the splitting six times. It should be noted that each 
structure–band gap data point is considered as unique, and there are instances where 
the same structure with different fidelity band gaps is present in the training and 
validation/test data. An alternative data-splitting strategy wherein structural overlaps 
in the training/validation/test sets are disallowed is presented in Supplementary Data 
3. It was found that such a data-splitting strategy results in significantly higher model 
errors, which indicates that information from multi-fidelities is necessary for the 
models to learn the relationships between different fidelities.

A learning rate of 10−3 was used with the Adam optimizer with mean squared 
error as the loss function. The MAE was used as the error metric on the validation 
and test data sets, and the batch size for the training was set to 128. All models 
were trained on the corresponding training data for a maximum of 1,500 epochs. 
During the training process, the MAE metrics were calculated on the validation 
data set after each epoch. The model weights were saved after each epoch if the 
validation MAE reduced. Fitting was deemed to have converged if the validation 
MAE did not reduce for a consecutive 500 steps. An automatic training recovering 
mechanism was also implemented by reloading the saved model weights 
and reducing the learning rate by half when gradient explosion happens. For 
multi-fidelity model fitting, only the high-fidelity data sets without the PBE data 
were used in the validation set. The final model performances were evaluated on 
the test data sets and reported in this work.

Data availability
Multi-fidelity band gap data and molecular data are available at https://doi.
org/10.6084/m9.figshare.1304033048. The data for all figures and extended data 
figures are available in Source Data.

Code availability
Model fitting and results plotting codes are available at https://github.com/
materialsvirtuallab/megnet/tree/master/multi-fidelity. MEGNet is available at 
https://github.com/materialsvirtuallab/megnet. The specific version of the package 
can be found at https://doi.org/10.5281/zenodo.407202950.
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Extended Data Fig. 1 | Five-fidelity model test error distributions. a, The model errors decomposed into metals vs non-metals and (b) the test error 
distributions. The ‘metal-clip’ category means that the predicted negative band gaps are clipped at zero.
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Extended Data Fig. 2 | Band gap data distribution and correlation. Plots of the pairwise relationship between band gaps from different fidelity sources. 
The band gap distribution in each data set is presented along the top diagonal, and the Pearson correlation coefficient r between each pair of data are 
annotated in each plot.
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Extended Data Fig. 3 | Predicted experimental band gaps of Ba0.5Sr0.5CoxFe1−xO3−δ using 4-fi models. Both the Co ratio x and oxygen non-stoichiometry δ 
are changed to chart the two dimension band gap space.
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Extended Data Fig. 4 | multi-fidelity modeling of energies of molecules. a, Average MAE in G4MP2 energy predictions for the QM9 data set using 1-fi 
G4MP2 models and 2-fi B3LyP/G4MP2 models trained with different G4MP2 data sizes. b, Average MAE in CCSD(T) energy predictions for the QM7b 
data set using 1-fi CCSD(T) models, 2-fi HF/CCSD(T) and MP2/CCSD(T) models, and 3-fi HF/MP2/CCSD(T) models. s is the ratio of data sizes. s = 1 and 
2 correspond to CCSD(T):MP2:HF ratios of 1:2:4 and 1:4:16, respectively. The error bars indicate one standard deviation.
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