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Abstract

Satellites allow large-scale surveys to be conducted in short time periods with

repeat surveys possible at intervals of <24 h. Very-high-resolution satellite ima-

gery has been successfully used to detect and count a number of wildlife species

in open, homogeneous landscapes and seascapes where target animals have a

strong contrast with their environment. However, no research to date has

detected animals in complex heterogeneous environments or detected elephants

from space using very-high-resolution satellite imagery and deep learning. In

this study, we apply a Convolution Neural Network (CNN) model to automati-

cally detect and count African elephants in a woodland savanna ecosystem in

South Africa. We use WorldView-3 and 4 satellite data –the highest resolution

satellite imagery commercially available. We train and test the model on 11

images from 2014 to 2019. We compare the performance accuracy of the CNN

against human accuracy. Additionally, we apply the model on a coarser resolu-

tion satellite image (GeoEye-1) captured in Kenya, without any additional

training data, to test if the algorithm can generalize to an elephant population

outside of the training area. Our results show that the CNN performs with high

accuracy, comparable to human detection capabilities. The detection accuracy

(i.e., F2 score) of the CNN models was 0.78 in heterogeneous areas and 0.73 in

homogenous areas. This compares with the detection accuracy of the human

labels with an averaged F2 score 0.77 in heterogeneous areas and 0.80 in

homogenous areas. The CNN model can generalize to detect elephants in a dif-

ferent geographical location and from a lower resolution satellite. Our study

demonstrates the feasibility of applying state-of-the-art satellite remote sensing

and deep learning technologies for detecting and counting African elephants in

heterogeneous landscapes. The study showcases the feasibility of using high res-

olution satellite imagery as a promising new wildlife surveying technique.

Through creation of a customized training dataset and application of a Convo-

lutional Neural Network, we have automated the detection of elephants in satel-

lite imagery with accuracy as high as human detection capabilities. The success

of the model to detect elephants outside of the training data site demonstrates

the generalizability of the technique.

Introduction

The planet is in the geological era of the Anthropocene,

during which human activity is the driving force of

change. Many wildlife species are under threat across their

geographical range as we are currently undergoing the

sixth-mass extinction (Barnosky et al., 2014; Cardinale,

2012; Skogen et al., 2018). Reliable, accurate, and up-to-
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date data on wildlife numbers is essential to monitor pop-

ulation fluctuations and identify causes of decline. Vari-

ous methods are used for conducting population counts,

including, but not limited to line transect surveys

(Emmanuel et al., 2017), dung and track counts (Barnes

et al., 1997), bio-acoustic monitoring (Shiu et al., 2014),

camera trap grids (Smit et al., 2017) and aerial surveys

(Schlossberg et al., 2016), among others.

Satellite remote sensing has recently emerged as a new

viable monitoring technique for detecting wildlife. It has

been used to successfully identify and count several wild-

life species in open, homogeneous landscapes and seas-

capes. The benefits of this monitoring technique are

numerous; large spatial extents can be covered in short

time periods making repeat surveys and reassessments

possible at short intervals. For example, the satellite used

in this study, Worldview-3 has an average revisit time of

less than one day. It can collect up to 680,000 square

kilometres every 24 h. Satellite images are captured over

large areas in one shot so issues with double counting

and miscounts are largely eliminated. Satellite remote

sensing is unobtrusive as it requires no human presence,

eliminating the risk of disturbing the species being sur-

veyed. Disturbance remains a key concern in other sur-

veying techniques (Mulero-Pazmany et al., 2017). Image

acquisition is automated and less logistically complicated

compared with traditional aerial surveys (Stapleton et al.,

2014) and setting up camera trap grids or audio loggers.

Censuses can be carried out without concern for human

safety providing an ability to survey previously inaccessi-

ble areas. For example, in the case of the Emperor pen-

guin, new colony locations were detected in a pan-

continental survey of the Antarctic coast (Abileah, 2002;

Smit et al., 2017). Additionally, cross border areas can be

surveyed without requiring multiple national civil aviation

permissions.

Detecting wild animals in satellite imagery is influenced

by body size, background complexity and contrast

between species and surrounding habitat. Seascapes pro-

vide a uniform high contrast background context against

which whales have been identified in known breeding,

calving and feeding grounds (Abileah, 2002; Cubaynes

et al., 2018; Fretwell et al., 2014) and flamingos have been

identified on a lake (Sasamal et al., 2008). Spectrally uni-

form rocky outcrops and ice have been used to identify

several marine species, including Emperor and Adelie

penguins (Barber-Meyer et al., 2007; Fretwell et al., 2012;

Fretwell & Trathan, 2009; LaRue et al., 2014; Lynch &

LaRue, 2014), Elephant and Weddell seals (LaRue et al.,

2011; McMahon et al., 2014), Masked Boobies (Hughes

et al., 2011) and Albatross (Fretwell et al., 2017). Several

Arctic species have been identified against snow using

shadow and body contrast for detection (e.g. Polar bears

LaRue & Stapleton, 2018; LaRue et al., 2017; LaRue et al.,

2015; Stapleton et al., 2014) and muskoxen (LaRue et al.,

2017)). On the African continent only two studies have

detected mammals (wildebeest and zebra) using satellite

imagery in open savannah (Xue et al., 2017; Yang et al.,

2014), both in homogeneous monochrome environments.

No study has yet, to the best of our knowledge, detected

species in complex heterogeneous landscapes from space.

Various methods have been used to detect species in

satellite imagery. The majority of studies have manually

counted species in imagery using several observers for

cross-validation. However, manual methods are unfeasible

if large areas are surveyed, as counting is labour and time

intensive and counts tend to be error-prone (Hollings

et al., 2018). Several studies have relied on environmental

proxies and indirect ecological signs of animal presence

e.g. burrows (Löffler & Margules, 1980), mounds

(Velasco, 2009), changes in vegetation from nest signa-

tures (Hughes et al., 2011) and faecal stains in the case of

penguins (Barber-Meyer et al., 2007; Fretwell et al., 2012;

Fretwell & Trathan, 2009; LaRue et al., 2014; Lynch &

LaRue, 2014; Lynch et al., 2012). Image differencing is a

technique where satellite images are captured in the same

location at different times. This technique is used for

environmental change detection (Lu et al., 2010) e.g.

deforestation and land use change (Kiage et al., 2007;

Kusimi, 2008; Meng & Meentemeyer, 2011), identification

of fire (Carvalho Júnior et al., 2015; Meng & Meente-

meyer, 2011), droughts (Buma & Lee, 2019; Rulinda

et al., 2010) or floods (Oliveira et al., 2019; Thito et al.,

2016). Three studies used short-time image differencing

to detect polar bears from space (LaRue & Stapleton,

2018; LaRue et al., 2015; Stapleton et al., 2014). Image

differencing is possible in cases where multi-temporal

imagery is available, and species can be differentiated

from static objects. e.g. rocks. Images can be acquired via

targeted satellite tasking on specific days; however, this is

more costly than using archive imagery. Cloud cover,

environmental variability and changing sea states can

impede ground visibility which is problematic when

image differencing and tasking is used.

Several studies have applied a form of supervised or

semi-supervised classification approaches to detect species

in satellite imagery. One form of image segmentation

using semi-supervised classification is thresholding

method. Pixel values are classified relative to a set of

threshold values that distinguish species from back-

ground. Thresholding method does not make use of geo-

metric information but rather relies on spectral signatures

(pixel value combinations).Thresholding method is reliant

on the human classifier to set accurate thresholds which

is helped by familiarity with the species and environment

(Xue et al., 2017). This technique is effective in

2 ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Machine Learning to Count African Elephants I. Duporge et al.



homogeneous environments where species have strong

spectral separability from background context. However,

in cases where pixel values of species and background

context are similar it is difficult to draw accurate distinc-

tions.

The introduction of Convolutional Neural Networks

(CNN) in machine learning has revolutionized the field of

computer vision since 2012 (Krizhevsky et al., 2012).

Machine learning has become a new essential tool used by

ecologists to detect wildlife in imagery e.g. camera trap

images, aerial survey images and unmanned aerial vehicle

(UAV) images (Bruijning et al., 2018; Chabot & Bird, 2015;

Ferreira et al., 2020; Petersen et al., 2019; Torney et al.,

2019; Weinstein, 2018). However, automated detection of

wildlife from satellite imagery is still in its infancy. To the

best of our knowledge only three species have been detected

in satellite imagery using deep learning: albatross (Bowler

et al., 2019), whales (Borowicz et al., 2019; Guirado et al.,

2019) and pack-ice seals (Gonçalves et al., 2020). Object

detection applications are now easier to develop than ever

before. High-performance off-the-shelf solutions have

made machine learning solutions accessible to non-special-

ists. These techniques can now leverage massive image data-

sets e.g. ImageNet (>14 million images across 20,000

classes)obtaining significant performance improvements

compared to previous methods based on manually engi-

neered features (Russakovsky et al., 2015). A Convolutional

Neural Network (CNN) is a deep learning artificial neural

network architecture that has been extensively used for

object detection and recognition in recent years. The ‘deep’

stems from the use of multiple layers in the network. In this

study, we test whether it is possible to detect the world’s lar-

gest terrestrial mammal – the African elephant – using deep

learning via a CNN.

The population of African elephants (Loxodonta africana)

has plummeted over the last century due to poaching, retal-

iatory killing from crop raiding and habitat fragmentation

(Gara, 2016; Poulsen et al., 2017; Sibanda &Murwira, 2012).

To ensure conservation is achieved accurate monitoring is

vital. Inaccurate counts can result in misallocation of scarce

conservation resources and misunderstanding population

trends. Existing techniques are prone to miscounting. The

most common survey technique for elephant populations in

savannah environments is aerial counts from manned air-

craft (Schlossberg et al., 2016). Aerial surveys are conducted

either as total counts – flying closely spaced transects, or

sample counts, covering 5-20% of an area and extrapolating

to a larger area. Several studies have shown that observers on

aerial surveys often miscount due to fatigue and visibility

issues resulting in over-estimates (Caughley et al., 1976;

Jachmann, 2002; Koneff et al., 2008). Aerial surveys can be

costly, logistically challenging in terms of finding suitable

runways and refuelling stops and time consuming in terms

of getting appropriate permissions. This is particularly rele-

vant in cross-border areas where multiple national permis-

sions are required. Remotely sensing elephants using

satellite imagery and automating detection via deep learning

may provide a novel avenue for surveying while mitigating

several of the challenges outlined above.

In this study, we investigate the feasibility of using

very-high-resolution satellite imagery to detect wildlife

species in heterogenous environments with deep learning.

To test this, we use a population in Addo Elephant

National Park, South Africa where herds move between

open savannah habitat and closed heterogeneous wood-

land and thicket.

Methods

Study Site

Addo Elephant National Park in South Africa was chosen

as the study site. It provides a spectrally complex hetero-

geneous background with a high concentration of ele-

phants. The park is the third largest park in South Africa

at 1640 km2. Different areas of the park have been sec-

tioned off for conservation purposes- elephants were

identified in the Main Camp section of the park sur-

rounding Hapoor Dam (Figure 1).The Main Camp is a

combination of dense shrubland and low forest e.g.pork-

bush (Portulcariaafra), White milkwood (Sideroxylonin-

erme), Cape leadwort(Plumbago auriculate) and open

grassland (Kakembo et al., 2015; Tambling et al., 2012).

Over six hundred elephants move between these habitats

(Du Toit & O’Connor, 2014; Wilgen et al., 2016). Ele-

phants cover themselves in mud to cool down and adopt

a range of postures when foraging, playing, sleeping (Sol-

tis et al., 2016; Wickler & Seibt, 1997) so their shape and

colour is continually changing. The background environ-

ment is also changing as they move between open savan-

nah and woodland and take shelter under trees in the

mid-day sun.

The park has rainfall year-round (Fullman et al., 2017)

and four seasons can be broadly delineated as early wet

season (Oct -Dec), late wet season (Jan-March), early dry

(Apr-Jun) and late dry season (July-Sept) (Du Toit &

O’Connor, 2014; Wilgen et al., 2016).To ensure a repre-

sentative and diverse sample of elephants in the park we

include training and test labels from images captured in

different seasons and years (Table 1).

Dataset generation and satellite image pre-
processing

WorldView-3 and WorldView-4 are the highest resolution

satellite imagery commercially available. They provide
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imagery at 31 cm resolution - WorldView-4 is now out of

action but two years of archive imagery is available. The

image archive for all WorldView 3 & 4 satellite images

from Maxar Technologies (formerly DigitalGlobe) was

searched via the Secure Watch Platform [https://www.d

igitalglobe.com/products/securewatch]. We restricted the

search to images that contain less than 20% cloud cover

and acquired less than 25% off-nadir (degree off centre of

image captured). We selected eleven images that met

these specifications between 2014 and 2019. The satellite

is on a sun synchronous orbital path, so each satellite

image of the study area is captured between 10.10 and

10.45 am local time ensuring regular illumination condi-

tions. The bright morning light improves image clarity as

elephants gather at water holes in the morning which

makes them easy to identify (Figure 1).

Each image was downloaded in two formats: orthorecti-

fied images in natural colour and orthorectified panchro-

matic image. We processed the images using a pan-

sharpening algorithm from ERDAS IMAGINE software

package (ERDAS, Inc., Atlanta, GA, USA) Pan-sharpening

is an automatic image fusion process that uses the multi-

spectral bands red (620–750 nm), green (495–570 nm),

blue (450–495 nm) at 1.24 m resolution and the higher res-

olution panchromatic band at 31 cm to produce a high-

resolution multispectral image. We tested several pan-

sharpening algorithms using visual inspection method- the

FIGURE 1. Location of the study area in -Addo Elephant National Park, South Africa. Two example WorldView-3 images showing 1) Elephants in

open homogeneous area around Hapoor Dam, 2) Elephants in heterogenous woodland and thicket area. Satellite image (c) 2020 Maxar

Technologies

TABLE 1. List of satellite images used in the training and test dataset

Date of

acquisition Satellite

Elephant

labels in

training

dataset

Elephant

labels in

validation

dataset

Elephant

labels in

test

dataset

01_12_2014 WV3 197 52 10

29_01_2016 WV3 178 9 11

10_02_2016 WV3 259 19 32

03_04_2017 WV3 26 19 5

22_11_2017 WV4 10 0 0

11_01_2018 WV4 117 0 23

27_03_2018 WV4 236 16 24

08_10_2018 WV4 119 1 59

20_01_2019 WV3 22 0 0

11_08_2009 GeoEye−1 0 0 32
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Gram-Schmidt pan-sharpening algorithm provided the

cleanest visual result in terms of spectral and spatial fidelity

and was applied to all images. This is consistent with prior

quantitative assessment of pan-sharpening algorithms that

found Gram-Schmidt provides the highest spectral and

spatial fidelity for identification of wildlife (Witharana

et al., 2016). The satellite images were converted so that

pixel values were in the range of [0,255] and the images

were sliced into 600x600 pixel sub images to make them

compatible with the deep learning software.

Labelling training data in satellite images

The images were visually scanned for elephants before

sub-setting into smaller areas where we identified congre-

gations of elephants. In total, 1125 elephants were identi-

fied in the training image dataset. To ensure training

labels are representative of elephants at different times,

images were selected for different seasons and years in

both closed i.e. dense shrubland and forest. and open

areas of the park i.e. grassland and bare land. Images were

labelled by defining bounding boxes around each individ-

ual elephant using the graphical image annotation tool

Labelling [https://github.com/tzutalin/labelImg] (Tzutalin,

2015) shown in Figure 2.

The baseline we deem as the true number of elephants is

a labelled dataset doubled screened by two annotators – an

Ecologist and Machine Learning Scientist. Any ambiguous

labels that were not identified by both annotators were

removed. We use the method of comparing the accuracy of

detections from human volunteer annotators and CNN

performance against this baseline control count (Ginosar

et al., 2014; Torney et al., 2019).The same test images used

to evaluate CNN performance were sent to 51 human vol-

unteer annotators. The images were labelled by the volun-

teers using the VGG Annotation Tool [http://www.robots.

ox.ac.uk/~vgg/software/via/] (Dutta & Zisserman, 2019).

Volunteer annotators represent a cross-section of machine

learning scientists, biologists, general public and park ran-

gers who work with elephants in Southern Africa. The

labellers vary in terms of computer literacy and familiarity

with elephant behaviour and habitat preference. Each par-

ticipant was provided with a detailed training sheet and an

example of how elephants look in satellite images prior to

labelling. The experiment involving human participants

was approved by the University of Oxford CUREC Ethical

Committee [R64699].

Training and validating the Convolutional
Neural Network model

A CNN is a feed-forward neural network designed to pro-

cess large-scale images by considering their local and

global characteristics (LeCun et al., 2015). A neural net-

work is typically comprised of multiple layers connected

by a set of learnable weights and biases (Romero et al.,

2013). Convolutional layers represent a set of filters, each

able to identify a particular feature in the image. These

filters are fed small image patches whilst they scan across

the image and generate feature maps for analysis by the

next layer. The CNN comprises an alternating sequence

of convolutional and pooling layers. Pooling layers are

used to reduce the dimensionality of the feature maps to

improve computational efficiency. Nonlinear activations

are stacked between convolutional layers to enrich their

representational power (Strigl et al., 2010). The last layer

of the network is fully connected and performs classifica-

tion (Schmidhuber, 2015). Convolutional neural networks

have become a key tool in image classification. They are

now comparable to human performance in a number of

challenging image classification tasks e.g. face verification,

various medical imaging tasks (Gulshan et al., 2016; Olc-

zak et al., 2017).

We used the TensorFlow Object Detection API [https://

github.com/tensorflow/models/tree/master/research/object_

detection] to build our model (Huang et al., 2017). This

API provides implementations of different deep learning

object detection algorithms. In a preliminary assessment

of the models available, we selected the model referred to

as faster_rcnn_inception_resnet_v2_atrous_coco as it pro-

vided the best result and it was used for all the experi-

ments presented. This model is a Faster Region CNN

(RCNN) model – after layers that are used to extract fea-

tures there is a subbranch to propose regions that may

contain objects and a subbranch that predicts the final

object class and bounding box for each of these regions

(Ren et al., 2017). The model we used has an Inception

FIGURE 2. Example of elephant labels in a heterogenous area, Addo

Elephant National Park, South Africa. Satellite image (c) 2020 Maxar

Technologies

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5

I. Duporge et al. Machine Learning to Count African Elephants

https://github.com/tzutalin/labelImg
http://www.robots.ox.ac.uk/%7Evgg/software/via/
http://www.robots.ox.ac.uk/%7Evgg/software/via/
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection


ResNet (Szegedy et al., 2017) backbone – this is the

underlying CNN that is used for feature extraction. We

used the model pretrained on the Common Objects in

Context (COCO) dataset for object detection [https://coc

odataset.org/] (Lin, 2014). We used default values for

hyperparameters of this model from the API.

Training a CNN requires images to be split into train-

ing, validation and test sets. In total, 188 sub images from

nine different satellite images were used for training.

These training images contain 1270 elephant labels of

which 1125 are unique elephants. There is an overlap of

50 pixels between sub images, when elephants appear at

the edge of one sub image the overlap ensures they

appear in whole on the neighbouring sub image. Twelve

sub images containing 116 elephant labels were left out as

a validation dataset. The validation dataset is used to tune

the hyperparameters, to define the confidence threshold

(above which predictions from the model are counted as

detections) and to identify the optimal length of CNN

training (see Figure 3).

Test dataset

The test dataset used to test the CNN against human anno-

tator performance contains 164 elephants across seven dif-

ferent satellite images. These images do not overlap with

any of the training or validation subimages. The test subim-

ages cover both heterogeneous and homogeneous areas of

the park from different seasons and years (see Table 1).

In addition, an image from the Maasai Mara in Kenya

was used to test the generalizability of the CNN for

broader image conditions - no additional training data

were included for this test. The image comes from

Geoeye-1 a lower resolution satellite (41 cm) compared

to the images used for training which come from World-

view 3 & 4 (31 cm).The GeoEye-1 image was captured at

about 10:30 am local time on 11th August 2009. This

image allowed us to test the generalizability of our algo-

rithm to a different environment and satellite.

Accuracy assessment

We compare the accuracy of detections from the human

volunteer annotators and CNN against our count which

we deem as the baseline i.e. the true number of elephants

in the images. To calculate the deviation from this base-

line we generate an F2 score.

Object detection performance is usually evaluated by

precision and recall:

Precision¼ TP

TPþFP
and Recall¼ TP

TPþFN

where TP stands for true positives (correctly predicted

elephants), FP stands for false positives (predicted ele-

phants that are not actually elephants, also called false

detections), FN– false negatives (elephants that are not

detected by the model, also called missed detections).

The CNN gives an output in the form of bounding

boxes, the same format we use for the training labels. We

count any intersection between predicted and true bound-

ing boxes as a true positive (i.e. the intersection over

union threshold used to determine correct predictions

was set to 0). Human volunteer annotators provide point

detections for elephants. If these point detections were

inside true bounding boxes, they were counted as true

positives.

In precision and recall both types of errors – false posi-

tives and false negatives – are weighted equally. However,

as it is more time consuming for a human annotator to

check an entire image for missing elephants (false nega-

tives) as compared with reviewing detected elephants and

eliminating false positives we decided to use an F2 (Fβ-

with β¼ 2) score. The F2 combines precision and recall

in such a way that more emphasis is put on false nega-

tives (Dascalu & David, 2019; Hordiiuk et al., 2019):

Fβ ¼ 1þβ2
� � Precision∗Recall

β2∗PrecisionþRecall
¼ 1þβ2

� �
TP

1þβ2
� �

TPþβ2FNþFP
,

which for β¼ 2 is equivalent to

F2 ¼ 5
Precision∗Recall

4∗PrecisionþRecall
¼ 5TP

5TPþ4FNþFP

Performance of object detection algorithms are often

measured by average precision (Huang et al., 2017) i.e. the

area under a precision-recall curve that is obtained by

varying the threshold of the confidence score. This

FIGURE 3. F2 score obtained by each of the four models considered

over training steps on the validation dataset. All models converged

during the first 50 000 training steps
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threshold determines which of the predicted bounding

boxes are considered as final detections. Average precision

allows comparison between different algorithms without

the need to specify this threshold. Since our goal was to

compare the algorithm performance with human perfor-

mance and humans did not provide a confidence score

for their detections, we could not use this metric.

The training process is stochastic due to the stochastic

gradient descent algorithm used for optimization of neu-

ral network weights. We ran the CNN four times to

explore how stable the algorithm output is with respect

to the stochastic training process. Neural networks models

are commonly run as many times as time and availability

of computational resources allow. Each of the models ran

for 50,000 training steps (i.e. the number of times the

weights were updated by the gradient descent algorithm)

on the training dataset and the performance was evalu-

ated on the validation dataset every 2500 training steps

(Figure 3). All the models reached a plateau in F2 score

after around 10,000 training steps on the validation data-

set. For each of the models we chose the weights obtained

at the number of training steps that gave the best perfor-

mance on the validation dataset.

RESULTS

Human detection accuracy compared with
CNN performance

The results show that overall for the CNN in both homoge-

neous & heterogeneous are as we received an F2 score of

0.75.The CNN performed better in heterogeneous areas

with an F2 score of 0.778 compared to 0.73 in homoge-

neous areas. The human annotator median F2 score was

0.78 and performance was better in homogeneous areas –
0.80 compared to 0.766 in heterogeneous areas. These

results show that the CNN performed with high compara-

ble accuracy compared to human detection capabilities.

Visualization of one of the model detections is shown in

Figure 4.

Testing detection under different image
conditions

To test the applicability of the trained CNN model on an

elephant population outside of our study area we test,

without further training, on a known elephant population

in the Maasai Mara in Kenya (Figure 5). The image cov-

ers 0.3 km2 in which 32 elephants were identified. The

CNN managed to detect more than half the elephants in

this image (18 true positives) and the resulting F2 score

was 0.57. Figure 5 provides visualization of some example

CNN detections.

Discussion

Our results demonstrate, for the first time, that it is pos-

sible to automate detection of African elephants in very-

high-resolution satellite imagery in both heterogeneous

and homogeneous backgrounds using deep learning. We

have automated the detection of elephants with as high

accuracy as human detection capabilities. For a number

of species remote sensing via satellite imagery is already a

viable monitoring technique. However, the resolution

required to identify individuals is not yet available for the

vast majority of species but can be used to identify aggre-

gations or environmental signs of presence, for example,

guano stain, shadow, mounds from burrows and nests

(Barber-Meyer et al., 2007; Fretwell et al., 2012; Fretwell

& Trathan, 2009; Hughes et al., 2011; LaRue et al., 2014;

Löffler & Margules, 1980; Lynch & LaRue, 2014; Velasco,

2009). Fortunately, a new constellation of six satellites

from Maxar, Worldview Legion, will launch in 2021 that

will provide imagery for the same location more than 15

times per day at 31 cm resolution. This constellation will

have a tropical circle mid-inclined orbit, rather than polar

orbit and will broaden the range of species that can be

detected and increase detection area.

Previous studies have largely focused on marine species

due both to their inaccessibility via other monitoring

techniques and the high contrast of their bodies against

mainly homogenous backgrounds (Barber-Meyer et al.,

2007; Bowler et al., 2019; Cubaynes et al., 2018; Fretwell

et al., 2017; Fretwell et al., 2014; Guirado et al., 2019;

LaRue et al., 2011; LaRue & Stapleton, 2018; LaRue et al.,

2015; McMahon et al., 2014; Stapleton et al., 2014). The

advantages of using satellite imagery are numerous. Large

FIGURE 4. CNN detections: The images on the left are the raw

images and images on the right are CNN detections (green boxes)

and ground truth labels (red boxes). Satellite image (c) 2020 Maxar

Technologies
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areas can be covered in one pass, reducing the risk of

double counting and eliminating the need for repeat sur-

veys at short intervals. Satellite monitoring is an unobtru-

sive technique requiring no ground presence, and thus

eliminating the risk of disturbing species, or of concern

for human safety during data collection. Previously inac-

cessible areas are rendered accessible, and cross-border

areas – often crucial to conservation planning - can be

surveyed without the often time-consuming and bureau-

cratically problematic requirements of terrestrial permits.

One challenge with satellite monitoring is the high cost

of commercial satellite imagery. Worldview-3 costs $17.50
per km2 for archive imagery and tasking new imagery

costs $27.50 per km2, with a minimum order of

100 km2(2020 pricing). Another key challenge is process-

ing the large quantity of imagery generated. However,

expediting identification of species by automating detec-

tion can allow for large-scale application of satellite-based

wildlife surveying (LaRue et al., 2015; Torney et al.,

2019). A detection process that would formally have taken

weeks can thus be completed in a matter of hours. Fur-

thermore, observer variability means errors in human-la-

belled datasets are inconsistently biased while in contrast,

false negatives and false positives in deep learning

algorithms are consistent and can be rectified by system-

atically improving models. The use of Convolution Neu-

ral Networks (CNN) to automate detection of wildlife has

been successfully applied on imagery from a variety sen-

sors including, UAVs (Bowley et al., 2018; Christie et al.,

2016; Gray et al., 2018; Kellenberger et al., 2019; Kellen-

berger et al., 2018; Mairea et al., 2013), manned aircraft

(Borowicz et al., 2019; Eikelboom et al., 2019; Maire

et al., 2015; Sharma et al.,; Torney et al., 2019), multi-

beam imaging sonar (Toshihiro et al., 2019) and camera

trap imagery (Miao et al., 2019; Schneider et al., 2020;

Schneider et al.,; Willi et al., 2018). To the best of our

knowledge, only three studies have applied a CNN to

satellite imagery in the case of albatross (Bowler et al.,

2019), whales (Borowicz et al., 2019; Guirado et al., 2019)

and pack-ice seals (Gonçalves et al., 2020).

Automating detection is becoming easier as off-the-shelf

object detection tools are increasingly accessible to non-ex-

perts; however, the biggest obstacle is obtaining sufficiently

large training datasets. Crowdsourced labelling platforms,

e.g. Zooniverse [https://www.zooniverse.org/], Amazon

Mechanical Turk [https://www.mturk.com/] can help in

the creation of these bespoke training datasets using the

‘Wisdom of the crowd’ (Kao et al., 2018; Mierswa, 2016).
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FIGURE 5. Example of CNN detections in Maasai Mara, Kenya from Geoeye-1 Satellite. Raw images on left and images with CNN detections

(green boxes) and ground truth labels (red boxes) on right. Satellite image (c)2020 Maxar Technologies
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Our study shows the applicability of this monitoring

technique to the case of the African Elephant and demon-

strate, for the first time, that it is possible to automate

detection of African elephants in very-high-resolution

satellite imagery in both heterogeneous and homogeneous

backgrounds using deep learning. Not only is the detec-

tion accuracy we achieve for elephants as high as that of

humans, but there is less variation in the consistency of

detection for the CNN compared to human detection

performance (as shown in Figure 6).

In addition, we show that it is possible to generalize

detection to elephant populations outside of the site of

training data. The generalizability of the CNN is promis-

ing, as a small amount of training data from this locality

or satellite would further increase accuracy. Elephant

calves were accurately detected, despite their absence in

the training dataset.

Areas of future research to expand this technique

include testing whether performance improvements for

detecting elephants can be achieved by including the near

infrared band and testing to discover for which other spe-

cies this is already a viable monitoring technique. In our

study site vegetation cover was not heavy enough to

hinder identification but this is a common challenge

when using aerial surveying techniques and would be an

obstacle for forest elephants or elephants in other sites.

More broadly, deep learning methods for detecting

small objects can be further improved (Cao et al., 2019;

Pang et al., 2019) and large training datasets containing

images of wildlife from an aerial perspective should be

developed. If satellite monitoring is applied at scale then

developing methods to ensure standardized and occa-

sional ground-truthing will be required to ensure image

interpretation is accurate (LaRue et al., 2017). Using high

resolution satellite imagery as a wildlife surveying tool will

inevitably increase in the future as image resolution

improves and costs fall. Developing automated detection

tools to enable larger scale application of this wildlife

monitoring technique is highly valuable as satellite image

surveying capabilities expand.
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Löffler, E. & Margules, C. (1980) Wombats Detected from

Space. Remote Sensing of Environment, 9, 47–56.
Lu, D., Mausel, P., Brondizio, E. & Moran, E. (2010) Change

detection techniques. International Journal of Remote

Sensing, 25(12), 2365–2401.
Lynch, H.J. & LaRue, M.A. (2014) First global census of the
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