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C O M P U T E R  S C I E N C E

Designing spontaneous behavioral switching via 
chaotic itinerancy
Katsuma Inoue*, Kohei Nakajima*, Yasuo Kuniyoshi*†

Chaotic itinerancy is a frequently observed phenomenon in high-dimensional nonlinear dynamical systems and is 
characterized by itinerant transitions among multiple quasi-attractors. Several studies have pointed out that 
high-dimensional activity in animal brains can be observed to exhibit chaotic itinerancy, which is considered to 
play a critical role in the spontaneous behavior generation of animals. Thus, how to design desired chaotic itinerancy 
is a topic of great interest, particularly for neurorobotics researchers who wish to understand and implement auton-
omous behavioral controls. However, it is generally difficult to gain control over high-dimensional nonlinear 
dynamical systems. In this study, we propose a method for implementing chaotic itinerancy reproducibly in a 
high-dimensional chaotic neural network. We demonstrate that our method enables us to easily design both the 
trajectories of quasi-attractors and the transition rules among them simply by adjusting the limited number of 
system parameters and by using the intrinsic high-dimensional chaos.

INTRODUCTION
Designing a cognitive architecture that acts spontaneously in a real- 
world environment is one of the ultimate goals in the field of cogni-
tive robotics (1). A cognitive agent is expected to have autonomy, 
i.e., the agent should behave independently of the designer’s control 
while maintaining its identity. Adaptability is another requirement 
for cognitive functionality. Thus, the agent must select the appro-
priate behavior continuously and robustly in response to the chang-
ing environment in real time. To summarize, the agent’s cognitive 
behavior should be implemented through the body-environment 
interaction while still enabling the agent to maintain its autonomy 
and adaptability.

In the conventional context of robotics and artificial intelligence, 
designers often take top-down approaches to provide an agent with 
a hierarchical structure corresponding to the behavioral category. 
This representation-based approach has a critical limitation in the 
design of a cognitive agent: The static, one-to-one relationship be-
tween the behavior and structure makes it difficult to adapt flexibly 
to the dynamically changing environment and developing body. For 
example, it has been considered that the motion control systems of 
living things, including humans, realize their high-order motion 
plans by combining reproducible motor patterns called motion 
primitives (2). Inspired by this viewpoint, we tend to realize an 
agent’s behavior control with a predetermined static hierarchical 
structure. However, such a hierarchical structure does not exist in 
living organisms from the beginning; rather, these structures are 
cultivated through the body’s development and dynamic interactions 
with the environment. Therefore, it is important to introduce a 

dynamical perspective to understand a hierarchical structure of 
behavior control generated in animals that have adaptability and 
flexible plasticity.

In robotics, approaches based on dynamical systems theory have 
been applied to analyze and control agents being modeled as sets of 
variables and parameters on a phase space (3, 4). This dynamical 
systems approach can deal with both the functional hierarchy and 
the elementary motion in a unified form by expressing the physical 
constraints of the agent as the temporal development of state vari-
ables, namely, dynamics. For example, Jaeger (4) sketched a pioneer-
ing idea of an algorithm where the behavior of an agent is expressed 
as dynamics, and both the behavioral regularity (referred to as tran-
sient attractors) and the higher-order relationships among them are 
extracted in a bottom-up manner. Unlike the stochastic approach 
where the randomness of the system is realized by a probabilistic 
model (e.g., the Markov model), the dynamical system approach can 
consistently express the agent’s seemingly random behaviors via its 
chaoticity (5). Furthermore, in the stochastic approach, hierarchical 
structures are inevitably introduced since the mechanism of random 
number generation is completely independent of the system’s dy-
namics. Thus, the dynamical systems approach has the potential to 
model an agent’s spontaneous hierarchical behavior in the form of 
dynamic interaction without top-down structure given by the external 
designer. The important issue here is that the concept of the dynamical 
system approach itself offers no general principle for implementing 
these behaviors on a large number of nonlinear couplings that con-
stitute the body-environment interaction. Therefore, it is important 
to study and propose the methodologies for designing spontaneous 
hierarchical behavior with a consistent temporal evolution rule 
governing the system’s dynamics.

Following this dynamical systems perspective, chaotic itinerancy 
(CI) (6–8) is a powerful option for modeling spontaneous behavior 
with the functional hierarchy realized through the dynamics. CI is a 
frequently observed, nonlinear phenomenon in high-dimensional 
dynamical systems, and it is characterized by chaotically itinerant tran-
sitions among locally contracting domains, namely, quasi-attractors 
(8). In general, a chaotic system has an initial sensitivity, and a slight 
difference in phase space is exponentially expanded in a certain direc-
tion with temporal development. Conversely, multiple transiently 
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predictable dynamics can be repeatedly observed in a chaotic system, 
yielding CI despite the global chaoticity and initial sensitivity. 
This type of hierarchical dynamics frequently emerges from high- 
dimensional chaos even without hierarchical mechanisms, implying 
that explicit structure is not necessarily needed for implementing 
hierarchical behaviors. The chaoticity plays an important role in 
forming the autonomy of an agent as it is virtually impossible for 
the designer to completely predict and control an agent’s behavior 
because of the agent’s initial sensitivities, which essentially ensures 
the agent’s independence from the designer. Thus, CI would work 
as an effective tool for implementing the intellectual behavior of a 
cognitive agent by embedding the behavior in the form of a quasi- 
attractor and maintaining the autonomy of the agent with the chaoticity.

CI was first found in a model of optical turbulence (6). Since its 
discovery, similar phenomena have been numerically obtained in 
various setups (7, 9, 10). The properties of CI vary among previous 
studies, and some classes of CI present interesting features that are 
difficult to characterize using the stochastic processes. Tsuda et al. 
(9), for example, show that their asynchronous neural network model 
produces itinerant behavior whose transition frequency is character-
ized by a long-tailed distribution. The coupled map lattice proposed 
by Kaneko (7) potentially emits infinitely many states, whose tran-
sition rule should be represented by an infinite state machine. Sev-
eral physiological studies have reported that CI-like dynamics have 
even occurred in brain activity, suggesting that CI might play an 
essential role in forming cognitive functions (11, 12). For example, 
Freeman (13) revealed that an irregular transition among learned 
states was observed in the electroencephalogram pattern of a rabbit 
olfactory system when a novel input was given, indicating that the 
cognitive conditions corresponding to “I don’t know” are internally 
realized as CI-like dynamics. Furthermore, a recent observation of 
rat auditory cortex cell activity revealed the existence of a random 
shift among different stereotypical activities corresponding to indi-
vidual external stimuli during anesthesia (14). On the basis of these 
reports, Kurikawa and Kaneko (15) suggested the novel idea of 
“memory-as-bifurcation” to understand the mechanism of the tran-
sitory phenomenon. They reproduced it in an associative memory 
model in which several input-output functions were embedded by 
Hebbian learning. An intermittent switching among metastable 
patterns was also observed in a recurrent neural network (RNN) by 
installing multiple feedback loops trained to output a specific tran-
sient dynamics corresponding to external transient inputs (16). CI-like 
dynamics arise not only in nervous systems but also in interactions 
between agent’s bodies and their surrounding environments (17–19).

For example, Kuniyoshi and Sangawa (17) developed a human 
fetal development model by coupling chaotic central pattern gener-
ators and a musculoskeletal system. They reported that several 
common behaviors, such as crawling and rolling over, emerged from 
the physical constraint. Therefore, CI is a nonlinear phenomenon 
of high-dimensional dynamical systems and is thought to play a 
substantial role in generating structural behavior.

Inspired by the contribution of CI to the cognitive functions and 
spontaneous motion generation of agents, CI has been used for mo-
tion control in the field of neurorobotics and cognitive robotics by 
designing the CI trajectory. For example, Namikawa et al. (20–22) 
designed stochastic motion switching among predetermined motion 
primitives in a humanoid robot by using a hierarchical, deterministic 
RNN controller. In this study, it was confirmed that lower-order 
RNNs with smaller time constants stably produced the trajectories 

of motion primitives, whereas higher-order RNNs with larger time 
constants realized a pseudo-stochastic transition by exploiting self- 
organized chaoticity. Steingrube et al. (23) designed a robot that 
skillfully broke a deadlock state in which the motion had completely 
stopped by using chaos in the RNN controller. Hence, it can be in-
terpreted that CI-like dynamics were embedded in the coupling of 
the body and the surrounding environment.

While CI is an important phenomenon in high-dimensional dy-
namical systems, roboticists also find it a useful tool for designing 
an agent’s behavior structure while maintaining the agent’s autonomy. 
However, it has generally been difficult to embed desired quasi- 
attractors at will because of their nonlinearity and high dimensionality. 
For example, in the method of Namikawa et al. (20–22), the internal 
connections of an RNN ware trained with backpropagation through 
time (24); however, embedding a long-term input-output function 
in an RNN by the gradient descent method is generally unstable and 
requires a large number of learning epochs (25). Furthermore, their 
method required both a hierarchical structure and the same number 
of separated modules as the motion primitives, restricting the scal-
ability and the range of its application. Yamashita and Tani (26) 
proposed a network model learning functional hierarchy without 
any modules, in which hierarchical behavior was implemented by 
the explicit hierarchical structure governed by predetermined mul-
tiple time scales. In addition, methods using the associated memory 
model (10, 27–29) are also unsuitable for our purpose since it is 
difficult to embed the quasi-attractors with complicated spatiotem-
poral patterns.

In this study, we propose an algorithm, freely designing both the 
trajectories of quasi-attractors and transition rules among them in a 
setup of high-dimensional chaotic dynamical systems. We aim to 
design the properties of CI characterized by a finite state machine 
and finite switching time, such as those in the neurorobotics context 
(19, 21). We prepare transition rules described by a Markov model 
and aim to emulate them through CI using a high-dimensional non-
linear dynamical system. Our method uses batch learning composed 
of the following three-step procedure (Fig. 1):

Step 1. Prepare a high-dimensional chaotic system where target 
quasi-attractors are embedded. We used a widely used echo state 
network (ESN) (30), one type of RNN, as a high-dimensional chaotic 
system. This ESN contains no hierarchical structure and modules 
(e.g., multiple time scales), and every network node shares the same 
time scale parameter. At the same time, modify the interactions 
(internal parameters) so that the system reproducibly generates 
intrinsic complex trajectories generated by an initial chaotic system 
(innate trajectories) corresponding to the type of the discrete in-
puts (named symbol). In parallel, train the linear regression model 
(named readout) to output the designated trajectories (output 
dynamics) by exploiting the embedded innate trajectory. This pro-
cess can be potentially applied to the other chaotic dynamical systems 
not limited to RNN in silico (31) since neither modules nor hierar-
chical structures are required. In addition, this embedding process 
is accomplished by modifying fewer parameters using the method 
of reservoir computing (32, 33). Therefore, our scheme is more stable 
and less computationally expensive than conventional methods using 
backpropagation to train the network parameters.

Step 2. Add a feedback classifier to the trained chaotic systems 
for autonomously generating specific symbolic dynamics. In the 
training of the feedback discriminator, the network’s internal param-
eters are fixed, as with the readout in step 1. Thus, by using the 
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embedded innate trajectory, the feedback discriminator achieves 
multiple symbol transition rules with minimum additional compu-
tational capacity (i.e., nonlinearity and memory).

Step 3. Regulate the feedback unit added in step 2 to design des-
ignated stochastic symbol transition rules. The deterministic sys-
tem is expected to imitate the stochastic process by using intrinsic 
chaoticity. The system repeatedly generates the quasi-attractors 
embedded in step 1 in synchronization with the pseudo-stochastic 
symbol transition, meaning that the design of the desired CI 
dynamics is completed.

In this study, we demonstrate that the trajectories of quasi- 
attractors and their transition rules can be designed using the three 
steps described above. In step 1, we show that the desired output 
dynamics can be designed with high operability by using the em-

bedded internal dynamics reproducibly generated after the innate 
training. Next, in step 2, we demonstrate that various types of peri-
odic symbolic sequences switching at a certain interval can be 
implemented simply by adjusting the parameters of a feedback loop 
attached to the system. Last, in step 3, we prepare several stochastic 
symbol transition rules governed by a finite state machine and show 
that the system can simulate these stochastic dynamics by making 
use of the system’s chaoticity. We also discuss the proposed method’s 
validity and adaptability through several numerical experiments.

MATERIALS AND METHODS
System architecture
In our method, we aimed to embed M types of quasi-attractors and 
the transition rules among them in an RNN. We prepared M dis-
crete symbols s ∈ S (S ≔ {s1, s2, ⋯ sM}). Each symbol corresponds to 
each quasi-attractor. We used an ESN as a high-dimensional chaot-
ic system. As shown in Fig. 1A, we prepared an RNN composed of 
a nonchaotic input ESN (Nin nodes) working as an input transient 
generator as well as a chaotic ESN (Nch nodes) yielding chaotic 
dynamics. The dynamics of input ESN xin(t) ∈ ℝNin and chaotic 
ESN xch(t) ∈ ℝNch are given as the following differential equations

     d  x   in  ─ dt  (t ) = −  x   in (t ) + tanh ( g   in   J   in   x   in (t ) +  u   in (s(t ) ) )  (1)

     d  x   ch  ─ dt  (t ) = −  x   ch (t ) + tanh ( g   ch   J   ch   x   ch (t ) +  J   ic   x   in (t ) )  (2)

where  ∈ ℝ is a time constant, tanh is an element-wise hyperbolic 
tangent, gin and gch ∈ ℝ are scaling parameters, uin(s) ∈ ℝNin is discrete 
input projected onto input ESN when symbol s is given, Jin ∈ ℝNin × Nin 
and Jch ∈ ℝNch × Nch are connection matrices, and Jic ∈ ℝNch × Nin is 
a feed-forward connection matrix between input ESN and chaotic 
ESN. Each element of Jin is sampled from a normal distribution   
N (  0,   1 _ 

 N   in 
  )    . Jch is a random sparse matrix with density p = 0.1 whose 

elements are also sampled from a normal distribution   N (  0,   1 _ p  N   
ch

 
  )    . 

We used  = 10.0, gin = 0.9, and gch = 1.5 to make input ESN nonchaotic 
and chaotic ESN chaotic (34). In addition, to prevent chaotic ESN 
from becoming nonchaotic because of the bifurcation caused by the 
strong bias term, we tuned Jic before hand to project transient 
dynamics converging to 0 onto the chaotic ESN when the same 
symbolic input continues to be given (see the Supplementary Materials 
for detailed information about the transient dynamics). In any case, 
the whole RNN dynamics x(t) ∈ ℝNin + Nch concatenating Eqs. 1 and 
2 can be represented by the following single equation (⊙ represents 
an elementwise product)

     dx ─ dt  (t ) = − x(t ) + tanh (g ⊙ (Jx(t ) ) + u(s(t ) ) )  (3)

where x, g, J, and u are defined by the following equations

  x(t ) ≔ [ x   in (t ) ;  x   ch (t)]  (4)

  g ≔  [   g   in , ⋯  g   in     
 N   in 

       g   ch , ⋯  g   ch     
 N   ch 

   ]   
T
   (5)

   J ≔  [    J   
in   0  

 J   ic 
  

 J   ch 
  ]     (6)
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Fig. 1. Experimental setups. (A) Schematic diagram of a high-dimensional chaot-
ic system prepared in our experiments. The system can be divided into two parts: 
input echo state network (ESN) and chaotic ESN. Input ESN acts as an interface 
between the discrete input and the chaotic ESN, generating transient dynamics 
projecting onto the chaotic ESN when the symbolic input switches. To prevent the 
chaotic ESN from becoming nonchaotic because of the bifurcation, the connection 
between the input ESN and the chaotic ESN is trained to output transient dynamics 
converging to 0 (see the Supplementary Materials for the detailed information 
about the transient dynamics). (B) Two experimental schemes. In the open-loop 
scheme, the symbolic input is externally given. On the other hand, in the closed-
loop one, the symbolic input is autonomously generated by the additional feed-
back loop. In our method, we change the elements represented by red arrows to 
embed desired CI dynamics. (C) Outline diagrams of our batch learning methods 
composed of a three-step procedure. In step 1, the parameters of the network and 
readout are trained to output the quasi-attractors and the output dynamics corre-
sponding to the symbols. In steps 2 and 3, the symbolic sequence is autonomously 
yielded. We prepare periodic symbol transition patterns as the target in step 2 and 
stochastic symbol transition rules in step 3.

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Inoue et al., Sci. Adv. 2020; 6 : eabb3989     11 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 12

  u(s ) ≔ [ u   in (s ) ; 0]  (7)

The output dynamics are calculated by the linear transformation of 
the internal dynamics x(t), that is, the linear readout wout ∈ ℝNin + Nch 
is trained to approximate the following target dynamics fout(t)

   w out  
T   x(t ) ≈  f  out  (t)  (8)

The symbolic dynamics s(t) itself, which is externally given in 
step 1, is lastly generated autonomously with a closed-loop system 
[Fig. 1B(2)]. In the feedback loop, the following classifier fmax : ℝNin + Nch 
→ S is attached

   f  max  (x(t ) ) ≔  arg max  
s∈S

     w s  
T  x(t)  (9)

where ws ∈ ℝ(Nin + Nch) × M represents the connection matrix whose 
elements are trained to autonomously emulate the designated sym-
bolic dynamics s(t) [i.e., s(t + t) ≈ fmax(x(t)), where s(t + t) is the 
symbolic input for the next time step and t is a time width for 
discrete temporal evolution]. To summarize, we designed the de-
sired quasi-attractors, output dynamics, and symbolic dynamics by 
tuning the parameters of the RNN connections J, the readout wout, 
and the classifier ws, respectively.

First order–reduced and controlled-error learning 
and innate training
We used two reservoir computing techniques called first order–reduced 
and controlled- error (FORCE) learning (35) and innate training (36). 
Both FORCE learning and innate training are methods that harness 
the chaoticity of the system. Below, we briefly describe the algo-
rithms of both FORCE learning and innate training.

FORCE learning is a method that embeds designated dynamics 
in a system by harnessing the chaoticity of dynamical systems. Sup-
pose the following ESN dynamics with a single feedback loop

     dx ─ dt  (t ) = − x(t ) + tanh (gJx(t ) + uz(t ) )  (10)

  z(t ) =  w   T  x(t)  (11)

where u represents the linear feedback vector. Typically, the scaling 
parameter g is set to be greater than 1 to make the whole system 
chaotic (34). In FORCE learning, to embed the target dynamics f(t) 
in the system, w is trained to optimize the following cost function 
CFORCE

   C  FORCE   ≔  〈 ∥ z(t ) − f(t ) ∥ 〉   2   (12)

Here, the bracket denotes the averaged value over several sam-
ples and trials. In particular, in the FORCE learning, w is optimized 
online with a least-square error algorithm. It was reported from nu-
merical experiments using ESN that better training performance 
was obtained when the initial RNN was in a chaotic regime (35).

Innate training is also a scheme for harnessing chaotic dynamics 
and is accomplished by modifying the internal connection J using 
FORCE learning. The novel aspect of innate training is that the in-
ner connection of ESN is trained in a semisupervised manner, that 
is, the connection matrix J of the ESN is modified to minimize the 
following cost function Cinnate to reproduce the chaotic dynamics 
yielded by the initial chaotic RNN (xtarget(t), innate trajectory)

   C  innate   ≔  〈 ∥ x(t ) −  x  target  (t ) ∥ 〉   2   (13)

Intriguingly, the innate trajectory is reproducibly generated for a 
certain period with the input while maintaining the chaoticity after 
the training. In other words, innate training is a method that allows 
a chaotic system to reproducibly yield the innate trajectory with 
complicated spatiotemporal patterns. In addition, innate training 
applies the FORCE learning method to the modifications of the in-
ternal connection, that is, the presynaptic connection of a node in 
the network is considered as the linear weight from the other nodes 
and trained by FORCE learning. In this study, we propose a method 
of designing CI by using both FORCE learning and innate train-
ing techniques.

Recipe for designing CI
Our proposed method is a batch-learning scheme consisting of the 
following three-step process (Fig. 1C).
Step 1. Designing quasi-attractor
In step 1, the connection matrix Jch of the chaotic ESN is adjusted by 
innate training to design the trajectories of quasi-attractors. First, 
the target trajectories   x target  s  (t)  are recorded for M symbols under an 
initial connection matrix Jinit and some initial states   x target  s  (0) , where 
  x target  s  (t)  denotes chaotic dynamics when the symbol is switched to s 
at t = 0 ms (for simplification, the switching time is fixed to t = 0 ms 
in step 1; note that the symbol can be switched at any time). In step 
1, Jch is trained to optimize the following cost function C1−in

   C  1−in   ≔     
s∈S

      
t=0

  
 L  innate  

  ∥  x   s (t ) −  x target  s  (t )  ∥   2   (14)

Here, xs(t) represents the dynamics when the symbol is switched 
to s at t = 0 ms, and Linnate represents the time period of the target 
trajectory. We randomly choose half the network nodes (Nch/2 
nodes) and modify their presynaptic connections to reduce the re-
dundancy of the training parameter. The selected elements in con-
nection matrix Jch are trained for 200 epochs for each s. We lastly 
use Jch recording the minimum C1 − in (see the Supplementary Ma-
terials for the detailed algorithm used in step 1). After the innate 
training in step 1, the system is expected to reproduce the recorded 
innate trajectories   x target  s    for Linnate.

Although there are no specific criteria for determining the initial 
states of the multiple innate trajectories, the large distances among 
  x target  s  (0)  are preferred since the temporal pattern of quasi-attractors 
is likely to differ, enhancing the separability. Moreover, the import-
ant trick of the innate training lies in its semisupervised scheme, 
that is, the training stability increases by guiding the offset states 
during training to the neighborhood of   x target  s  (0) . Although a scheme 
for training the internal connections of the RNN has already been 
proposed in FORCE learning (35), the tuning of all connections to 
generate the same function is mostly unstable (37). Therefore, we 
randomly selected the offset state of the innate trajectory   x target  s  (0)  
on the phase space.

Similarly, wout is trained to produce designated output dynamics 
f s(t) corresponding to symbol s. The following cost function C1−out 
is optimized

   C  1−out   ≔     
s∈S

      
0
  

 L  out  
  ∥  f   s (t ) −  w out  

T    x   s (t )  ∥   2   (15)

High-dimensional nonlinear dynamical systems generally have 
high separability for input information, that is, it becomes easier for 
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a linear model to solve nonlinear input-output function tasks by 
projecting input information into the system (38). In particular, the 
innate trajectories of chaotic systems are known to have such high 
expressive capability that various orbits can be designed simply by 
adjustment of the attached linear model (36). In this study, the 
tuned readout is also expected to stably reproduce the prepared tra-
jectory by exploiting the high dimensionality and nonlinearity of 
the innate trajectories. Here, note that Linnate does not always match 
Lout, that is, Lout can be greater than Linnate. The training is accom-
plished by an offline algorithm Ridge regression based on the re-
corded internal dynamics xs(t).
Step 2. Embedding autonomous transitions of symbol
In step 2, we tune a feedback loop fmax to achieve the autonomous 
symbol transition. We especially prepare target periodic transition 
rules switching every T (ms). Suppose a target periodic symbolic 
time series sper(t). First, the network dynamics x(t) of the open-loop 
setup [Fig. 1B(1)] is recorded with a symbolic dynamics sper(t) for 
Trec ≔ 500,000 ms. On the basis of the recorded dataset, fmax is tuned 
to output the next symbolic input sper(t + t) from x(t). The param-
eters ws of fmax is trained to optimize the following cost function C2

   C  2   ≔ −     
s∈S

      
0
  

 T  rec  
 1 {  s  per  (t + t ) = s}log    e    w s  

T x(t)  ─ 
   k∈S    e    w k  T x(t) 

    (16)

As the optimization algorithm, we use the limited-memory 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (39).

This optimization task is considered to be a type of timer task, a 
commonly used benchmark task to evaluate the temporal computa-
tional capacity, where the readout is trained to output a pulse-like 
wave with a certain delay after input is given. By projecting the in-
put signal into a high-dimensional nonlinear dynamical system, the 
timer task can be achieved simply by adjusting the linear readout. In 
addition, the complex trajectory embedded by the innate training 
significantly increases the performance of the timer task compared 
with a nonchaotic random ESN (36). In our model, the tuned clas-
sifier fmax is expected to emulate the delayed symbolic switching by 
exploiting the embedded innate trajectory.
Step 3. Embedding stochastic transitions of symbol
In step 3, we implement a stochastic transition rule governed by a 
finite state machine by modifying a feedback loop fmax. As discussed 
in Introduction, the chaoticity of the system is expected to be used to 
emulate the stochastic process in the deterministic setup. We prepared 
the target stochastic time series ssto(t) generated from a Markov 
model with certain switching periods. The process of the learning is 
same as that in step 2, that is, the pair of (x(t), ssto(t)) recorded in the 
open-loop setup for 500,000 ms is used to train the fmax to emulate 
ssto(t). Here, we use the following cost function C3 in the training

   C  3   ≔ −     
s∈S

      
0
  

 T  rec  
 1 {  s  sto  (t + t ) = s}log    e    w s  

T x(t)  ─ 
   k∈S    e    w k  T x(t) 

    (17)

As with the optimization of the cost function C2, C3 is optimized 
with the limited-memory BFGS algorithm.

Note that the formulation of C3 is the same as that of C2, that is, 
the properties of target dynamics to be embedded are not expressed 
in the cost function formulation. Rather, both optimization pro-
cesses in steps 2 and 3 are data-driven, meaning that the properties 
of prepared target symbolic sequences determine whether the em-
bedded dynamics are required to be chaotic or nonchaotic.

RESULTS
In this section, we show the demonstration and analytic results of 
the numerical experiments for each step.

Step 1. Designing quasi-attractor
As discussed in the previous section, the internal connection of the 
chaotic ESN Jch is trained to reproducibly output the corresponding 
innate trajectories to the symbolic switching. Figure 2A demon-
strates the change of the network dynamics of a 1500-node RNN 
(Nin = 500, Nch = 1000) whose connection matrix is modified with 
innate training under the condition (M, Linnate) = (1,1000). The tra-
jectory quickly spreads before t = Linnate in the pretrained system, 
whereas the target trajectory   x s  

target   (dotted line) is reproducibly 
yielded for 1000 ms (covered by the yellow rectangle) in the post-
trained system. Moreover, intriguingly, the dispersion of the trajec-
tories continues to be suppressed even after t = Linnate.

Next, Fig. 2B displays both the network dynamics and the output 
dynamics. The 1500-node RNN (Nin = 500, Nch = 1000) trained 
under the condition (M, Linnate) = (3,1000) was used. At first, the 
symbolic input was absent, and then symbols were switched with 
random intervals from the middle. In addition, the two-dimensional 
readout was trained to output the Lissajous curve for symbol A, the 
“at” sign for symbol B, and the xz coordinates of the Lorenz attractor 
for symbol C for Lout = 1500 ms (the target trajectory for the “at” sign 
was made from a centerline of font data). It was observed that the 
desired spatiotemporal patterns were stably and reproducibly gen-
erated for a certain period in every trajectory with different initial 
states after the symbol transition (see movie S1). Note that the same 
linear model wout was used in the demonstration, implying that the 
trajectory of each quasi-attractor has rich enough information to 
independently output the designated time-series patterns even with 
the single linear regressor. Our scheme for designing transient dy-
namics would be highly useful in the field of robotics because the 
process in step 1 is easily achieved by adjusting the partial elements 
of a high-dimensional chaotic system. For example, the system 
working in a real-world environment should immediately and 
adaptively switch its motion according to the change of environ-
mental input like a system developed by Ijspeert et al. (40), which 
can be easily accomplished by our computationally cheap method. 
In this way, our method would work effectively in the context of 
robotics, where fast responsiveness and adaptability are required.

We also examined both the scalability and the validity of innate 
training in detail through several numerical experiments (Fig. 3). 
First, we examined the relationship between the number of input 
symbols M and the accuracy of innate training. To evaluate the per-
formance of innate training, we used the normalized mean square error 
(NMSE) between the output and the innate trajectory   x target  s    repre-
sented by the following formula

   NMSE ≔   1   M      s∈S   ⟨     
    0   L  innate   ∥ x   s (t ) −  x target  s  (t ) ∥   2 

   ───────────────  
  0   L  innate    ∥  x target  s  (t )  ∥   2 

      ⟩     (18)

where the bracket represents the average over 10 trials for each sym-
bol. We calculated the NMSE for 10 trials. Figure 3A shows the in-
nate training performances with the different training conditions, 
suggesting that NMSEs are more likely to increase with a longer 
target trajectory and a larger number of symbols. This result implies that 
innate training has its limitation in the design of the quasi-attractors. 
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We also examined the effect of network size on the capability to 
embed the quasi-attractors. We investigated the relationship be-
tween the number of nodes in the chaotic ESN Nc and the accuracy 
of innate training under the condition M = 1 (Fig. 2B), suggesting 
that the NMSEs were less likely to increase with a larger network. 
To summarize, our analysis indicates that longer trajectories can be 
embedded in a larger network by innate training.

Next, we evaluated the effect of innate training on the capacity of 
the system’s information processing. We prepared a timer task and 
measured how long the inputted information was stored in the 
RNN. In the timer task, the pulse-like wave with a peak tpeak (ms) 
after the symbol transition was prepared as the target, and the per-
formance was defined as the accuracy of the pulse-like wave recon-
struction by a trained readout. Here, we defined the coefficient of 
determination value R2 between the output and the pulse-like wave 
as the timer task function R2(tpeak). At the same time, we also calculated 

the integral value of the timer task function   ∫0  
∞

     R   2 (t ) dt  and define it 
as the timer task capacity (see the Supplementary Materials for de-
tailed information about the setup of the timer task). Figure 4C 
shows the timer task function with different innate training condi-
tions, indicating that RNNs trained with the longer-length target 
trajectory Linnate perform better. It was also observed that the timer 
task capacity saturated around Linnate = 5000 ms in the 1000-node 
RNN, and the border of the saturation decreased in a smaller system 
(Fig. 3D). These results imply that the temporal information capacity 
of the system is improved by innate training with the longer target 
length Linnate but saturates at a certain value, which is determined by 
the system size.

Furthermore, we assessed the effect of innate training on the 
system’s chaoticity by measuring the Lyapunov exponents of the sys-
tem. Since the transition among quasi-attractors is driven by the 
system’s chaoticity, it is necessary to keep the system chaotic. In this 
experiment, we measured the local Lyapunov exponent (LLE) to 
evaluate the degree of trajectory variation after the symbolic switching. 
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Fig. 2. Demonstration of step 1. (A) The dynamics of the reservoir before and 
after the innate training. In the figure, we show the RNN dynamics trained under 
the condition (M, Linnate) = (1,1000). The time-series data of a selected node in the 
input ESN are shown in the top column. Conversely, the four selected dynamics of 
the chaotic ESN are displayed in the bottom four columns. In each column, both 
the innate trajectory (black dotted) and 10 individual trajectories with different ini-
tial conditions (red) are exhibited. (B) Demonstration of open-loop dynamics. The 
network dynamics of the RNN trained under the condition (M, Lin, Lout) = (3,1000,1500) 
is used in this demonstration. Both the network dynamics and output dynamics of 
the trained readout are depicted. The readout is trained to output the Lissajous 
curve for symbol A, the “at” sign for symbol B, and the xz coordinates of the Lorenz 
attractor for symbol C. Note that the intervals of the symbolic input were ran-
domly decided.
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Fig. 3. Scalability and the validity of innate training used in step 1. (A) Perform-
ance of innate training over M symbols. The normalized mean square errors are 
calculated from the 10 trials. (B) Effect of network size Nch on the performance of 
innate training. (C) Evaluation of the temporal information capacity with timer task. 
The averaged values for 10 trials are plotted. (D) Effect of the system size on timer 
task capacities. Timer task capacity is defined as the integral value of the timer task 
function. (E) Evaluation of the LLE. The LLE is measured with the time development 
of the perturbation of the chaotic ESN (see the Supplementary Materials for de-
tailed information about the calculation method of the LLE). (F) Evaluation of the 
system’s MLE.
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We also measured the maximum Lyapunov exponent (MLE) with-
out any inputs (u(t) = 0) to estimate the global chaoticity of the 
system (see the Supplementary Materials for the detailed calcula-
tion algorithm of both the LLE and MLE). Figure 3E displays the 
LLE values of the systems with the different target trajectory length 
Linnate, suggesting that the trajectories unevenly expand after the 
symbol transition. In particular, it was observed from the LLE anal-
ysis that contracting regions existed (regions with negative LLEs 
corresponding to the lengths of the quasi-attractors) caused by the 
transient dynamics projected by the input ESN, and the degree of 
the expansion became gradual in the trained period t ∈ [0, Linnate). 
These results imply that innate training yields a locally contractive 
phase space structure, that is, a quasi-attractor. Moreover, positive 
MLE values were constantly obtained from the MLE analysis de-
picted in Fig. 3F, supporting the conjecture that the system chaoticity 
was maintained especially well with the larger RNNs even after the 
innate training. (Note that a sharp increase in MLE was observed 
with shorter Linnate, which is caused by the increase in the spectral 
radius of the connection matrix J of the system. See the Supplementary 
Materials for detailed information of the analysis.)

Step 2. Periodic symbol transition
In step 2, the system autonomously generates a symbolic sequence 
externally given in step 1. The additional feedback loop realizes the 
autonomous periodic switching of the symbols. We demonstrate 
that various types of periodic symbolic sequences switching at a fixed 
interval can be easily designed simply by tuning the parameter of the 
feedback loop fmax. Figure 4A demonstrates the embedding of the 
periodic symbolic sequence A-B-C (2000-ms interval and 6000-ms 
period) with a trained RNN ((M, Linnate) = (3,1000)). Figure 4B also 
exhibits the embedding of the periodic symbolic sequence A-B-C-
D-E-F-G-H-I-J (500-ms interval and 5000-ms period), with the 
same RNN used as the demonstration in Fig. 4A (note that fmax was 
changed from one in Fig. 4A). In both demonstrations, the system 
succeeded not only in generating the desired symbol transition 
rules but also in stably outputting the designated output dynamics 
with high accuracy.

We also show that the system can solve tasks requiring higher- 
order memory in the same scheme. We prepared the two periodic 
symbolic sequences A-B-C-B and A-B-C-B-A and separately trained 
fmax. These two symbolic sequences are more difficult to embed be-
cause the system must change the output according to the previous 
output. In the symbol transition A-B-C-B, for example, the system 
must output the next symbol depending on the previous symbol 
when switching from B, though the total number of symbols is the 
same as in the task A-B-C. We used the same RNN and setup used 
in the Fig. 4A and only changed the parameters in fmax to realize the 
symbol transitions. Figure 4C displays the network dynamics and 
symbol transition of the two tasks, showing that the system success-
fully achieves both the periodic sequence A-B-C-B with an 8000-ms 
period and A-B-A-B-C with a 10,000-ms period. These results sug-
gest that the trained RNN had the higher-order memory capacity, 
that is, the generated trajectories have sufficient separability to dis-
tinguish the contextual situation depending on the previous symbol 
sequence (see movie S2). In robotics, periodic motion control has 
often been implemented by an additional oscillator (e.g., a central 
pattern generator) to yield limit cycles (23, 40–42). Our method in 
step 2 would be useful in designing limit cycles with longer periods 
and more complicated patterns. The analysis in fig. S2 shows that 

our method outperforms FORCE learning in the embedding of a 
long-term periodic attractor including multiple transitions in order 
(see the Supplementary Materials and fig. S2).

We also analyzed the effect of perturbation to investigate the sta-
bility of the embedded symbol transition. Figure 4D shows the out-
put dynamics of both the original and perturbed trajectories, clarifying 
that the trajectory returned to the original one after the addition 
of the perturbation. We also calculated the MLE values of the sys-
tem and obtained the value −1.89 × 10−4, which was very close to 
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Fig. 4. Demonstrations of closed-loop dynamics in step 2. (A) Three-symbol pe-
riodic transition. We prepared an RNN trained under the condition (M, Linnate) = 
(3,1000) and a readout trained under the condition Lout = 1500 ms to output three 
Lissajous curves corresponding to the symbolic input. The feedback loop fmax real-
izes the periodic symbol transition A-B-C switching at 2000-ms intervals. 
(B) Ten-symbol periodic transition. We prepared an RNN trained under the condi-
tion (M, Linnate) = (10,500) and a readout trained under the condition Lout = 500 ms 
to output 10 different Lissajous curves corresponding to the symbolic input. The 
feedback loop fmax achieves the periodic symbol transition A-B-C-D-E-F-G-H-I-J 
switching at 500-ms intervals. (C) Demonstration of the tasks requiring higher- 
order memory to be solved. The same RNN was used in the demonstration of (A). 
The left panel displays the periodic symbol transition pattern A-B-C-B switching 
at 2000-ms intervals. The right one demonstrates the periodic symbol transition 
pattern A-B-A-B-C switching at 2000-ms intervals. These tasks were accomplished 
in the same way in the demonstrations of (A) and (B), that is, only the parameters in 
fmax were tuned. (D) Two output dynamics: original trajectory and perturbed trajec-
tory. A small perturbation was given to the original trajectory at t = 0 ms.
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zero. These analyses indicate that the trained feedback loop fmax 
made the system nonchaotic, that is, the generated internal dynam-
ics was a limit cycle.

Step 3. Stochastic symbol transition (CI)
In step 1, we constructed the trajectories of the quasi-attractors and 
the corresponding output dynamics. In step 2, we showed that peri-
odic transitions among quasi-attractors can be freely designed by 
simply tuning the feedback loop fmax. In step 3, we realize a stochastic 
transition, that is, CI. As discussed above, the system is expected to 
use its chaoticity to emulate a stochastic transition in deterministic 
dynamical systems.

First, we demonstrate that stochastic transition can be freely 
designed by adjusting fmax (see Fig.  5A and movie S3). In this 
demonstration, we used the same RNN as in Fig. 4A. We prepared 
a symbol transition rule uniformly switching among symbols A, B, 
and C at 3000-ms intervals. Figure 5B shows the symbolic dynam-
ics, network dynamics, and output dynamics, suggesting that the 
symbol transitions started to spread at around t = 10,000 ms and 
lastly settle down to completely different transition patterns. Never-
theless, the system continued to stably generate Lissajous curves. These 
demonstrations imply that the system constantly reproduced quasi- 
attractors embedded by innate training, while the quasi-stochastic 
transition was achieved by the global chaoticity. [Note that, although 
we demonstrated our approach by embedding typical stochastic 
processes (i.e., Markov processes) to illustrate the usability of our 
scheme, our method can also design a history-dependent stochastic 
rule that cannot be represented by a Markov model. See our demon-
stration represented in the Supplementary Materials and fig. S3.]

To analyze the flexibility of our method, we measured the sto-
chastic transition matrix and the average symbolic intervals (Fig. 5B). 
We prepared two stochastic symbol transition rules as the targets: 
the transition rule governed by the uniform finite state machine 
(pattern 1) and the transition rule governed by the finite state ma-
chine with a limited transition (pattern 2). Note that we used the 
same trained RNN as in the demonstration in step 2 and embedded 
the transition rules simply by adjusting fmax. Figure 5B shows the 
results of the obtained trajectories, implying that the system suc-
cessfully embedded patterns similar to the target rules, although 
there were some errors and variations in the transition probability 
and the switching time. The positive MLEs were obtained in both 
cases (+2.01 × 10−3 in pattern 1 and +1.71 × 10−3 in pattern 2), sug-
gesting that the system was weakly chaotic as a whole. In addition, 
we analyzed the history dependence of the transition in detail, 
showing that transition probabilities did not differ so much accord-
ing to the past symbol in both cases though the preferred routes 
were observed in output dynamics (see the Supplementary Materials 
and fig. S4). In this sense, it can be said that the system successfully 
expressed the random transitions in a macroscopic scale (i.e., a scale 
in symbol transitions) using the chaoticity.

Last, we analyzed both the structures of the obtained chaotic 
attractors and the symbolic dynamics in detail. Figure 6A shows the 
effect of small perturbations on the symbolic dynamics, implying 
that the patterns of symbolic dynamics varied after a certain period. 
To analyze the structural change of the terminal symbolic state, we 
measured the symbolic dynamics accompanied by the temporal de-
velopment of the set of initial states on a plane constructed by the 
two selected dimensions (Fig. 6B), clarifying that a complex termi-
nal symbolic structure emerges after a certain period (Fig. 6B). In 

particular, in the embedding of the pattern 1 rule, the entropy of the 
terminal symbolic pattern converges to a value close to the maxi-
mum entropy   log  2    3   9  ≈ 14.26  (note that the entropy was measured 
on the basis of the probability distribution constructed by the fre-
quency of 3 × 3 grid patterns). These results indicate that the symbol 
transition markedly changed even with a small perturbation and 
was unpredictable after a certain period, that is, the prediction of 
symbolic dynamics required the complete observation of the initial 
state value and calculation of the temporal development with in-
finite precision.

DISCUSSION
In this study, we proposed a method of designing CI based on reservoir 
computing techniques. We also showed that the various types of output 
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Fig. 5. Demonstration of step 3. (A) Network dynamics with fmax trained to imi-
tate a stochastic transition rule. We used an RNN trained under the condition (M, 
Linnate) = (3,1000), and readout trained to output Lissajous curves under the condi-
tion Lout = 1500 ms. The feedback classifier fmax was trained to uniformly switch the 
symbol among the three symbols A, B, and C at 3000-ms intervals. Ten different 
trajectories with small perturbations are overwritten in the figure. (B) Evaluation of 
the embedding performance of a stochastic symbol transition. Two different sto-
chastic symbol transition rules (patterns 1 and 2) were prepared as the target. The 
same RNN was used as in the demonstration of (A). The middle figures show the 
obtained probability density matrix, and the right ones show the average switching 
duration (the error bar represents SD).

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Inoue et al., Sci. Adv. 2020; 6 : eabb3989     11 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 12

dynamics and symbol transition rules could be designed with high 
operability simply by adjusting the partial parameters of a chaotic 
system with our three-step recipe. In this section, we first discuss 
the scalability of our method and the mechanism of how CIs are 
successfully embedded by reviewing several numerical analyses that 
verify the validity of our methods. Next, we discuss the effectiveness 
and significance of our method from multiple viewpoints.

Scalability and validity
First, the results of the innate training performances displayed in 
Fig. 3 (A and B) indicate that the number of RNN nodes constrains 
the total length of the quasi-attractors that can be embedded in the 
system by the innate training. However, the LLE analyses in Fig. 3E 
show that the system has the expanded region of the negative LLE 
even when the NMSE between the innate trajectory and the embed-
ded trajectory becomes large (e.g., Linnate = 5000 ms). These results 
imply that, even when the innate trajectories are not successfully 
embedded in the system, the system stably yields high-dimensional 
trajectories with complicated spatiotemporal patterns for each sym-
bol transition over Linnate, which is caused by the weakening of the 
system chaoticity. The same RNN trained under the condition (M, 
Linnate) = (3,1000) was repeatedly used in our series of demonstra-
tions, the desired output dynamics (e.g., the Lissajous curves) being 
constantly generated for Lout = 1500-ms periods after the symbolic 
shift (Figs. 2, 4, and 5). We also demonstrated that the system can 
autonomously generate a symbol transition rule with an interval 
greater than Linnate (Figs. 4 and 5), suggesting that the system ex-
ploited high-dimensional reproducible trajectories longer than Linnate.

Moreover, it is assumed that the length of the quasi-attractors 
constrains the target stochastic transition rules that can be embed-
ded. The system failed to imitate the stochastic transition, and the 
transition became periodic when the target transition had a shorter 

switching interval, whereas the training of fmax became unstable 
when it had a longer switching interval. These results suggest that 
the following two mechanisms should be required in the design of 
CI in our method: (i) The differences among the trajectories are 
sufficiently enlarged through the temporal development to realize 
the stochastic symbol transition and (ii) a similar spatiotemporal 
pattern should be reproducibly yielded until the switching moment 
to precisely discriminate the switching timing. These two mecha-
nisms are contradictory, of course, and the desired CI can likely be 
embedded when both conditions are moderately satisfied.

Next, we discuss the validity of CI designed with our method 
through comparison with previous CI studies. We demonstrated 
that the embedded transition yields transition probability similar to 
the desired one by using the chaoticity of the network. Several CI 
works, however, pointed out that transition of CI is history depen-
dent, and therefore, CI shows some preference in the transition de-
termined by the history. Kaneko and Tsuda (43), for example, pointed 
out that the transition of CI has a specific order that is distinguished 
from a simple random hopping. Itoh and Kimoto (44) also reported 
that the transition presents a preferred route governed by the global 
phase space dynamics. Our experiment indicated that embedded CI 
also shows preferred trajectories in output dynamics according to 
the previous symbol before the switching (see the Supplementary 
Materials and fig. S4A). Therefore, the symbolic dynamics imple-
mented with our methods should be history dependent.

Moreover, it should be noted that our proposed method can suc-
cessfully emulate the randomness of the symbol transition despite 
the existence of the preferred trajectory. Our analysis revealed that 
the transition probabilities did not differ so much according to the 
difference in the previous symbol in both demonstrations (i.e., 
stochastic rules 1 and 2), implying that prediction of the next tran-
sition is still not easy if done only by referring to the macroscopic 
symbolic history (see the Supplementary Materials and fig. S4B). In 
this way, macroscopic symbol transitions still appear to be random, 
despite the trajectory preference. Thus, it can be said that our pro-
posed method emulates the transition probability and its random-
ness on a high-dimensional nonlinear dynamical system by using 
the chaoticity of the system.

We show that our method can realize CI characterized by the 
random transition of a finite number of quasi-attractors as shown 
in (19, 21). Some classes of CI, however, are difficult to design even 
with our method. There exists a CI whose transition frequency has 
a long-tailed distribution (9). In addition, CI can have infinitely 
many quasi-attractors whose dynamics should be described with an 
infinite state machine (7). These CI properties are hard to design 
with our method since an infinite number of auxiliary symbols and 
an infinite length of corresponding trajectories should be prepared, 
which should be solved in the future.

Last, we discuss the speed of recovery from the transient state, 
that is, the stability of the embedded quasi-attractor. Ahmadi and 
Tani (45), for example, demonstrated variational RNN called 
predictive coding-inspired variational RNN (PV-RNN) to imitate 
learning of stochastic transition between presented primitives, in 
which the stability of the attractor is determined by the coefficient 
of the complexity of variational evidence lower bound in Bayesian 
inference expressed in the cost function. Therefore, in their approach, 
the formulation of the cost function can explain the mechanism of 
how the recovery speed is determined. On this point, the stability of 
the quasi-attractor in our approach is considered to be determined 
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Fig. 6. Analysis of symbolic dynamics and the final state. (A) Effect of a small 
perturbation on the terminal symbolic dynamics. We evaluated the two closed-
loop setups prepared in Fig. 5B. The figures display the symbolic dynamics gener-
ated by 50 trajectories with 50 different initial values. (B) Analysis of symbolic 
dynamics generated by the temporal development of the initial states on a small 
plane and its entropy of the symbolic pattern. Two dimensions (x1 and x2) on the 
phase space were selected from the chaotic ESN to construct the plane. We ob-
served the symbolic dynamics generated by the temporal development of the 
states on the plane. To evaluate the randomness of the obtained pattern, we calcu-
lated the entropy of the obtained symbolic pattern based on the probability distri-
bution constructed from the 3 × 3 grid patterns. Note that the horizontal dashed  
line shows the maximum entropy (  log  2    3   9  ≈ 14.26 ).
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by the spectral radius, a parameter of ESN, and the connection 
strength between the input ESN and the chaotic ESN. As dis-
cussed above, a transition from nonchaotic to chaotic regime 
occurs when the spectral radius of ESN exceeds 1.0. In addition, 
the chaoticity of the system is strengthened by the increased spectral 
radius. Hence, it is speculated that the recovery speed becomes low-
er as the spectral radius becomes larger since the quasi-attractor 
becomes more unstable. Besides, the network state is more likely to 
synchronize when the signals sent to the chaotic ESN are larger. 
Thus, the recovery speed would be also controlled by the connec-
tion strength governing the amplitude between the input ESN 
and the chaotic ESN. To summarize, the ESN spectral radius and 
the connection strength are considered to determine the recovery 
speed in our architecture.

Effectiveness and significance
First, the high operability of our proposed model would be helpful 
to understand the underlying mechanism of brain’s information 
processing from a certain perspective. Previous studies have pointed 
out that an enormous number of nonlinear units and their interac-
tion essentially constitute an animal’s nervous system and yields 
highly complicated activities characterized by nonlinear phenome-
na such as chaos and CI. It has been reported that chaotic behavior 
appears in a wide range of brain activities from the cell level (e.g., 
action potential) to the global measurement level (e.g., electroen-
cephalogram) (46). In addition, it has been pointed out that the col-
lective neural activities not only encode the external information 
but also transform it according to the history of activities (47, 48), 
suggesting that the animal brain realizes its information processing 
through the high-dimensional activities. We found that high- 
dimensional chaos has enough rich expressive capability to design 
CI, implying that the high-dimensional chaotic brain activities po-
tentially have the capability to realize various functional hierarchies. 
In this sense, our model would provide a clue to understand the 
mechanism of how high-dimensional chaos that contributes to the 
information processing in animal brains.

The designing method for the CI exhibited in this study offers 
fundamentally different benefits compared with the previous meth-
ods, which simply exploit chaotic dynamics. The dynamics of CI 
presents an interesting property and suggest that local coherence 
and global chaoticity coexist. This property of CI would effectively 
work especially in designing cognitive models where both autonomy 
and spontaneity are required. For example, a designer can imple-
ment the motion primitives through the quasi-attractor while main-
taining the autonomy of the robot through the global unpredictability. 
Furthermore, our algorithm can design the probability distribution, 
that is, the global tendency of behavior, as shown in Fig. 5. This 
coexistence is, however, difficult to express when using only the 
conventional chaotic attractors. In addition, several studies pointed 
out that animals’ cognitive functions, such as memory recall and 
association, would be realized through the transition phenomenon 
among stereotypical activities (13,  14), suggesting that CI might 
play an important role in animal cognition. In this sense, our method 
would be used for implementing cognitive models in a high- 
dimensional dynamical system.

Although several studies have used chaotic dynamical systems to 
embed desired trajectories (35, 36), these conventional methods are 
incapable of combining multiple predetermined transient dynamics 
like our method. It might also be possible to merge multiple tran-

sients into one big attractor and embed it simultaneously by a learning 
scheme such as FORCE learning. However, the additional experi-
ment shows that FORCE learning is more unstable than our methods 
when it comes to embedding long-term periodic trajectories con-
sisting of multiple transients (see the Supplementary Materials and 
fig. S2). In this sense, high operability in our method is unavailable 
in the conventional methods.

Unlike previous methods that construct desired trajectories by 
tuning the entire dynamics by backpropagation algorithm, our 
method is accomplished by adjusting the reduced number of pa-
rameters and using the intrinsic high-dimensional chaos, which 
alleviates the biological implausibility and computational complex-
ity of backpropagation algorithms. For example, recent physiological 
studies on the motor cortex (49, 50) suggest that a large variety of 
behaviors can be instantaneously generated by the partial plasticity 
of the nervous system, supporting the biological plausibility of our 
learning scheme. In addition, our learning scheme is computation-
ally cheaper than backpropagation since adjustments of entire neu-
ral circuits are not necessary. These properties would be especially 
helpful in the context of bioinspired robotics, where fast respon-
siveness and real-time processing are required.

Another advantage of our method is that it does not require the 
explicit structure of dynamical systems. For example, in the method 
proposed by Namikawa and Tani (20–22), the controller needs a 
fixed hierarchical structure and modularity. Therefore, the trained 
controller was specialized in implementing a specific behavior, 
making it difficult to divert it for any other purpose. In addition, it 
may be possible to design CI-like dynamics in an architecture where 
the symbolic sequence and the corresponding trajectory are sepa-
rately generated, which requires an external mechanism to hold the 
symbol and wait until the generation of lower-order trajectory fin-
ishes. Therefore, the separation of the symbolic sequence model 
and trajectory encoder implicitly uses the hierarchical structure and 
cannot be realized by a high-dimensional chaos alone. In contrast, 
we proposed a method of designing CI with a setup consisting of a 
single chaotic ESN, auxiliary symbols, and an interface between 
them (input ESN) with high scalability. Moreover, the modifica-
tions of internal connections in the chaotic ESN can be realized by 
adding multiple linear feedback loops and training them with the 
FORCE learning since the presynaptic connection in the chaotic 
ESN can be regarded as a linear connection. Thus, our method 
allows us to design the various trajectories and their transition rules 
in a consistent high-dimensional chaotic system, thereby greatly 
expanding the scope of application of high-dimensional chaotic 
dynamical systems. Neuromorphic devices based on physical reser-
voir computing frameworks would be an excellent candidate for 
implementing our scheme (31). Sprintronics devices, for example, 
have recently been shown to exhibit chaotic dynamics (51, 52) and 
are actively exploited as physical reservoirs (53–55). We expect that 
this framework would provide one of the promising application 
scenarios for real-world implementations of our scheme.

Our method can use a priori knowledge through the introduc-
tion of auxiliary symbols. Several neurorobotics frameworks have 
been proposed so far in which symbolic dynamics are self-organized 
on the network by end-to-end learning (26,  56). Although these 
methods are convenient since they do not require explicit a priori 
knowledge, they cannot actively use the prior symbolic structure, 
and thus, symbolic structure only appears after the training. In con-
trast, we showed that the learning performance is greatly improved 
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by auxiliary symbols (see the Supplementary Materials and fig. S3). 
In that sense, our method has an advantage over the conventional 
end-to-end scheme.

Our method is also scalable to autonomous symbol generation 
required in more advanced functionality. For example, in our meth-
od, M kinds of auxiliary symbols are given as a priori knowledge. 
However, in a highly autonomous system, such as humans, symbols 
are dynamically generated and destroyed because of developmental 
processes. As demonstrated by Kuniyoshi and Sangawa (17), these 
self-organizing symbolic dynamics can be realized by providing an 
additional automatic labeling mechanism in the system. In addi-
tion, unsupervised algorithms for extracting discrete symbols from 
the dynamics like the one introduced in (57–59) can be incorporated 
into our system. In other words, it is possible to spontaneously gen-
erate symbols by embedding an unsupervised learning algorithm in 
the system; this is a subject for future work.

Last, the dynamic phenomena obtained by our method are sig-
nificant from the viewpoint of high-dimensional dynamical systems. 
As shown in Fig. 6, we demonstrated that small differences in the 
initial network state were expanded by the chaoticity of the system, 
which eventually led to drastic change in both the global symbol 
transition pattern s(t) and the local dynamics x(t). Such tight inter-
action between microlayer and macrolayer is a phenomenon unique 
to deterministic dynamical systems; that is, it cannot occur, in prin-
ciple, in a system where the higher-order mechanism is completely 
separated from the lower-order one (e.g., independent random 
variables). In addition, the global characteristics of dynamical sys-
tems are often analyzed by the mean-field theory. However, the 
analysis by the mean-field approximation cannot capture the con-
tribution of microscopic dynamics to the macroscopic change. 
Thus, our CI design method has a meaningful role in shedding light 
on the interaction between micro- and macrodynamics in deter-
ministic chaotic dynamical systems.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/46/eabb3989/DC1
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