
Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

1 of 12

C O M P U T E R S C I E N C E

Designing spontaneous behavioral switching via
chaotic itinerancy
Katsuma Inoue*, Kohei Nakajima*, Yasuo Kuniyoshi*†

Chaotic itinerancy is a frequently observed phenomenon in high-dimensional nonlinear dynamical systems and is
characterized by itinerant transitions among multiple quasi-attractors. Several studies have pointed out that
high-dimensional activity in animal brains can be observed to exhibit chaotic itinerancy, which is considered to
play a critical role in the spontaneous behavior generation of animals. Thus, how to design desired chaotic itinerancy
is a topic of great interest, particularly for neurorobotics researchers who wish to understand and implement auton-
omous behavioral controls. However, it is generally difficult to gain control over high-dimensional nonlinear
dynamical systems. In this study, we propose a method for implementing chaotic itinerancy reproducibly in a
high-dimensional chaotic neural network. We demonstrate that our method enables us to easily design both the
trajectories of quasi-attractors and the transition rules among them simply by adjusting the limited number of
system parameters and by using the intrinsic high-dimensional chaos.

INTRODUCTION
Designing a cognitive architecture that acts spontaneously in a real-
world environment is one of the ultimate goals in the field of cogni-
tive robotics (1). A cognitive agent is expected to have autonomy,
i.e., the agent should behave independently of the designer’s control
while maintaining its identity. Adaptability is another requirement
for cognitive functionality. Thus, the agent must select the appro-
priate behavior continuously and robustly in response to the chang-
ing environment in real time. To summarize, the agent’s cognitive
behavior should be implemented through the body-environment
interaction while still enabling the agent to maintain its autonomy
and adaptability.

In the conventional context of robotics and artificial intelligence,
designers often take top-down approaches to provide an agent with
a hierarchical structure corresponding to the behavioral category.
This representation-based approach has a critical limitation in the
design of a cognitive agent: The static, one-to-one relationship be-
tween the behavior and structure makes it difficult to adapt flexibly
to the dynamically changing environment and developing body. For
example, it has been considered that the motion control systems of
living things, including humans, realize their high-order motion
plans by combining reproducible motor patterns called motion
primitives (2). Inspired by this viewpoint, we tend to realize an
agent’s behavior control with a predetermined static hierarchical
structure. However, such a hierarchical structure does not exist in
living organisms from the beginning; rather, these structures are
cultivated through the body’s development and dynamic interactions
with the environment. Therefore, it is important to introduce a

dynamical perspective to understand a hierarchical structure of
behavior control generated in animals that have adaptability and
flexible plasticity.

In robotics, approaches based on dynamical systems theory have
been applied to analyze and control agents being modeled as sets of
variables and parameters on a phase space (3, 4). This dynamical
systems approach can deal with both the functional hierarchy and
the elementary motion in a unified form by expressing the physical
constraints of the agent as the temporal development of state vari-
ables, namely, dynamics. For example, Jaeger (4) sketched a pioneer-
ing idea of an algorithm where the behavior of an agent is expressed
as dynamics, and both the behavioral regularity (referred to as tran-
sient attractors) and the higher-order relationships among them are
extracted in a bottom-up manner. Unlike the stochastic approach
where the randomness of the system is realized by a probabilistic
model (e.g., the Markov model), the dynamical system approach can
consistently express the agent’s seemingly random behaviors via its
chaoticity (5). Furthermore, in the stochastic approach, hierarchical
structures are inevitably introduced since the mechanism of random
number generation is completely independent of the system’s dy-
namics. Thus, the dynamical systems approach has the potential to
model an agent’s spontaneous hierarchical behavior in the form of
dynamic interaction without top-down structure given by the external
designer. The important issue here is that the concept of the dynamical
system approach itself offers no general principle for implementing
these behaviors on a large number of nonlinear couplings that con-
stitute the body-environment interaction. Therefore, it is important
to study and propose the methodologies for designing spontaneous
hierarchical behavior with a consistent temporal evolution rule
governing the system’s dynamics.

Following this dynamical systems perspective, chaotic itinerancy
(CI) (6–8) is a powerful option for modeling spontaneous behavior
with the functional hierarchy realized through the dynamics. CI is a
frequently observed, nonlinear phenomenon in high-dimensional
dynamical systems, and it is characterized by chaotically itinerant tran-
sitions among locally contracting domains, namely, quasi-attractors
(8). In general, a chaotic system has an initial sensitivity, and a slight
difference in phase space is exponentially expanded in a certain direc-
tion with temporal development. Conversely, multiple transiently

Graduate School of Information Science and Technology, The University of Tokyo,
Engineering Building 2, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
*Corresponding author. Email: k-inoue@isi.imi.i.u-tokyo.ac.jp (K.I.); k_nakajima@
mech.t.u-tokyo.ac.jp (K.N.); kuniyosh@isi.imi.i.u-tokyo.ac.jp (Y.K.)
†Present address: Next Generation Artificial Intelligence Research Center, The University
of Tokyo, Engineering Building 2, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
RIKEN CBS-Toyota Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198,
Japan; Center for Research and Development Strategy (CRDS), Japan Science and
Technology Agency (JST), K’s Gobancho Building, 7 Gobancho, Chiyoda-ku, Tokyo
102-0076, Japan; Department of Research Promotion, Research Division, JST, K’s
Gobancho Building, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan; Aidemy Inc.,
Yamazin Building 3F, 1-1-16, Kanda Ogawamachi, Chiyoda-ku, Tokyo 101-0052, Japan.

Copyright © 2020
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CC BY-NC).

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

2 of 12

predictable dynamics can be repeatedly observed in a chaotic system,
yielding CI despite the global chaoticity and initial sensitivity.
This type of hierarchical dynamics frequently emerges from high-
dimensional chaos even without hierarchical mechanisms, implying
that explicit structure is not necessarily needed for implementing
hierarchical behaviors. The chaoticity plays an important role in
forming the autonomy of an agent as it is virtually impossible for
the designer to completely predict and control an agent’s behavior
because of the agent’s initial sensitivities, which essentially ensures
the agent’s independence from the designer. Thus, CI would work
as an effective tool for implementing the intellectual behavior of a
cognitive agent by embedding the behavior in the form of a quasi-
attractor and maintaining the autonomy of the agent with the chaoticity.

CI was first found in a model of optical turbulence (6). Since its
discovery, similar phenomena have been numerically obtained in
various setups (7, 9, 10). The properties of CI vary among previous
studies, and some classes of CI present interesting features that are
difficult to characterize using the stochastic processes. Tsuda et al.
(9), for example, show that their asynchronous neural network model
produces itinerant behavior whose transition frequency is character-
ized by a long-tailed distribution. The coupled map lattice proposed
by Kaneko (7) potentially emits infinitely many states, whose tran-
sition rule should be represented by an infinite state machine. Sev-
eral physiological studies have reported that CI-like dynamics have
even occurred in brain activity, suggesting that CI might play an
essential role in forming cognitive functions (11, 12). For example,
Freeman (13) revealed that an irregular transition among learned
states was observed in the electroencephalogram pattern of a rabbit
olfactory system when a novel input was given, indicating that the
cognitive conditions corresponding to “I don’t know” are internally
realized as CI-like dynamics. Furthermore, a recent observation of
rat auditory cortex cell activity revealed the existence of a random
shift among different stereotypical activities corresponding to indi-
vidual external stimuli during anesthesia (14). On the basis of these
reports, Kurikawa and Kaneko (15) suggested the novel idea of
“memory-as-bifurcation” to understand the mechanism of the tran-
sitory phenomenon. They reproduced it in an associative memory
model in which several input-output functions were embedded by
Hebbian learning. An intermittent switching among metastable
patterns was also observed in a recurrent neural network (RNN) by
installing multiple feedback loops trained to output a specific tran-
sient dynamics corresponding to external transient inputs (16). CI-like
dynamics arise not only in nervous systems but also in interactions
between agent’s bodies and their surrounding environments (17–19).

For example, Kuniyoshi and Sangawa (17) developed a human
fetal development model by coupling chaotic central pattern gener-
ators and a musculoskeletal system. They reported that several
common behaviors, such as crawling and rolling over, emerged from
the physical constraint. Therefore, CI is a nonlinear phenomenon
of high-dimensional dynamical systems and is thought to play a
substantial role in generating structural behavior.

Inspired by the contribution of CI to the cognitive functions and
spontaneous motion generation of agents, CI has been used for mo-
tion control in the field of neurorobotics and cognitive robotics by
designing the CI trajectory. For example, Namikawa et al. (20–22)
designed stochastic motion switching among predetermined motion
primitives in a humanoid robot by using a hierarchical, deterministic
RNN controller. In this study, it was confirmed that lower-order
RNNs with smaller time constants stably produced the trajectories

of motion primitives, whereas higher-order RNNs with larger time
constants realized a pseudo-stochastic transition by exploiting self-
organized chaoticity. Steingrube et al. (23) designed a robot that
skillfully broke a deadlock state in which the motion had completely
stopped by using chaos in the RNN controller. Hence, it can be in-
terpreted that CI-like dynamics were embedded in the coupling of
the body and the surrounding environment.

While CI is an important phenomenon in high-dimensional dy-
namical systems, roboticists also find it a useful tool for designing
an agent’s behavior structure while maintaining the agent’s autonomy.
However, it has generally been difficult to embed desired quasi-
attractors at will because of their nonlinearity and high dimensionality.
For example, in the method of Namikawa et al. (20–22), the internal
connections of an RNN ware trained with backpropagation through
time (24); however, embedding a long-term input-output function
in an RNN by the gradient descent method is generally unstable and
requires a large number of learning epochs (25). Furthermore, their
method required both a hierarchical structure and the same number
of separated modules as the motion primitives, restricting the scal-
ability and the range of its application. Yamashita and Tani (26)
proposed a network model learning functional hierarchy without
any modules, in which hierarchical behavior was implemented by
the explicit hierarchical structure governed by predetermined mul-
tiple time scales. In addition, methods using the associated memory
model (10, 27–29) are also unsuitable for our purpose since it is
difficult to embed the quasi-attractors with complicated spatiotem-
poral patterns.

In this study, we propose an algorithm, freely designing both the
trajectories of quasi-attractors and transition rules among them in a
setup of high-dimensional chaotic dynamical systems. We aim to
design the properties of CI characterized by a finite state machine
and finite switching time, such as those in the neurorobotics context
(19, 21). We prepare transition rules described by a Markov model
and aim to emulate them through CI using a high-dimensional non-
linear dynamical system. Our method uses batch learning composed
of the following three-step procedure (Fig. 1):

Step 1. Prepare a high-dimensional chaotic system where target
quasi-attractors are embedded. We used a widely used echo state
network (ESN) (30), one type of RNN, as a high-dimensional chaotic
system. This ESN contains no hierarchical structure and modules
(e.g., multiple time scales), and every network node shares the same
time scale parameter. At the same time, modify the interactions
(internal parameters) so that the system reproducibly generates
intrinsic complex trajectories generated by an initial chaotic system
(innate trajectories) corresponding to the type of the discrete in-
puts (named symbol). In parallel, train the linear regression model
(named readout) to output the designated trajectories (output
dynamics) by exploiting the embedded innate trajectory. This pro-
cess can be potentially applied to the other chaotic dynamical systems
not limited to RNN in silico (31) since neither modules nor hierar-
chical structures are required. In addition, this embedding process
is accomplished by modifying fewer parameters using the method
of reservoir computing (32, 33). Therefore, our scheme is more stable
and less computationally expensive than conventional methods using
backpropagation to train the network parameters.

Step 2. Add a feedback classifier to the trained chaotic systems
for autonomously generating specific symbolic dynamics. In the
training of the feedback discriminator, the network’s internal param-
eters are fixed, as with the readout in step 1. Thus, by using the

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

3 of 12

embedded innate trajectory, the feedback discriminator achieves
multiple symbol transition rules with minimum additional compu-
tational capacity (i.e., nonlinearity and memory).

Step 3. Regulate the feedback unit added in step 2 to design des-
ignated stochastic symbol transition rules. The deterministic sys-
tem is expected to imitate the stochastic process by using intrinsic
chaoticity. The system repeatedly generates the quasi-attractors
embedded in step 1 in synchronization with the pseudo-stochastic
symbol transition, meaning that the design of the desired CI
dynamics is completed.

In this study, we demonstrate that the trajectories of quasi-
attractors and their transition rules can be designed using the three
steps described above. In step 1, we show that the desired output
dynamics can be designed with high operability by using the em-

bedded internal dynamics reproducibly generated after the innate
training. Next, in step 2, we demonstrate that various types of peri-
odic symbolic sequences switching at a certain interval can be
implemented simply by adjusting the parameters of a feedback loop
attached to the system. Last, in step 3, we prepare several stochastic
symbol transition rules governed by a finite state machine and show
that the system can simulate these stochastic dynamics by making
use of the system’s chaoticity. We also discuss the proposed method’s
validity and adaptability through several numerical experiments.

MATERIALS AND METHODS
System architecture
In our method, we aimed to embed M types of quasi-attractors and
the transition rules among them in an RNN. We prepared M dis-
crete symbols s ∈ S (S ≔ {s1, s2, ⋯ sM}). Each symbol corresponds to
each quasi-attractor. We used an ESN as a high-dimensional chaot-
ic system. As shown in Fig. 1A, we prepared an RNN composed of
a nonchaotic input ESN (Nin nodes) working as an input transient
generator as well as a chaotic ESN (Nch nodes) yielding chaotic
dynamics. The dynamics of input ESN xin(t) ∈ ℝNin and chaotic
ESN xch(t) ∈ ℝNch are given as the following differential equations

 d x in ─ dt (t) = − x in (t) + tanh (g in J in x in (t) + u in (s(t))) (1)

 d x ch ─ dt (t) = − x ch (t) + tanh (g ch J ch x ch (t) + J ic x in (t)) (2)

where ∈ ℝ is a time constant, tanh is an element-wise hyperbolic
tangent, gin and gch ∈ ℝ are scaling parameters, uin(s) ∈ ℝNin is discrete
input projected onto input ESN when symbol s is given, Jin ∈ ℝNin × Nin
and Jch ∈ ℝNch × Nch are connection matrices, and Jic ∈ ℝNch × Nin is
a feed-forward connection matrix between input ESN and chaotic
ESN. Each element of Jin is sampled from a normal distribution
N (0, 1 _

 N in
) . Jch is a random sparse matrix with density p = 0.1 whose

elements are also sampled from a normal distribution N (0, 1 _ p N
ch

) .

We used = 10.0, gin = 0.9, and gch = 1.5 to make input ESN nonchaotic
and chaotic ESN chaotic (34). In addition, to prevent chaotic ESN
from becoming nonchaotic because of the bifurcation caused by the
strong bias term, we tuned Jic before hand to project transient
dynamics converging to 0 onto the chaotic ESN when the same
symbolic input continues to be given (see the Supplementary Materials
for detailed information about the transient dynamics). In any case,
the whole RNN dynamics x(t) ∈ ℝNin + Nch concatenating Eqs. 1 and
2 can be represented by the following single equation (⊙ represents
an elementwise product)

 dx ─ dt (t) = − x(t) + tanh (g ⊙ (Jx(t)) + u(s(t))) (3)

where x, g, J, and u are defined by the following equations

 x(t) ≔ [x in (t) ; x ch (t)] (4)

 g ≔ [g in , ⋯ g in
 N in

 g ch , ⋯ g ch
 N ch

]
T
 (5)

 J ≔ [J
in 0

 J ic

 J ch
] (6)

Chaotic ESN:

Input ESN:

Discrete input:
(: symbol)

(nodes,)

(nodes,)

A

B

Reservoir (RNN)
Readout
(linear)

Symbolic
sequence

A

C

B

Output dynamics

A, B, C, A, C, A
B, C, B, A, B, …

, A

B C

A, B, C,
A, B, … /

Symbolic dynamics
(periodic / stochastic)

A

C

B

Output dynamics

(1) Open-loop (2) Closed-loop

A

B

C

Readout
(linear)

Reservoir (RNN)
Feedback
classifier

Input A

Step 1–Open-loop generator

Input B

Input C

Step 3–Chaotic itinerancy

A
T = TA

B
T = TB

C
T = TC

Step 2–Periodic dynamics

A
T = TA

B
T = TB

C
T = TC

C

Fig. 1. Experimental setups. (A) Schematic diagram of a high-dimensional chaot-
ic system prepared in our experiments. The system can be divided into two parts:
input echo state network (ESN) and chaotic ESN. Input ESN acts as an interface
between the discrete input and the chaotic ESN, generating transient dynamics
projecting onto the chaotic ESN when the symbolic input switches. To prevent the
chaotic ESN from becoming nonchaotic because of the bifurcation, the connection
between the input ESN and the chaotic ESN is trained to output transient dynamics
converging to 0 (see the Supplementary Materials for the detailed information
about the transient dynamics). (B) Two experimental schemes. In the open-loop
scheme, the symbolic input is externally given. On the other hand, in the closed-
loop one, the symbolic input is autonomously generated by the additional feed-
back loop. In our method, we change the elements represented by red arrows to
embed desired CI dynamics. (C) Outline diagrams of our batch learning methods
composed of a three-step procedure. In step 1, the parameters of the network and
readout are trained to output the quasi-attractors and the output dynamics corre-
sponding to the symbols. In steps 2 and 3, the symbolic sequence is autonomously
yielded. We prepare periodic symbol transition patterns as the target in step 2 and
stochastic symbol transition rules in step 3.

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

4 of 12

 u(s) ≔ [u in (s) ; 0] (7)

The output dynamics are calculated by the linear transformation of
the internal dynamics x(t), that is, the linear readout wout ∈ ℝNin + Nch
is trained to approximate the following target dynamics fout(t)

 w out
T x(t) ≈ f out (t) (8)

The symbolic dynamics s(t) itself, which is externally given in
step 1, is lastly generated autonomously with a closed-loop system
[Fig. 1B(2)]. In the feedback loop, the following classifier fmax : ℝNin + Nch
→ S is attached

 f max (x(t)) ≔ arg max
s∈S

 w s
T x(t) (9)

where ws ∈ ℝ(Nin + Nch) × M represents the connection matrix whose
elements are trained to autonomously emulate the designated sym-
bolic dynamics s(t) [i.e., s(t + t) ≈ fmax(x(t)), where s(t + t) is the
symbolic input for the next time step and t is a time width for
discrete temporal evolution]. To summarize, we designed the de-
sired quasi-attractors, output dynamics, and symbolic dynamics by
tuning the parameters of the RNN connections J, the readout wout,
and the classifier ws, respectively.

First order–reduced and controlled-error learning
and innate training
We used two reservoir computing techniques called first order–reduced
and controlled- error (FORCE) learning (35) and innate training (36).
Both FORCE learning and innate training are methods that harness
the chaoticity of the system. Below, we briefly describe the algo-
rithms of both FORCE learning and innate training.

FORCE learning is a method that embeds designated dynamics
in a system by harnessing the chaoticity of dynamical systems. Sup-
pose the following ESN dynamics with a single feedback loop

 dx ─ dt (t) = − x(t) + tanh (gJx(t) + uz(t)) (10)

 z(t) = w T x(t) (11)

where u represents the linear feedback vector. Typically, the scaling
parameter g is set to be greater than 1 to make the whole system
chaotic (34). In FORCE learning, to embed the target dynamics f(t)
in the system, w is trained to optimize the following cost function
CFORCE

 C FORCE ≔ 〈 ∥ z(t) − f(t) ∥ 〉 2 (12)

Here, the bracket denotes the averaged value over several sam-
ples and trials. In particular, in the FORCE learning, w is optimized
online with a least-square error algorithm. It was reported from nu-
merical experiments using ESN that better training performance
was obtained when the initial RNN was in a chaotic regime (35).

Innate training is also a scheme for harnessing chaotic dynamics
and is accomplished by modifying the internal connection J using
FORCE learning. The novel aspect of innate training is that the in-
ner connection of ESN is trained in a semisupervised manner, that
is, the connection matrix J of the ESN is modified to minimize the
following cost function Cinnate to reproduce the chaotic dynamics
yielded by the initial chaotic RNN (xtarget(t), innate trajectory)

 C innate ≔ 〈 ∥ x(t) − x target (t) ∥ 〉 2 (13)

Intriguingly, the innate trajectory is reproducibly generated for a
certain period with the input while maintaining the chaoticity after
the training. In other words, innate training is a method that allows
a chaotic system to reproducibly yield the innate trajectory with
complicated spatiotemporal patterns. In addition, innate training
applies the FORCE learning method to the modifications of the in-
ternal connection, that is, the presynaptic connection of a node in
the network is considered as the linear weight from the other nodes
and trained by FORCE learning. In this study, we propose a method
of designing CI by using both FORCE learning and innate train-
ing techniques.

Recipe for designing CI
Our proposed method is a batch-learning scheme consisting of the
following three-step process (Fig. 1C).
Step 1. Designing quasi-attractor
In step 1, the connection matrix Jch of the chaotic ESN is adjusted by
innate training to design the trajectories of quasi-attractors. First,
the target trajectories x target s (t) are recorded for M symbols under an
initial connection matrix Jinit and some initial states x target s (0) , where
 x target s (t) denotes chaotic dynamics when the symbol is switched to s
at t = 0 ms (for simplification, the switching time is fixed to t = 0 ms
in step 1; note that the symbol can be switched at any time). In step
1, Jch is trained to optimize the following cost function C1−in

 C 1−in ≔
s∈S

t=0

 L innate

 ∥ x s (t) − x target s (t) ∥ 2 (14)

Here, xs(t) represents the dynamics when the symbol is switched
to s at t = 0 ms, and Linnate represents the time period of the target
trajectory. We randomly choose half the network nodes (Nch/2
nodes) and modify their presynaptic connections to reduce the re-
dundancy of the training parameter. The selected elements in con-
nection matrix Jch are trained for 200 epochs for each s. We lastly
use Jch recording the minimum C1 − in (see the Supplementary Ma-
terials for the detailed algorithm used in step 1). After the innate
training in step 1, the system is expected to reproduce the recorded
innate trajectories x target s for Linnate.

Although there are no specific criteria for determining the initial
states of the multiple innate trajectories, the large distances among
 x target s (0) are preferred since the temporal pattern of quasi-attractors
is likely to differ, enhancing the separability. Moreover, the import-
ant trick of the innate training lies in its semisupervised scheme,
that is, the training stability increases by guiding the offset states
during training to the neighborhood of x target s (0) . Although a scheme
for training the internal connections of the RNN has already been
proposed in FORCE learning (35), the tuning of all connections to
generate the same function is mostly unstable (37). Therefore, we
randomly selected the offset state of the innate trajectory x target s (0)
on the phase space.

Similarly, wout is trained to produce designated output dynamics
f s(t) corresponding to symbol s. The following cost function C1−out
is optimized

 C 1−out ≔
s∈S

0

 L out
 ∥ f s (t) − w out

T x s (t) ∥ 2 (15)

High-dimensional nonlinear dynamical systems generally have
high separability for input information, that is, it becomes easier for

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

5 of 12

a linear model to solve nonlinear input-output function tasks by
projecting input information into the system (38). In particular, the
innate trajectories of chaotic systems are known to have such high
expressive capability that various orbits can be designed simply by
adjustment of the attached linear model (36). In this study, the
tuned readout is also expected to stably reproduce the prepared tra-
jectory by exploiting the high dimensionality and nonlinearity of
the innate trajectories. Here, note that Linnate does not always match
Lout, that is, Lout can be greater than Linnate. The training is accom-
plished by an offline algorithm Ridge regression based on the re-
corded internal dynamics xs(t).
Step 2. Embedding autonomous transitions of symbol
In step 2, we tune a feedback loop fmax to achieve the autonomous
symbol transition. We especially prepare target periodic transition
rules switching every T (ms). Suppose a target periodic symbolic
time series sper(t). First, the network dynamics x(t) of the open-loop
setup [Fig. 1B(1)] is recorded with a symbolic dynamics sper(t) for
Trec ≔ 500,000 ms. On the basis of the recorded dataset, fmax is tuned
to output the next symbolic input sper(t + t) from x(t). The param-
eters ws of fmax is trained to optimize the following cost function C2

 C 2 ≔ −
s∈S

0

 T rec
 1 { s per (t + t) = s}log e w s

T x(t) ─
 k∈S e w k T x(t)

 (16)

As the optimization algorithm, we use the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (39).

This optimization task is considered to be a type of timer task, a
commonly used benchmark task to evaluate the temporal computa-
tional capacity, where the readout is trained to output a pulse-like
wave with a certain delay after input is given. By projecting the in-
put signal into a high-dimensional nonlinear dynamical system, the
timer task can be achieved simply by adjusting the linear readout. In
addition, the complex trajectory embedded by the innate training
significantly increases the performance of the timer task compared
with a nonchaotic random ESN (36). In our model, the tuned clas-
sifier fmax is expected to emulate the delayed symbolic switching by
exploiting the embedded innate trajectory.
Step 3. Embedding stochastic transitions of symbol
In step 3, we implement a stochastic transition rule governed by a
finite state machine by modifying a feedback loop fmax. As discussed
in Introduction, the chaoticity of the system is expected to be used to
emulate the stochastic process in the deterministic setup. We prepared
the target stochastic time series ssto(t) generated from a Markov
model with certain switching periods. The process of the learning is
same as that in step 2, that is, the pair of (x(t), ssto(t)) recorded in the
open-loop setup for 500,000 ms is used to train the fmax to emulate
ssto(t). Here, we use the following cost function C3 in the training

 C 3 ≔ −
s∈S

0

 T rec
 1 { s sto (t + t) = s}log e w s

T x(t) ─
 k∈S e w k T x(t)

 (17)

As with the optimization of the cost function C2, C3 is optimized
with the limited-memory BFGS algorithm.

Note that the formulation of C3 is the same as that of C2, that is,
the properties of target dynamics to be embedded are not expressed
in the cost function formulation. Rather, both optimization pro-
cesses in steps 2 and 3 are data-driven, meaning that the properties
of prepared target symbolic sequences determine whether the em-
bedded dynamics are required to be chaotic or nonchaotic.

RESULTS
In this section, we show the demonstration and analytic results of
the numerical experiments for each step.

Step 1. Designing quasi-attractor
As discussed in the previous section, the internal connection of the
chaotic ESN Jch is trained to reproducibly output the corresponding
innate trajectories to the symbolic switching. Figure 2A demon-
strates the change of the network dynamics of a 1500-node RNN
(Nin = 500, Nch = 1000) whose connection matrix is modified with
innate training under the condition (M, Linnate) = (1,1000). The tra-
jectory quickly spreads before t = Linnate in the pretrained system,
whereas the target trajectory x s

target (dotted line) is reproducibly
yielded for 1000 ms (covered by the yellow rectangle) in the post-
trained system. Moreover, intriguingly, the dispersion of the trajec-
tories continues to be suppressed even after t = Linnate.

Next, Fig. 2B displays both the network dynamics and the output
dynamics. The 1500-node RNN (Nin = 500, Nch = 1000) trained
under the condition (M, Linnate) = (3,1000) was used. At first, the
symbolic input was absent, and then symbols were switched with
random intervals from the middle. In addition, the two-dimensional
readout was trained to output the Lissajous curve for symbol A, the
“at” sign for symbol B, and the xz coordinates of the Lorenz attractor
for symbol C for Lout = 1500 ms (the target trajectory for the “at” sign
was made from a centerline of font data). It was observed that the
desired spatiotemporal patterns were stably and reproducibly gen-
erated for a certain period in every trajectory with different initial
states after the symbol transition (see movie S1). Note that the same
linear model wout was used in the demonstration, implying that the
trajectory of each quasi-attractor has rich enough information to
independently output the designated time-series patterns even with
the single linear regressor. Our scheme for designing transient dy-
namics would be highly useful in the field of robotics because the
process in step 1 is easily achieved by adjusting the partial elements
of a high-dimensional chaotic system. For example, the system
working in a real-world environment should immediately and
adaptively switch its motion according to the change of environ-
mental input like a system developed by Ijspeert et al. (40), which
can be easily accomplished by our computationally cheap method.
In this way, our method would work effectively in the context of
robotics, where fast responsiveness and adaptability are required.

We also examined both the scalability and the validity of innate
training in detail through several numerical experiments (Fig. 3).
First, we examined the relationship between the number of input
symbols M and the accuracy of innate training. To evaluate the per-
formance of innate training, we used the normalized mean square error
(NMSE) between the output and the innate trajectory x target s repre-
sented by the following formula

 NMSE ≔ 1 M s∈S ⟨
 0 L innate ∥ x s (t) − x target s (t) ∥ 2

 ───────────────
 0 L innate ∥ x target s (t) ∥ 2

 ⟩ (18)

where the bracket represents the average over 10 trials for each sym-
bol. We calculated the NMSE for 10 trials. Figure 3A shows the in-
nate training performances with the different training conditions,
suggesting that NMSEs are more likely to increase with a longer
target trajectory and a larger number of symbols. This result implies that
innate training has its limitation in the design of the quasi-attractors.

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

6 of 12

We also examined the effect of network size on the capability to
embed the quasi-attractors. We investigated the relationship be-
tween the number of nodes in the chaotic ESN Nc and the accuracy
of innate training under the condition M = 1 (Fig. 2B), suggesting
that the NMSEs were less likely to increase with a larger network.
To summarize, our analysis indicates that longer trajectories can be
embedded in a larger network by innate training.

Next, we evaluated the effect of innate training on the capacity of
the system’s information processing. We prepared a timer task and
measured how long the inputted information was stored in the
RNN. In the timer task, the pulse-like wave with a peak tpeak (ms)
after the symbol transition was prepared as the target, and the per-
formance was defined as the accuracy of the pulse-like wave recon-
struction by a trained readout. Here, we defined the coefficient of
determination value R2 between the output and the pulse-like wave
as the timer task function R2(tpeak). At the same time, we also calculated

the integral value of the timer task function ∫0
∞

 R 2 (t) dt and define it
as the timer task capacity (see the Supplementary Materials for de-
tailed information about the setup of the timer task). Figure 4C
shows the timer task function with different innate training condi-
tions, indicating that RNNs trained with the longer-length target
trajectory Linnate perform better. It was also observed that the timer
task capacity saturated around Linnate = 5000 ms in the 1000-node
RNN, and the border of the saturation decreased in a smaller system
(Fig. 3D). These results imply that the temporal information capacity
of the system is improved by innate training with the longer target
length Linnate but saturates at a certain value, which is determined by
the system size.

Furthermore, we assessed the effect of innate training on the
system’s chaoticity by measuring the Lyapunov exponents of the sys-
tem. Since the transition among quasi-attractors is driven by the
system’s chaoticity, it is necessary to keep the system chaotic. In this
experiment, we measured the local Lyapunov exponent (LLE) to
evaluate the degree of trajectory variation after the symbolic switching.

B

A

Symbolic input (random)

Network dynamics (10 trials)

Output dynamics (2-dim)

Tr
ia

ls

A: Lissajous curve B: At sign (@) C: Lorenz attractor

Input ESN

Chaotic ESN

Before innate training

Time steps (ms)

xi
n

xc
h

Input ESN Training condition: (M, L

Training condition: (M, L

2500 5000 7500

Chaotic ESN

After innate training

Time steps (ms)
x

in
x

ch

A B C
Time steps (ms)

xi
n

xc
h

innate

innate

xi
n

xc
h

xi
n

xc
h

Fig. 2. Demonstration of step 1. (A) The dynamics of the reservoir before and
after the innate training. In the figure, we show the RNN dynamics trained under
the condition (M, Linnate) = (1,1000). The time-series data of a selected node in the
input ESN are shown in the top column. Conversely, the four selected dynamics of
the chaotic ESN are displayed in the bottom four columns. In each column, both
the innate trajectory (black dotted) and 10 individual trajectories with different ini-
tial conditions (red) are exhibited. (B) Demonstration of open-loop dynamics. The
network dynamics of the RNN trained under the condition (M, Lin, Lout) = (3,1000,1500)
is used in this demonstration. Both the network dynamics and output dynamics of
the trained readout are depicted. The readout is trained to output the Lissajous
curve for symbol A, the “at” sign for symbol B, and the xz coordinates of the Lorenz
attractor for symbol C. Note that the intervals of the symbolic input were ran-
domly decided.

A

C

E

B

F

0 2000 4000 6000 8000 10,000

−10

−5

0

5

10

Time steps (ms)

Lo
ca

l L
ya

pn
ov

 e
xp

on
en

t 1000
2000
3000
4000
5000

Target trajectory
length [L innate (ms)]

Innate training performance Innate training performance

Timer task function Timer task capacity

Local Lyapnov exponent Maximum Lyapnov exponent

0 2000 4000 6000 8000 10,000
Target pulse wave peak time [tpeak (ms)]

0.0

0.2

0.4

0.6

0.8

1.0

R
² v

al
ue

Target trajectory
length [L innate (ms)]

1000
2000
3000
4000
5000

0 1000 2000 3000 4000 5000 6000 7000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ap

ac
ity

of node (Nchaos)
1000
500
250

Target trajectory length [Linnate (ms)]

D

N
or

m
al

iz
ed

 m
ea

n
sq

ua
re

 e
rr

or

0 1000 2000 3000 4000 5000 6000 7000
Target trajectory length [Linnate (ms)]

0.00

0.05

0.10

0.15

0.20

0.25 # of node (Nchaos)
1000
500
250

0 2000 4000 6000 8000 10,000
Target trajectory length [Linnate (ms)]

N
or

m
al

iz
ed

 m
ea

n
sq

ua
re

 e
rr

or

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

of target
trajectory (M)

1
2
3
4
5

0 2000 4000 6000 8000 10,000

0

2

4

6

8

10

M
ax

im
um

 L
ya

pn
ov

 e
xp

on
en

t (
×1

0−3
) # of node (Nchaos)

1000
500
250

Target trajectory length [Linnate (ms)]

Fig. 3. Scalability and the validity of innate training used in step 1. (A) Perform-
ance of innate training over M symbols. The normalized mean square errors are
calculated from the 10 trials. (B) Effect of network size Nch on the performance of
innate training. (C) Evaluation of the temporal information capacity with timer task.
The averaged values for 10 trials are plotted. (D) Effect of the system size on timer
task capacities. Timer task capacity is defined as the integral value of the timer task
function. (E) Evaluation of the LLE. The LLE is measured with the time development
of the perturbation of the chaotic ESN (see the Supplementary Materials for de-
tailed information about the calculation method of the LLE). (F) Evaluation of the
system’s MLE.

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

7 of 12

We also measured the maximum Lyapunov exponent (MLE) with-
out any inputs (u(t) = 0) to estimate the global chaoticity of the
system (see the Supplementary Materials for the detailed calcula-
tion algorithm of both the LLE and MLE). Figure 3E displays the
LLE values of the systems with the different target trajectory length
Linnate, suggesting that the trajectories unevenly expand after the
symbol transition. In particular, it was observed from the LLE anal-
ysis that contracting regions existed (regions with negative LLEs
corresponding to the lengths of the quasi-attractors) caused by the
transient dynamics projected by the input ESN, and the degree of
the expansion became gradual in the trained period t ∈ [0, Linnate).
These results imply that innate training yields a locally contractive
phase space structure, that is, a quasi-attractor. Moreover, positive
MLE values were constantly obtained from the MLE analysis de-
picted in Fig. 3F, supporting the conjecture that the system chaoticity
was maintained especially well with the larger RNNs even after the
innate training. (Note that a sharp increase in MLE was observed
with shorter Linnate, which is caused by the increase in the spectral
radius of the connection matrix J of the system. See the Supplementary
Materials for detailed information of the analysis.)

Step 2. Periodic symbol transition
In step 2, the system autonomously generates a symbolic sequence
externally given in step 1. The additional feedback loop realizes the
autonomous periodic switching of the symbols. We demonstrate
that various types of periodic symbolic sequences switching at a fixed
interval can be easily designed simply by tuning the parameter of the
feedback loop fmax. Figure 4A demonstrates the embedding of the
periodic symbolic sequence A-B-C (2000-ms interval and 6000-ms
period) with a trained RNN ((M, Linnate) = (3,1000)). Figure 4B also
exhibits the embedding of the periodic symbolic sequence A-B-C-
D-E-F-G-H-I-J (500-ms interval and 5000-ms period), with the
same RNN used as the demonstration in Fig. 4A (note that fmax was
changed from one in Fig. 4A). In both demonstrations, the system
succeeded not only in generating the desired symbol transition
rules but also in stably outputting the designated output dynamics
with high accuracy.

We also show that the system can solve tasks requiring higher-
order memory in the same scheme. We prepared the two periodic
symbolic sequences A-B-C-B and A-B-C-B-A and separately trained
fmax. These two symbolic sequences are more difficult to embed be-
cause the system must change the output according to the previous
output. In the symbol transition A-B-C-B, for example, the system
must output the next symbol depending on the previous symbol
when switching from B, though the total number of symbols is the
same as in the task A-B-C. We used the same RNN and setup used
in the Fig. 4A and only changed the parameters in fmax to realize the
symbol transitions. Figure 4C displays the network dynamics and
symbol transition of the two tasks, showing that the system success-
fully achieves both the periodic sequence A-B-C-B with an 8000-ms
period and A-B-A-B-C with a 10,000-ms period. These results sug-
gest that the trained RNN had the higher-order memory capacity,
that is, the generated trajectories have sufficient separability to dis-
tinguish the contextual situation depending on the previous symbol
sequence (see movie S2). In robotics, periodic motion control has
often been implemented by an additional oscillator (e.g., a central
pattern generator) to yield limit cycles (23, 40–42). Our method in
step 2 would be useful in designing limit cycles with longer periods
and more complicated patterns. The analysis in fig. S2 shows that

our method outperforms FORCE learning in the embedding of a
long-term periodic attractor including multiple transitions in order
(see the Supplementary Materials and fig. S2).

We also analyzed the effect of perturbation to investigate the sta-
bility of the embedded symbol transition. Figure 4D shows the out-
put dynamics of both the original and perturbed trajectories, clarifying
that the trajectory returned to the original one after the addition
of the perturbation. We also calculated the MLE values of the sys-
tem and obtained the value −1.89 × 10−4, which was very close to

A B

C

Output dynamics

Network dynamics

(M, Linnate, Lout) = (10, 1000, 500)
“A-B-C-D-E-F-G-H-I-J” switching every 500 ms

Output dynamics

Symbolic dynamicsSymbolic dynamics

D
Tr

ia
ls

0 5000 10,000 15,000
Time steps (ms)

A B C A B C A B C A

x axis

Periodic pattern 1 (A-B-C-B) Periodic pattern 2 (A-B-A-B-C)

Perturbed trajectory
Original trajectory

0 50005000 10,000 15,000

Perturbation (t = 0)

Time steps (ms)

x
ax

is
y

ax
is

Perturbed trajectory
Original trajectory

Enlarged view

Time steps

0 5000 10,000
Time steps (ms)

15,000

A B A B C A B A B CTr
ia

ls
xi

n
xc

h

A B C B A B C B A B

0 5000 10,000
Time steps (ms)

15,000

Tr
ia

ls
xi

n
xc

h
xi

n
xc

h

Tr
ia

ls

0 4000 8000 12,000
Time steps (ms)

A B C D E F G H I J A B C D E F G H I J A B C D E FG H I J

(M, Linnate, Lout) = (3, 1000, 1500)
“A-B-C” switching every 2000 ms

y
ax

is

Fig. 4. Demonstrations of closed-loop dynamics in step 2. (A) Three-symbol pe-
riodic transition. We prepared an RNN trained under the condition (M, Linnate) =
(3,1000) and a readout trained under the condition Lout = 1500 ms to output three
Lissajous curves corresponding to the symbolic input. The feedback loop fmax real-
izes the periodic symbol transition A-B-C switching at 2000-ms intervals.
(B) Ten-symbol periodic transition. We prepared an RNN trained under the condi-
tion (M, Linnate) = (10,500) and a readout trained under the condition Lout = 500 ms
to output 10 different Lissajous curves corresponding to the symbolic input. The
feedback loop fmax achieves the periodic symbol transition A-B-C-D-E-F-G-H-I-J
switching at 500-ms intervals. (C) Demonstration of the tasks requiring higher-
order memory to be solved. The same RNN was used in the demonstration of (A).
The left panel displays the periodic symbol transition pattern A-B-C-B switching
at 2000-ms intervals. The right one demonstrates the periodic symbol transition
pattern A-B-A-B-C switching at 2000-ms intervals. These tasks were accomplished
in the same way in the demonstrations of (A) and (B), that is, only the parameters in
fmax were tuned. (D) Two output dynamics: original trajectory and perturbed trajec-
tory. A small perturbation was given to the original trajectory at t = 0 ms.

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

8 of 12

zero. These analyses indicate that the trained feedback loop fmax
made the system nonchaotic, that is, the generated internal dynam-
ics was a limit cycle.

Step 3. Stochastic symbol transition (CI)
In step 1, we constructed the trajectories of the quasi-attractors and
the corresponding output dynamics. In step 2, we showed that peri-
odic transitions among quasi-attractors can be freely designed by
simply tuning the feedback loop fmax. In step 3, we realize a stochastic
transition, that is, CI. As discussed above, the system is expected to
use its chaoticity to emulate a stochastic transition in deterministic
dynamical systems.

First, we demonstrate that stochastic transition can be freely
designed by adjusting fmax (see Fig. 5A and movie S3). In this
demonstration, we used the same RNN as in Fig. 4A. We prepared
a symbol transition rule uniformly switching among symbols A, B,
and C at 3000-ms intervals. Figure 5B shows the symbolic dynam-
ics, network dynamics, and output dynamics, suggesting that the
symbol transitions started to spread at around t = 10,000 ms and
lastly settle down to completely different transition patterns. Never-
theless, the system continued to stably generate Lissajous curves. These
demonstrations imply that the system constantly reproduced quasi-
attractors embedded by innate training, while the quasi-stochastic
transition was achieved by the global chaoticity. [Note that, although
we demonstrated our approach by embedding typical stochastic
processes (i.e., Markov processes) to illustrate the usability of our
scheme, our method can also design a history-dependent stochastic
rule that cannot be represented by a Markov model. See our demon-
stration represented in the Supplementary Materials and fig. S3.]

To analyze the flexibility of our method, we measured the sto-
chastic transition matrix and the average symbolic intervals (Fig. 5B).
We prepared two stochastic symbol transition rules as the targets:
the transition rule governed by the uniform finite state machine
(pattern 1) and the transition rule governed by the finite state ma-
chine with a limited transition (pattern 2). Note that we used the
same trained RNN as in the demonstration in step 2 and embedded
the transition rules simply by adjusting fmax. Figure 5B shows the
results of the obtained trajectories, implying that the system suc-
cessfully embedded patterns similar to the target rules, although
there were some errors and variations in the transition probability
and the switching time. The positive MLEs were obtained in both
cases (+2.01 × 10−3 in pattern 1 and +1.71 × 10−3 in pattern 2), sug-
gesting that the system was weakly chaotic as a whole. In addition,
we analyzed the history dependence of the transition in detail,
showing that transition probabilities did not differ so much accord-
ing to the past symbol in both cases though the preferred routes
were observed in output dynamics (see the Supplementary Materials
and fig. S4). In this sense, it can be said that the system successfully
expressed the random transitions in a macroscopic scale (i.e., a scale
in symbol transitions) using the chaoticity.

Last, we analyzed both the structures of the obtained chaotic
attractors and the symbolic dynamics in detail. Figure 6A shows the
effect of small perturbations on the symbolic dynamics, implying
that the patterns of symbolic dynamics varied after a certain period.
To analyze the structural change of the terminal symbolic state, we
measured the symbolic dynamics accompanied by the temporal de-
velopment of the set of initial states on a plane constructed by the
two selected dimensions (Fig. 6B), clarifying that a complex termi-
nal symbolic structure emerges after a certain period (Fig. 6B). In

particular, in the embedding of the pattern 1 rule, the entropy of the
terminal symbolic pattern converges to a value close to the maxi-
mum entropy log 2 3 9 ≈ 14.26 (note that the entropy was measured
on the basis of the probability distribution constructed by the fre-
quency of 3 × 3 grid patterns). These results indicate that the symbol
transition markedly changed even with a small perturbation and
was unpredictable after a certain period, that is, the prediction of
symbolic dynamics required the complete observation of the initial
state value and calculation of the temporal development with in-
finite precision.

DISCUSSION
In this study, we proposed a method of designing CI based on reservoir
computing techniques. We also showed that the various types of output

A
T = 3000

B
T = 3000

C
T = 3000

0.5

0.5

0.5

0.5

0.5

0.5

A
T = 3500

B
T = 2000

C
T = 2000

1.0

0.5 0.5

0.5

1.0

Symbolic dynamics (10 trials)

Output dynamics (2-dim)

B

A

Network dynamics (10 trials)

Stochastic pattern 1

Stochastic pattern 2

Tr
ia

ls

0 5000 10,000 15,000 20,000
Time steps (ms)

A B C
0

1000

2000

3000

4000

P
er

io
d

A B C

A

B

C

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.58 0.42

1.00 0.00 0.00

1.00 0.00 0.00

A B C

A

B

C

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.48 0.52

0.54 0.00 0.46

0.50 0.50 0.00

A B C
0

1000

2000

3000

P
er

io
d

4000

t [0, 2000) t [8500, 10,500) t [22,000, 24,000)

x
in

x
ch

Training condition: (M, Linnate, Lout) = (3, 1000, 1500)

x
in

x
ch

x
in

x
ch

010,000

Fig. 5. Demonstration of step 3. (A) Network dynamics with fmax trained to imi-
tate a stochastic transition rule. We used an RNN trained under the condition (M,
Linnate) = (3,1000), and readout trained to output Lissajous curves under the condi-
tion Lout = 1500 ms. The feedback classifier fmax was trained to uniformly switch the
symbol among the three symbols A, B, and C at 3000-ms intervals. Ten different
trajectories with small perturbations are overwritten in the figure. (B) Evaluation of
the embedding performance of a stochastic symbol transition. Two different sto-
chastic symbol transition rules (patterns 1 and 2) were prepared as the target. The
same RNN was used as in the demonstration of (A). The middle figures show the
obtained probability density matrix, and the right ones show the average switching
duration (the error bar represents SD).

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

9 of 12

dynamics and symbol transition rules could be designed with high
operability simply by adjusting the partial parameters of a chaotic
system with our three-step recipe. In this section, we first discuss
the scalability of our method and the mechanism of how CIs are
successfully embedded by reviewing several numerical analyses that
verify the validity of our methods. Next, we discuss the effectiveness
and significance of our method from multiple viewpoints.

Scalability and validity
First, the results of the innate training performances displayed in
Fig. 3 (A and B) indicate that the number of RNN nodes constrains
the total length of the quasi-attractors that can be embedded in the
system by the innate training. However, the LLE analyses in Fig. 3E
show that the system has the expanded region of the negative LLE
even when the NMSE between the innate trajectory and the embed-
ded trajectory becomes large (e.g., Linnate = 5000 ms). These results
imply that, even when the innate trajectories are not successfully
embedded in the system, the system stably yields high-dimensional
trajectories with complicated spatiotemporal patterns for each sym-
bol transition over Linnate, which is caused by the weakening of the
system chaoticity. The same RNN trained under the condition (M,
Linnate) = (3,1000) was repeatedly used in our series of demonstra-
tions, the desired output dynamics (e.g., the Lissajous curves) being
constantly generated for Lout = 1500-ms periods after the symbolic
shift (Figs. 2, 4, and 5). We also demonstrated that the system can
autonomously generate a symbol transition rule with an interval
greater than Linnate (Figs. 4 and 5), suggesting that the system ex-
ploited high-dimensional reproducible trajectories longer than Linnate.

Moreover, it is assumed that the length of the quasi-attractors
constrains the target stochastic transition rules that can be embed-
ded. The system failed to imitate the stochastic transition, and the
transition became periodic when the target transition had a shorter

switching interval, whereas the training of fmax became unstable
when it had a longer switching interval. These results suggest that
the following two mechanisms should be required in the design of
CI in our method: (i) The differences among the trajectories are
sufficiently enlarged through the temporal development to realize
the stochastic symbol transition and (ii) a similar spatiotemporal
pattern should be reproducibly yielded until the switching moment
to precisely discriminate the switching timing. These two mecha-
nisms are contradictory, of course, and the desired CI can likely be
embedded when both conditions are moderately satisfied.

Next, we discuss the validity of CI designed with our method
through comparison with previous CI studies. We demonstrated
that the embedded transition yields transition probability similar to
the desired one by using the chaoticity of the network. Several CI
works, however, pointed out that transition of CI is history depen-
dent, and therefore, CI shows some preference in the transition de-
termined by the history. Kaneko and Tsuda (43), for example, pointed
out that the transition of CI has a specific order that is distinguished
from a simple random hopping. Itoh and Kimoto (44) also reported
that the transition presents a preferred route governed by the global
phase space dynamics. Our experiment indicated that embedded CI
also shows preferred trajectories in output dynamics according to
the previous symbol before the switching (see the Supplementary
Materials and fig. S4A). Therefore, the symbolic dynamics imple-
mented with our methods should be history dependent.

Moreover, it should be noted that our proposed method can suc-
cessfully emulate the randomness of the symbol transition despite
the existence of the preferred trajectory. Our analysis revealed that
the transition probabilities did not differ so much according to the
difference in the previous symbol in both demonstrations (i.e.,
stochastic rules 1 and 2), implying that prediction of the next tran-
sition is still not easy if done only by referring to the macroscopic
symbolic history (see the Supplementary Materials and fig. S4B). In
this way, macroscopic symbol transitions still appear to be random,
despite the trajectory preference. Thus, it can be said that our pro-
posed method emulates the transition probability and its random-
ness on a high-dimensional nonlinear dynamical system by using
the chaoticity of the system.

We show that our method can realize CI characterized by the
random transition of a finite number of quasi-attractors as shown
in (19, 21). Some classes of CI, however, are difficult to design even
with our method. There exists a CI whose transition frequency has
a long-tailed distribution (9). In addition, CI can have infinitely
many quasi-attractors whose dynamics should be described with an
infinite state machine (7). These CI properties are hard to design
with our method since an infinite number of auxiliary symbols and
an infinite length of corresponding trajectories should be prepared,
which should be solved in the future.

Last, we discuss the speed of recovery from the transient state,
that is, the stability of the embedded quasi-attractor. Ahmadi and
Tani (45), for example, demonstrated variational RNN called
predictive coding-inspired variational RNN (PV-RNN) to imitate
learning of stochastic transition between presented primitives, in
which the stability of the attractor is determined by the coefficient
of the complexity of variational evidence lower bound in Bayesian
inference expressed in the cost function. Therefore, in their approach,
the formulation of the cost function can explain the mechanism of
how the recovery speed is determined. On this point, the stability of
the quasi-attractor in our approach is considered to be determined

A B

Stochastic pattern 2

Tr
ia

ls
 (N

 =
 5

0)

Stochastic pattern 1

0 20,000 40,000
Time steps (ms)

(i) t = 0 (ii) t = 6500 (iii) t = 10,000 (iv) t = 50,000

0 10,000 20,000 30,000 40,000 50,000
0

10

(iii) (iv)(ii)(i)

Entropy of neighboring pattern

Tr
ia

ls
 (N

 =
 5

0)

Time steps (ms)

Pattern 1
Pattern 2

P
at

te
rn

 2
P

at
te

rn
 1

x 2
 a

xi
s

x1 axis

Fig. 6. Analysis of symbolic dynamics and the final state. (A) Effect of a small
perturbation on the terminal symbolic dynamics. We evaluated the two closed-
loop setups prepared in Fig. 5B. The figures display the symbolic dynamics gener-
ated by 50 trajectories with 50 different initial values. (B) Analysis of symbolic
dynamics generated by the temporal development of the initial states on a small
plane and its entropy of the symbolic pattern. Two dimensions (x1 and x2) on the
phase space were selected from the chaotic ESN to construct the plane. We ob-
served the symbolic dynamics generated by the temporal development of the
states on the plane. To evaluate the randomness of the obtained pattern, we calcu-
lated the entropy of the obtained symbolic pattern based on the probability distri-
bution constructed from the 3 × 3 grid patterns. Note that the horizontal dashed
line shows the maximum entropy (log  2 3  9 ≈ 14.26).

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

10 of 12

by the spectral radius, a parameter of ESN, and the connection
strength between the input ESN and the chaotic ESN. As dis-
cussed above, a transition from nonchaotic to chaotic regime
occurs when the spectral radius of ESN exceeds 1.0. In addition,
the chaoticity of the system is strengthened by the increased spectral
radius. Hence, it is speculated that the recovery speed becomes low-
er as the spectral radius becomes larger since the quasi-attractor
becomes more unstable. Besides, the network state is more likely to
synchronize when the signals sent to the chaotic ESN are larger.
Thus, the recovery speed would be also controlled by the connec-
tion strength governing the amplitude between the input ESN
and the chaotic ESN. To summarize, the ESN spectral radius and
the connection strength are considered to determine the recovery
speed in our architecture.

Effectiveness and significance
First, the high operability of our proposed model would be helpful
to understand the underlying mechanism of brain’s information
processing from a certain perspective. Previous studies have pointed
out that an enormous number of nonlinear units and their interac-
tion essentially constitute an animal’s nervous system and yields
highly complicated activities characterized by nonlinear phenome-
na such as chaos and CI. It has been reported that chaotic behavior
appears in a wide range of brain activities from the cell level (e.g.,
action potential) to the global measurement level (e.g., electroen-
cephalogram) (46). In addition, it has been pointed out that the col-
lective neural activities not only encode the external information
but also transform it according to the history of activities (47, 48),
suggesting that the animal brain realizes its information processing
through the high-dimensional activities. We found that high-
dimensional chaos has enough rich expressive capability to design
CI, implying that the high-dimensional chaotic brain activities po-
tentially have the capability to realize various functional hierarchies.
In this sense, our model would provide a clue to understand the
mechanism of how high-dimensional chaos that contributes to the
information processing in animal brains.

The designing method for the CI exhibited in this study offers
fundamentally different benefits compared with the previous meth-
ods, which simply exploit chaotic dynamics. The dynamics of CI
presents an interesting property and suggest that local coherence
and global chaoticity coexist. This property of CI would effectively
work especially in designing cognitive models where both autonomy
and spontaneity are required. For example, a designer can imple-
ment the motion primitives through the quasi-attractor while main-
taining the autonomy of the robot through the global unpredictability.
Furthermore, our algorithm can design the probability distribution,
that is, the global tendency of behavior, as shown in Fig. 5. This
coexistence is, however, difficult to express when using only the
conventional chaotic attractors. In addition, several studies pointed
out that animals’ cognitive functions, such as memory recall and
association, would be realized through the transition phenomenon
among stereotypical activities (13, 14), suggesting that CI might
play an important role in animal cognition. In this sense, our method
would be used for implementing cognitive models in a high-
dimensional dynamical system.

Although several studies have used chaotic dynamical systems to
embed desired trajectories (35, 36), these conventional methods are
incapable of combining multiple predetermined transient dynamics
like our method. It might also be possible to merge multiple tran-

sients into one big attractor and embed it simultaneously by a learning
scheme such as FORCE learning. However, the additional experi-
ment shows that FORCE learning is more unstable than our methods
when it comes to embedding long-term periodic trajectories con-
sisting of multiple transients (see the Supplementary Materials and
fig. S2). In this sense, high operability in our method is unavailable
in the conventional methods.

Unlike previous methods that construct desired trajectories by
tuning the entire dynamics by backpropagation algorithm, our
method is accomplished by adjusting the reduced number of pa-
rameters and using the intrinsic high-dimensional chaos, which
alleviates the biological implausibility and computational complex-
ity of backpropagation algorithms. For example, recent physiological
studies on the motor cortex (49, 50) suggest that a large variety of
behaviors can be instantaneously generated by the partial plasticity
of the nervous system, supporting the biological plausibility of our
learning scheme. In addition, our learning scheme is computation-
ally cheaper than backpropagation since adjustments of entire neu-
ral circuits are not necessary. These properties would be especially
helpful in the context of bioinspired robotics, where fast respon-
siveness and real-time processing are required.

Another advantage of our method is that it does not require the
explicit structure of dynamical systems. For example, in the method
proposed by Namikawa and Tani (20–22), the controller needs a
fixed hierarchical structure and modularity. Therefore, the trained
controller was specialized in implementing a specific behavior,
making it difficult to divert it for any other purpose. In addition, it
may be possible to design CI-like dynamics in an architecture where
the symbolic sequence and the corresponding trajectory are sepa-
rately generated, which requires an external mechanism to hold the
symbol and wait until the generation of lower-order trajectory fin-
ishes. Therefore, the separation of the symbolic sequence model
and trajectory encoder implicitly uses the hierarchical structure and
cannot be realized by a high-dimensional chaos alone. In contrast,
we proposed a method of designing CI with a setup consisting of a
single chaotic ESN, auxiliary symbols, and an interface between
them (input ESN) with high scalability. Moreover, the modifica-
tions of internal connections in the chaotic ESN can be realized by
adding multiple linear feedback loops and training them with the
FORCE learning since the presynaptic connection in the chaotic
ESN can be regarded as a linear connection. Thus, our method
allows us to design the various trajectories and their transition rules
in a consistent high-dimensional chaotic system, thereby greatly
expanding the scope of application of high-dimensional chaotic
dynamical systems. Neuromorphic devices based on physical reser-
voir computing frameworks would be an excellent candidate for
implementing our scheme (31). Sprintronics devices, for example,
have recently been shown to exhibit chaotic dynamics (51, 52) and
are actively exploited as physical reservoirs (53–55). We expect that
this framework would provide one of the promising application
scenarios for real-world implementations of our scheme.

Our method can use a priori knowledge through the introduc-
tion of auxiliary symbols. Several neurorobotics frameworks have
been proposed so far in which symbolic dynamics are self-organized
on the network by end-to-end learning (26, 56). Although these
methods are convenient since they do not require explicit a priori
knowledge, they cannot actively use the prior symbolic structure,
and thus, symbolic structure only appears after the training. In con-
trast, we showed that the learning performance is greatly improved

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

11 of 12

by auxiliary symbols (see the Supplementary Materials and fig. S3).
In that sense, our method has an advantage over the conventional
end-to-end scheme.

Our method is also scalable to autonomous symbol generation
required in more advanced functionality. For example, in our meth-
od, M kinds of auxiliary symbols are given as a priori knowledge.
However, in a highly autonomous system, such as humans, symbols
are dynamically generated and destroyed because of developmental
processes. As demonstrated by Kuniyoshi and Sangawa (17), these
self-organizing symbolic dynamics can be realized by providing an
additional automatic labeling mechanism in the system. In addi-
tion, unsupervised algorithms for extracting discrete symbols from
the dynamics like the one introduced in (57–59) can be incorporated
into our system. In other words, it is possible to spontaneously gen-
erate symbols by embedding an unsupervised learning algorithm in
the system; this is a subject for future work.

Last, the dynamic phenomena obtained by our method are sig-
nificant from the viewpoint of high-dimensional dynamical systems.
As shown in Fig. 6, we demonstrated that small differences in the
initial network state were expanded by the chaoticity of the system,
which eventually led to drastic change in both the global symbol
transition pattern s(t) and the local dynamics x(t). Such tight inter-
action between microlayer and macrolayer is a phenomenon unique
to deterministic dynamical systems; that is, it cannot occur, in prin-
ciple, in a system where the higher-order mechanism is completely
separated from the lower-order one (e.g., independent random
variables). In addition, the global characteristics of dynamical sys-
tems are often analyzed by the mean-field theory. However, the
analysis by the mean-field approximation cannot capture the con-
tribution of microscopic dynamics to the macroscopic change.
Thus, our CI design method has a meaningful role in shedding light
on the interaction between micro- and macrodynamics in deter-
ministic chaotic dynamical systems.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/46/eabb3989/DC1

REFERENCES AND NOTES
 1. R. Pfeifer, C. Scheier, Understanding Intelligence (MIT Press, 2001).
 2. T. Flash, B. Hochner, Motor primitives in vertebrates and invertebrates. Curr. Opin. Neurobiol.

15, 660–666 (2005).
 3. R. D. Beer, A dynamical systems perspective on agent-environment interaction. Artif. Intell.

72, 173–215 (1995).
 4. H. Jaeger, Identification of behaviors in an agent’s phase space (Citeseer, 1995). This work is

a technical report. The document is available at http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.40.3355&rep=rep1&type=pdf.

 5. J. Tani, N. Fukumura, Embedding a grammatical description in deterministic chaos:
An experiment in recurrent neural learning. Biol. Cybern. 72, 365–370 (1995).

 6. K. Ikeda, K. Otsuka, K. Matsumoto, Maxwell-bloch turbulence. Prog. Theor. Phys. Suppl. 99,
295–324 (1989).

 7. K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in a network
of chaotic elements. Physica D. 41, 137–172 (1990).

 8. I. Tsuda, Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind.
World Futures 32, 167–184 (1991).

 9. I. Tsuda, E. Koerner, H. Shimizu, Memory dynamics in asynchronous neural networks.
Prog. Theor. Phys. 78, 51–71 (1987).

 10. M. Adachi, K. Aihara, Associative dynamics in a chaotic neural network. Neural Netw. 10,
83–98 (1997).

 11. I. Tsuda, Toward an interpretation of dynamic neural activity in terms of chaotic
dynamical systems. Behav. Brain Sci. 24, 793–810 (2001).

 12. I. Tsuda, Chaotic itinerancy and its roles in cognitive neurodynamics. Curr. Opin. Neurobiol.
31, 67–71 (2015).

 13. W. J. Freeman, Simulation of chaotic EEG patterns with a dynamic model of the olfactory
system. Biol. Cybern. 56, 139–150 (1987).

 14. A. Luczak, P. Barthó, K. D. Harris, Spontaneous events outline the realm of possible
sensory responses in neocortical populations. Neuron 62, 413–425 (2009).

 15. T. Kurikawa, K. Kaneko, Embedding responses in spontaneous neural activity shaped
through sequential learning. PLOS Comput. Biol. 9, e1002943 (2013).

 16. H. Suetani, International Conference on Artificial Neural Networks (Springer, 2019),
pp. 76–81.

 17. Y. Kuniyoshi, S. Sangawa, Early motor development from partially ordered neural-body
dynamics: Experiments with a cortico-spinal-musculo-skeletal model. Biol. Cybern. 95,
589–605 (2006).

 18. T. Ikegami, Simulating active perception and mental imagery with embodied chaotic
itinerancy. J. Conscious. Stud. 14, 111–125 (2007).

 19. J. Park, H. Mori, Y. Okuyama, M. Asada, Chaotic itinerancy within the coupled dynamics
between a physical body and neural oscillator networks. PLOS ONE 12, e0182518 (2017).

 20. J. Namikawa, J. Tani, A model for learning to segment temporal sequences, utilizing
a mixture of rnn experts together with adaptive variance. Neural Netw. 21, 1466–1475
(2008).

 21. J. Namikawa, J. Tani, Learning to imitate stochastic time series in a compositional way by
chaos. Neural Netw. 23, 625–638 (2010).

 22. J. Namikawa, R. Nishimoto, J. Tani, A neurodynamic account of spontaneous behaviour.
PLOS Comput. Biol. 7, e1002221 (2011).

 23. S. Steingrube, M. Timme, F. Wörgötter, P. Manoonpong, Self-organized adaptation
of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224–230 (2010).

 24. P. J. Werbos, Backpropagation through time: What it does and how to do it. Proc. IEEE 78,
1550–1560 (1990).

 25. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).

 26. Y. Yamashita, J. Tani, Emergence of functional hierarchy in a multiple timescale neural
network model: A humanoid robot experiment. PLOS Comput. Biol. 4, e1000220 (2008).

 27. Y. Mori, P. Davis, S. Nara, Pattern retrieval in an asymmetric neural network
with embedded limit cycles. J. Phys. A Math. Gen. 22, L525–L532 (1989).

 28. K. Nützel, J. Kien, K. Bauer, J. S. Altman, U. Krey, Dynamics of diluted attractor neural
networks with delays. Biol. Cybern. 70, 553–561 (1994).

 29. V. Folli, G. Gosti, M. Leonetti, G. Ruocco, Effect of dilution in asymmetric recurrent neural
networks. Neural Netw. 104, 50–59 (2018).

 30. H. Jaeger, The “echo state”approach to analysing and training recurrent neural networks
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report (2001), vol. 148, 13 p.

 31. K. Nakajima, Physical reservoir computing–an introductory perspective. Jpn. J. Appl. Phys.
59, 060501 (2020).

 32. W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural Comput. 14,
2531–2560 (2002).

 33. H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy
in wireless communication. Science 304, 78–80 (2004).

 34. H. Sompolinsky, A. Crisanti, H.-J. Sommers, Chaos in random neural networks. Phys. Rev. Lett.
61, 259–262 (1988).

 35. D. Sussillo, L. F. Abbott, Generating coherent patterns of activity from chaotic neural
Networks. Neuron 63, 544–557 (2009).

 36. R. Laje, D. V. Buonomano, Robust timing and motor patterns by taming chaos
in recurrent neural networks. Nat. Neurosci. 16, 925–933 (2013).

 37. B. DePasquale, C. J. Cueva, K. Rajan, G. S. Escola, L. Abbott, full-force: A target-based
method for training recurrent networks. PLOS ONE 13, e0191527 (2018).

 38. S. Fusi, E. K. Miller, M. Rigotti, Why neurons mix: High dimensionality for higher cognition.
Curr. Opin. Neurobiol. 37, 66–74 (2016).

 39. R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995).

 40. A. J. Ijspeert, A. Crespi, D. Ryczko, J.-M. Cabelguen, From swimming to walking
with a salamander robot driven by a spinal cord model. Science 315, 1416–1420
(2007).

 41. C. Liu, D. Wang, Q. Chen, Central pattern generator inspired control for adaptive walking
of biped robots. IEEE Trans. Syst. Man Cybern. Syst. 43, 1206–1215 (2013).

 42. D. Owaki, T. Kano, K. Nagasawa, A. Tero, A. Ishiguro, Simple robot suggests physical
interlimb communication is essential for quadruped walking. J. R. Soc. Interface 10,
20120669 (2013).

 43. K. Kaneko, I. Tsuda, Chaotic itinerancy. Chaos. 13, 926–936 (2003).
 44. H. Itoh, M. Kimoto, Multiple attractors and chaotic itinerancy in a quasigeostrophic model

with realistic topography: Implications for weather regimes and low-frequency
variability. J. Atmos. Sci. 53, 2217–2231 (1996).

 45. A. Ahmadi, J. Tani, A novel predictive-coding-inspired variational RNN model for online
prediction and recognition. Neural Comput. 31, 2025–2074 (2019).

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/cgi/content/full/6/46/eabb3989/DC1
http://advances.sciencemag.org/cgi/content/full/6/46/eabb3989/DC1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3355&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.3355&rep=rep1&type=pdf
http://advances.sciencemag.org/

Inoue et al., Sci. Adv. 2020; 6 : eabb3989 11 November 2020

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

12 of 12

 46. H. Korn, P. Faure, Is there chaos in the brain? II. Experimental evidence and related
models. C. R. Biol. 326, 787–840 (2003).

 47. D. V. Buonomano, W. Maass, State-dependent computations: Spatiotemporal processing
in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009).

 48. R. Yuste, From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497
(2015).

 49. J. P. Stroud, M. A. Porter, G. Hennequin, T. P. Vogels, Motor primitives in space and time
via targeted gain modulation in cortical networks. Nat. Neurosci. 21, 1774–1783 (2018).

 50. M. G. Perich, J. A. Gallego, L. E. Miller, A neural population mechanism for rapid learning.
Neuron 100, 964–976.e7 (2018).

 51. T. Taniguchi, N. Akashi, H. Notsu, M. Kimura, H. Tsukahara, K. Nakajima, Chaos
in nanomagnet via feedback current. Phys. Rev. B 100, 174425 (2019).

 52. T. Yamaguchi, N. Akashi, K. Nakajima, S. Tsunegi, H. Kubota, T. Taniguchi, Synchronization
and chaos in a spin-torque oscillator with a perpendicularly magnetized free layer.
Phys. Rev. B 100, 224422 (2019).

 53. J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros,
K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, J. Grollier, Neuromorphic
computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

 54. T. Furuta, K. Fujii, K. Nakajima, S. Tsunegi, H. Kubota, Y. Suzuki, S. Miwa, Macromagnetic
simulation for reservoir computing utilizing spin dynamics in magnetic tunnel junctions.
Phys. Rev. Appl. 10, 034063 (2018).

 55. S. Tsunegi, T. Taniguchi, K. Nakajima, S. Miwa, K. Yakushiji, A. Fukushima, S. Yuasa,
H. Kubota, Physical reservoir computing based on spin torque oscillator with forced
synchronization. Appl. Phys. Lett. 114, 164101 (2019).

 56. R. Nishimoto, J. Tani, Development of hierarchical structures for actions and motor imagery:
A constructivist view from synthetic neuro-robotics study. Psychol. Res. 73, 545–558 (2009).

 57. S. L. Frank, H. Jacobsson, Sentence-processing in echo state networks: A qualitative
analysis by finite state machine extraction. Connect. Sci. 22, 135–155 (2010).

 58. N. Gianniotis, S. D. Kügler, P. Tiňo, K. L. Polsterer, Model-coupled autoencoder for time
series visualisation. Neurocomputing 192, 139–146 (2016).

 59. H. Strobelt, S. Gehrmann, H. Pfister, A. M. Rush, Lstmvis: A tool for visual analysis
of hidden state dynamics in recurrent neural networks. IEEE Trans. Vis. Comput. Graph. 24,
667–676 (2018).

 60. I. Shimada, T. Nagashima, A numerical approach to ergodic problem of dissipative
dynamical systems. Prog. Theor. Phys. 61, 1605–1616 (1979).

Acknowledgments: This work was based on results obtained from a project
commissioned by the New Energy and Industrial Technology Development Organization
(NEDO). Funding: K.I. was supported by JSPS KAKENHI (grant number JP20J12815). K.N.
was supported by JSPS KAKENHI (grant number JP18H05472) and by MEXT Quantum
Leap Flagship Program (MEXT Q-LEAP) (grant number JPMXS0120319794). This work was
supported by NEDO [serial numbers 15101156-0 (dated 24 June 2016) and 18101806-0
(dated 5 September 2018)] and Chair for Frontier AI Education, School of Information
Science and Technology and Next Generation AI Research Center [serial number not
applicable (dated 1 June 2016)]. Author contributions: K.I. and K.N. conceived the idea
and designed the experiments. K.I. carried out the experiments and created the
demonstration. K.I. and K.N. wrote the manuscript. All authors discussed and
commented on the manuscript. K.N. and Y.K. directed the project. Competing interests:
The authors declare that they have no competing interests. Data and materials
availability: All data needed to evaluate the conclusions in the paper are present in the
paper and/or the Supplementary Materials. Additional data related to this paper may be
requested from the authors.

Submitted 22 February 2020
Accepted 24 September 2020
Published 11 November 2020
10.1126/sciadv.abb3989

Citation: K. Inoue, K. Nakajima, Y. Kuniyoshi, Designing spontaneous behavioral switching via
chaotic itinerancy. Sci. Adv. 6, eabb3989 (2020).

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/

Designing spontaneous behavioral switching via chaotic itinerancy
Katsuma Inoue, Kohei Nakajima and Yasuo Kuniyoshi

DOI: 10.1126/sciadv.abb3989
 (46), eabb3989.6Sci Adv

ARTICLE TOOLS http://advances.sciencemag.org/content/6/46/eabb3989

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2020/11/09/6.46.eabb3989.DC1

REFERENCES

http://advances.sciencemag.org/content/6/46/eabb3989#BIBL
This article cites 56 articles, 2 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances

License 4.0 (CC BY-NC).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on N
ovem

ber 12, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/content/6/46/eabb3989
http://advances.sciencemag.org/content/suppl/2020/11/09/6.46.eabb3989.DC1
http://advances.sciencemag.org/content/6/46/eabb3989#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

