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Abstract 1 

Deep learning in in-vitro fertilization is currently being evaluated in the development of assistive 2 

tools for the determination of transfer order and implantation potential using time-lapse data 3 

collected through expensive imaging hardware. Assistive tools and algorithms that can work 4 

with static images, however, can help in improving the access to care by enabling their use with 5 

images acquired from traditional microscopes that are available to virtually all fertility centers. 6 

Here, we evaluated the use of a deep convolutional neural network (CNN), trained using single 7 

timepoint images of embryos collected at 113 hours post-insemination, in embryo selection 8 

amongst 97 clinical patient cohorts (742 embryos) and observed an accuracy of 90% in choosing 9 
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the highest quality embryo available. Furthermore, a CNN trained to assess an embryo’s 10 

implantation potential directly using a set of 97 euploid embryos capable of implantation 11 

outperformed 15 trained embryologists (75.26% vs. 67.35%, P<0.0001) from 5 different fertility 12 

centers.   13 

[Main Text: ] 14 

Introduction 15 

Assisted reproductive technologies (ART) such as in-vitro fertilization (IVF), while a solution to 16 

many infertile couples have been inefficient with an average success rate of approximately 30% 17 

reported in 2015 in the US (1). IVF is also an expensive solution costing patients well over 18 

$10,000 out-of-pocket for each ART cycle in the US with many patients requiring multiple 19 

cycles to achieve successful pregnancy (1-3). Although multiple factors such as maternal age, 20 

medical diagnosis, gamete and embryo quality, and endometrium receptivity determine the 21 

success of ART cycles, the challenge of non-invasive selection of the highest available quality 22 

from a patient’s cohort of embryos (top-quality embryo) for transfer remains as one of the most 23 

important factors in achieving successful ART outcomes (4-16). 24 

Traditional methods of embryo selection rely on visual embryo morphological assessment and 25 

are highly practice-dependent and subjective (17-19). Fully automated assessments of embryos 26 

are challenging owing to the complexity of embryo morphologies. Emulating the skill of highly 27 

trained embryologists in efficient embryo assessment in a fully automated system is a major 28 

challenge in all of the previous work done in computer-aided assessments of embryos due to 29 

focus on measuring specific expert-defined parameters such as zona pellucida thickness 30 

variation, number of blastomeres, degree of cell symmetry and cytoplasmic fragmentation, etc. 31 

(20, 21).  32 
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Machine learning is loosely defined as a computer program that learns a given task over time 33 

through experience and improves itself to achieve the best possible task performance. In the past 34 

decade, advances in hardware compute performance and machine learning techniques have 35 

significantly improved their applicability in real-world medical and non-medical problems. 36 

Recently, machine learning has been proposed as a solution for automated analysis of embryo 37 

morphologies (21-26). This work makes use of a deep convolutional neural network (CNN), a 38 

representation learning technique, that has been proven to be effective in image classification 39 

tasks. Unlike most prior computer-aided algorithms, including some techniques of machine 40 

learning used for embryo assessment, the reported CNN architecture allows automated embryo 41 

feature selection and analysis at the pixel level without any interference by an embryologist (20, 42 

21). Such networks do not depend on human-specified features and can develop an ability to 43 

evaluate embryos categorically through iterative learning from thousands of examples. The use 44 

of deep-learning in IVF has also been explored, however,  these recent neural network-based 45 

approaches have focused on either classifying embryos based on morphological quality and were 46 

not evaluated for transfer outcomes, or were developed with the use of time-lapse series of 47 

images towards the evaluation of implantation (25, 27). It is important to emphasize here that 48 

most fertility centers do not possess time-lapse imaging hardware even in the United States of 49 

America (28). The lack of availability of such hardware limits an otherwise promising 50 

technology mostly to resource-rich settings and fail to improve quality of and access to care in 51 

resource-constrained settings where such advances are sorely needed (29, 30). Furthermore, in 52 

current clinical practice, embryos with the highest morphological grades (top-quality) are the 53 

first to be transferred, however, clinically these decisions are performed manually, even with 54 

time-lapse imaging systems. The development of networks that can measure an embryo’s 55 
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potential for implantation and help in rank ordering  embryos in a patient embryo cohort for 56 

transfer have utility in virtually all fertility centers. 57 

Conventionally, embryo transfers are performed at the cleavage or the blastocyst stage of 58 

development. Embryos are at the cleavage stage 2-3 days after fertilization and develop further 59 

in suitable culture conditions to reach the blastocyst stage 5-7 days after fertilization. Blastocyst 60 

embryo transfers, in particular, have been associated with better implantation rates and have 61 

helped lower the number of embryos transferred at a time (31). Therefore, in this study, we have 62 

investigated the use of a CNN pre-trained with 1.4 million ImageNet images and transfer-learned 63 

using 2440 static human embryo images recorded at a single time-point of 113 hours post 64 

insemination (hpi) for the development of neural networks that can help identify embryos 65 

capable of implantation and for identifying the top quality embryos (Figure 1). The top-quality 66 

embryos were identified by combining a previously developed network (Xception architecture) 67 

trained to classify embryos based on its blastocyst quality with a genetic algorithm scheme 68 

(Figure 1) (32). The original neural network was trained on a hierarchical system of 69 

categorization, derived from a clinical Gardener-based grading system, to minimize data sparsity 70 

and improve overall network learning (26, 32-34). The two major categories of non-blastocysts 71 

and blastocysts made up the inference classes, which included the training classes 1, 2, and 3, 4, 72 

5, respectively (Figure 1). Pre-training with a large dataset of images from ImageNet honed the 73 

ability of the developed CNN to identify the shape, structure, and texture variations between 74 

morphologically complex embryos with minimal data requirements while the genetic algorithm 75 

helped in rank ordering embryos by generating unified scores (Figure 1). The developed network 76 

was evaluated using an independent test set comprising of 97 patient-embryo cohorts. Embryos 77 
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of the highest quality that were selected from the patient cohorts were evaluated using known 78 

implantation outcomes. 79 

Additionally, we also investigated if the neural network can be trained to directly differentiate 80 

between embryos based on their potential for implantation (Figure 1). Our tests with patient 81 

cohorts using the algorithm does not account for the ploidy status of the embryos. Since pre-82 

implantation genetic screened (PGS) euploid embryos are associated with higher implantation 83 

chance, we also designed a neural network to evaluate the network performance in refining the 84 

screened embryos based on their implantation potential. The evaluations using the patient 85 

cohorts tend to yield embryo selections with unknown outcomes or ploidy status, therefore, for 86 

this section of the study, we utilized a test set of 97 euploid embryos with known implantation 87 

outcomes. The CNN was trained and evaluated in identifying euploid embryos capable of 88 

implantation and the performance was compared against those of 15 embryologists from 5 89 

different fertility centers across the United States of America.   90 

RESULTS 91 

Evaluation of embryo selection based on embryo quality 92 

In our evaluations of the CNN in categorizing embryos imaged at 113 hpi based on their 93 

morphology, the network performed with an accuracy of 90.97% (area under the curve: 0.96) in 94 

differentiating between blastocysts and non-blastocysts (n=742) (26, 32) (Figure 2- figure 95 

supplement 1). The high accuracy indicated that the trained network was concordant with 96 

embryologists in categorizing embryos. These categorization scores (5 values per embryo) need 97 

to be used by taking into account the scores of other embryos in the cohort to establish a rank 98 

order. In order to use the five probability values effectively for calculating the embryo score, we 99 

utilized a genetic algorithm, which is well-suited for optimization problems with multiple 100 
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existing solutions. Here, the genetic algorithm empowered the developed CNN to make 101 

selections of the top-quality embryos within a patient’s embryo cohort at 113 hpi.  Therefore, 102 

once we established that the network was capable of categorizing embryos based on their 103 

morphologies with high accuracy, we used a genetic algorithm and the network defined 104 

probability values of the embryos, belonging to each of the 5 training classes, to rank order the 105 

embryos for transfer. The 5x1 vector weights generated by the genetic algorithm during its 106 

training phase were used in evaluating retrospectively collected embryo cohorts from 97 patients. 107 

The final weights utilized in this study were -10.01226347, -3.63697951, -3.32090987, 108 

2.15367795, and 2.8715555 for classes 1 through 5, respectively. Embryos were ranked by the 109 

algorithm from highest to the lowest. 110 

According to the American Society for Reproductive Medicine guidelines on the limits to the 111 

number of embryo transfer, 1 embryo is transferred for high prognosis patients with <37 years of 112 

age and 2 or more embryos are transferred for patients with >37 years of age as well as younger 113 

patients with low prognosis (35). Therefore, in this study, the selection accuracy was assessed for 114 

scenarios of single embryo transfers (SET) and double embryo transfers (DET). Using embryo 115 

cohort images (n=732) from the 97 patients, the accuracy of 5 well-trained embryologists’ 116 

selections were evaluated in comparison to selections made by the CNN + genetic algorithm 117 

(CNNg).  The rank-ordering performed by the algorithm may not utilize the same features used 118 

by embryologists in identifying the top embryos for transfer. Therefore, we initially evaluated 119 

the ability of both groups to effectively select (i) blastocyst(s) for transfer and (ii) the highest 120 

quality of blastocyst(s) (HQB) available for transfer. High-quality blastocysts are defined as 121 

embryos that met the freezing criteria (>3CC blastocyst grade; see methods) of the 122 

Massachusetts General Hospital (MGH) fertility clinic.  123 
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For blastocyst selections at 113 hpi, the CNNg algorithm performed with an accuracy of 98.96% 124 

for SET, which was similar (P>0.05) to the average accuracy of the embryologists (96.91%, CI: 125 

94.69% to 99.12%) (n=5) (Figure 2A). However, when two embryo selections for DET were 126 

allowed based on blastocyst and non-blastocyst classification, the CNNg algorithm performed 127 

with an accuracy of 100.00%, which was better (P<0.05) than embryologists (n=5) who 128 

performed with an average accuracy of 98.76% (CI: 97.69% to 99.83%) (Figure 2B).  129 

Towards the selection of HQB at 113 hpi, the accuracy of the CNNg algorithm for SET was 130 

89.69% similar (P>0.05) to the embryologists (n=5) who performed with an average accuracy of 131 

90.31% (CI: 87.50% to 93.11%) (Figure 2C). When two embryo selections for DET at 113 hpi 132 

were allowed, the system performed with a better (P<0.05) accuracy of 97.94% in comparison to 133 

the embryologists who performed with an average accuracy of 96.91% (CI: 96.00% to 97.81%) 134 

(Figure 2D). The evaluations indicated that the two groups made selections that were of similar 135 

quality or marginally different quality. Since the network was trained on the MGH classification 136 

criteria, the comparable performance of the CNNg algorithm and embryologists indicated that 137 

the neural network has trained itself sufficiently and made selections that were of clinically 138 

acceptable quality. In our evaluations, the selections made by each group, while were of similar 139 

quality, were observed to not necessarily be the same embryos from each cohort, and thus their 140 

transfer outcomes may be different.  141 

Evaluation of selections using implantation outcomes 142 

It is critical to evaluate the system performance in selecting the patient embryos based on 143 

pregnancy (implantation) outcome. Typically, in a clinical IVF cycle, the top-quality embryo is 144 

selected from the cohort of available embryos and is transferred to the patient. Embryos, which 145 

are similarly of a high-quality, are often frozen based on the freezing criteria used by the fertility 146 
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center, for transfers in subsequent procedures for the same patient if needed. Frozen cycle 147 

transfers are not performed for all patients. Hence, the CNNg algorithm was evaluated in embryo 148 

selection for SET at 113 hpi using patient embryo cohorts based on actual implantation outcomes 149 

of the selected embryos and associated cycle characteristics (n=97) are provided in 150 

Supplementary file 1 Table 1. The test dataset was retrospectively collected based on pre-defined 151 

selection criteria and evaluations of transfer outcomes were performed using fresh embryo 152 

transfer cycles. The system selected 97 embryos in 97 patient embryo cohorts (742 embryos in 153 

total), out of which 44 embryos had known implantation outcomes. The accuracy of the system 154 

in SET through embryo selection at 113 hpi based on its implantation outcome was 59.1% while 155 

the implantation success rate for the 102 transferred embryos at the MGH fertility center was 156 

44.1% for blastocyst transfers (Supplementary file 1 Table 2). Furthermore, prior reports suggest 157 

that in general practice, the average implantation rates for manual-based embryo selection and 158 

transfers at blastocyst stages can be as low as 34% (36).  159 

A limitation of a retrospective study is that not all embryos are transferred. Implantation 160 

outcomes of all embryos selected by the CNNg algorithm cannot be evaluated. Therefore, 161 

although the dataset was prepared not taking into consideration the availability of subsequent 162 

frozen cycle transfers, we investigated with the fertility center if the patients of the test set had 163 

any subsequent embryo transfers using the frozen embryos from the test set. In such a scenario, 164 

when we consider subsequent frozen embryo transfers, 5 embryos originally selected by the 165 

CNNg algorithm at 113 hpi had known implantation outcomes of which 4 led to successful 166 

implantations (Supplementary file 1 Table 2). The accuracy of the CNNg algorithm in SET, 167 

when both fresh and frozen embryo transfers were considered, was 61.2%. In such a scenario, for 168 

this specific dataset, the implantation success rate at MGH fertility center was 48.5% for 169 
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blastocyst transfers when including both frozen and fresh transfers. The results suggest that the 170 

CNNg algorithm has the potential to improve clinical transfer outcomes. It should, however, be 171 

emphasized that in this particular analysis the performance of the system was evaluated by only 172 

using the embryos selected by the network and the embryologists.  173 

Furthermore, to evaluate if a CNN can potentially measure implantation potential through 174 

morphology alone, a pooled set of 29 embryo images with known transfer outcomes in a pilot 175 

study was used by the network to evaluate embryos based on their potential for implantation. The 176 

network was trained as a binary classifier and the SoftMax probability values outputted by the 177 

network was used as the embryo’s implantation potential. The CNN was retrained using 281 178 

embryo images with known implantation outcomes that did not overlap with the test set and the 179 

final classification layer was replaced with the two classes- negative implantation and positive 180 

for implantation. The ability to differentiate embryo was measured through a receiver operating 181 

characteristic curve (ROC) analysis, establishing area under the curve (AUC) of 0.771 (CI: 0.579 182 

to 0.906) (P<0.05) and the CNN performed with an accuracy of 82.76% (CI: 64.23% to 94.15%) 183 

(Figure 3A). 10 out of 11 embryos had implanted with an implantation potential of over 0.47 and 184 

similarly, for embryos that scored less than 0.47, 12 out of 18 embryos did not implant according 185 

to the patient cycle history.  186 

Evaluation of Euploid embryos based on their implantation potential 187 

After we observed high performance in the artificial intelligence (AI)-based implantation 188 

potential prediction when compared with historical clinical data, we further conducted a multi-189 

center AI system evaluation by comparing the implantation potential prediction accuracies 190 

obtained from the AI system and the embryo selections of 15 embryologists from five different 191 

fertility clinics. Here, we used 97 genetically screened euploid embryos transferred at 113 hpi to 192 



10 
 

remove the effect of chromosomal abnormalities as a confounder, which existed in the pilot 193 

study (29 patient embryo). The IVF cycle characteristics in which these embryos were used are 194 

provided in Supplementary file 1 Table 3. The system performed with an accuracy of 75.25% 195 

while the embryologists performed with an average accuracy of 67.35% (CI: 64.52% to 70.19%) 196 

in differentiating euploid embryos based on their implantation outcome (Figure 3B). A one-197 

sample t-test revealed that the CNN significantly outperformed (P<0.05) the embryologists in 198 

predicting embryo implantation by measuring the implantation potential of euploid embryos 199 

using a static image obtained at a single time-point of 113 hpi. The average implantation score of 200 

euploid embryos misclassified based on their implantation outcome using the CNN was 0.57. 201 

95% of the misclassified euploid embryos possessed scores ranging between 0.51 and 0.63. 202 

Implantation scores closer to 0.5 indicate lower confidence in system predictions while 203 

implantation scores closer to 0 or 1 indicate higher confidence in system predictions (Figure 3- 204 

figure supplement 1). These results indicate that the majority of system errors in misclassifying 205 

the euploids occur among the embryos with the lowest confidence. Approximately 91% of 206 

euploid embryos with implantation potential scores of 0.80 or higher, and nearly 81% of 207 

embryos with implantation potential scores above 0.66 successfully implanted when transferred 208 

(Figure 3- figure supplement 1). Similarly, around 78% of euploid embryos with an implantation 209 

potential <0.33, failed to successfully implant when transferred (Figure 3- figure supplement 1). 210 

These results suggest that the network’s implantation scores agree well with transfer outcomes 211 

even in high-quality euploid embryos. 212 

Discussion 213 

Deep neural networks hold value in aiding clinical decision making and have received significant 214 

attention from the IVF community. The deep-neural network-based approach showcased here is 215 
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an objective approach to one of the more subjective but important parts of a clinical IVF process- 216 

embryo selections for transfer (22). Since over 80% of fertility clinics rely on non-time lapse 217 

imaging systems as part of their clinical processes, such neural network-based algorithms that 218 

rely purely on static single timepoint images can effectively assist in decision making (28). In 219 

our study, we have evaluated two neural network-based approaches for improving embryo 220 

selection.  221 

Firstly, we have demonstrated that a deep-neural network in combination with a genetic 222 

algorithm (CNNg) can yield a continuous score that represents the quality of the embryo and that 223 

objective orders of transfer can be determined for a given set of embryos using such scores. The 224 

ranking algorithm studied here was able to consistently select embryos of the highest available 225 

morphological quality. Although the network was trained to classify embryos based on their 226 

quality, it performed well even in differentiating between embryos of the same class when 227 

combined with a genetic algorithm. The benefit of such systems is particularly evident in cases 228 

where selections made by the clinic/embryologist, although of similar grade, resulted in lower 229 

overall transfer success rates. Our networks only focused on the morphological features for 230 

embryo quality assessments due to data scarcity. The network’s learning can be compounded 231 

with data from additional timepoints, morphokinetics, and patient and cycle-specific information 232 

for more personalized IVF predictions and outcomes. Recently, Tran et al. studied the use of a 233 

deep-learning model (IVY) that can analyze whole time-lapse videos instead of specific time 234 

points for fetal heartbeat prediction (27). However, the study was flawed since embryos with 235 

unknown outcomes (non-transferred embryos) were considered as negative outcome cases, 236 

which made up most of their dataset (~90%). The heavy class bias in their dataset and improper 237 

study design severely limits any conclusions that can be drawn from the work. A major hurdle 238 
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for the development of networks capable of analyzing multi-timepoint images and with 239 

additional patient-specific information is the limited availability of diversified data with known 240 

clinical outcomes. During training, the lack of availability of such data prevents the networks 241 

from effectively learning relevant outcome-associated patterns in data. The need for data scales 242 

with the complexity of the task and the number of variables introduced. While this work focuses 243 

primarily on the utility of deep-learning algorithm for embryo evaluations at 113 hpi, it is also 244 

possible to develop similar networks for embryo evaluations at different timepoints, provided 245 

that sufficient data with matched outcomes/annotations are available. We have evaluated a 246 

similar network for use with cleavage-stage embryos (70 hpi) and showed that deep-learning 247 

approaches can outperform trained embryologists in certain tasks such as embryo selection (24, 248 

37).   249 

A major concern in any clinical practice, however, is the loss of viable embryos due to system 250 

errors. Therefore, the AI-based embryo selection algorithm reported here does not make any 251 

suggestion on discarding embryos. All embryos assessed by the CNNg in the selection process 252 

may be cryopreserved as per clinical practice. Thereby our approach will not negatively affect 253 

the cumulative pregnancy rate since viable embryos will not be lost. However, it may improve 254 

the pregnancy rate as the system may be able to improve the chance of achieving a pregnancy 255 

faster with fewer embryos transferred. Furthermore, it is important to note that in its current 256 

stage this system is intended to act only as an assistive tool for embryologists. The embryologists 257 

can include the system’s prediction to make better judgments during embryo selection. The 258 

scores provided by the algorithm are continuous, but it can also be easily modified to present its 259 

scoring results in both binary and a more categorical format.   260 
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Clinically, besides morphological features, various other important metrics and parameters are 261 

considered by embryologists at the time of decision making such as taking into account the 262 

ploidy status of the transferable embryos. PGS verified euploid embryos have been shown to 263 

possess a higher probability of successful outcome but cost a hefty premium on top of the cycle 264 

costs at most fertility centers in the United States (38). Furthermore, for patients with two or 265 

more euploid embryos, additional assessments of embryo morphology are required to select the 266 

best embryo based on their morphology for transfer, since euploids do not inherently guarantee 267 

implantation. Thus far, to the best of our knowledge, no system, deep-learning-based or 268 

otherwise, has been shown to be capable of differentiating between euploid blastocysts based on 269 

their capacity for implantation. Euploid embryos are usually of the highest available quality and 270 

differentiating between them objectively and reliably through manual analysis can be extremely 271 

challenging. The CNN-based approach, through direct estimations of implantation potential from 272 

113 hpi embryo morphology, outperformed trained embryologists in identifying implanting 273 

embryos from a set of PGS euploid embryos. This accomplishment exhibits the potential of 274 

artificial intelligence-based approaches to improve success rates in the IVF lab. Our observations 275 

indicated that the system performed with a significantly better agreement with the actual 276 

implantation outcome for embryos with implantation scores closer to 1 or 0 (Higher confidence). 277 

Furthermore, the comparison between the decisions made by 15 embryologists from different 278 

fertility centers in the US and the deep-neural network showcased that neural networks can 279 

outperform embryologists in identifying embryos capable of implantation. Hence, by applying 280 

the suggestions of a CNN, a trained embryologist can improve their selection of the embryo with 281 

the highest implantation potential.  282 



14 
 

Advances in artificial intelligence have fostered numerous applications that have the potential to 283 

improve standard-of-care in the different fields of medicine. While other groups have also 284 

evaluated different use cases for machine learning in assisted reproductive medicine, this 285 

approach is novel in how it used a CNN trained on a large dataset to make predictions based on 286 

static images. The approach has shown the potential of CNNs to be used in aiding embryologists 287 

to select the embryo with the highest implantation potential, especially amongst high-quality 288 

euploid embryos. Although the current retrospective study shows that these systems can perform 289 

better than highly-trained embryologists, randomized control trials are required before routine 290 

use in clinical practice is adopted.  291 

Materials and methods 292 

Data collection and preparation 293 

Data were collected at the Massachusetts General Hospital (MGH) fertility center in Boston, 294 

Massachusetts. We used 3,469 recorded videos of embryos collected from 543 patients with 295 

informed consent for research and publication, under an institutional review board approval for 296 

secondary research use. Videos were collected for research after institutional review board 297 

approval by the Massachusetts General Hospital Institutional Review Board (IRB#2017P001339 298 

and IRB#2019P002392). All the experiments were performed in compliance with the relevant 299 

laws and institutional guidelines of the Massachusetts General Hospital, Brigham and Women's 300 

Hospital, and Partners Healthcare. The videos were collected using a commercial time-lapse 301 

imaging system (Vitrolife Embryoscope). The imaging system used a Leica 20x objective that 302 

collected images at 10 min intervals under illumination from a single 635 nm LED. Each 303 

patient’s set of embryos were exported as videos (.avi) using the imaging system software. The 304 

videos of individual embryos were broken down into their respective frames to extract images 305 
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from all timepoints post insemination. The images were identified by their timestamps and only 306 

images collected at 113±0.05 hours post insemination were processed and used in this study. The 307 

extracted images were 250x250 pixels and they were cropped to 210x210 pixels. The cropping 308 

removed both the timestamps and identifiers present in the frame.  All embryos used in the study 309 

were annotated using images from the fixed time-points (113 hpi) by senior-level embryologists 310 

with a minimum of 5 years of human IVF training. Annotations for embryo implantation were 311 

assigned based on clinical outcomes. Out-of-focus images were included in the datasets and used 312 

for both testing and training. Only images of embryos that were completely non-discernable were 313 

removed from the study as part of the data cleaning procedure.  314 

Hierarchical categorization: 315 

The two networks in this study used two categorization systems. The network focused on the 316 

rank ordering of embryos used a hierarchical categorization system. The embryo images at 113 317 

hpi time point were categorized between training classes 1 through 5 as described in detail 318 

elsewhere (32). Briefly, degenerated embryos, which did not begin compaction formed Class 1 319 

while class 2 embryos were those that reached the morula stage by 113 hpi. Classes 1 and 2 320 

together formed ‘non-blastocysts’ inference class. Class 3 embryos exhibit features of an early 321 

blastocyst which is highlighted by the presence of blastocoel cavity and thick zona pellucida but 322 

lack expansion. Class 4 embryos were blastocysts with blastocoel cavities occupying over half of 323 

the embryo volume but either their inner cell mass (ICM) or trophectoderm (TE) was of poor 324 

quality. They are non-freezable quality embryos (<3CC), where 3 represents the degree of 325 

expansion (range 1-6) and C represents the quality of ICM and TE (range A-D), respectively. 326 

Class 5 embryos, however, met cryopreservation criteria (>3CC) and included full blastocysts to 327 

hatched blastocysts. Classes 3, 4, and 5 together formed ‘blastocysts’ inference class. The 2 328 
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inference classes are used since the differentiation of blastocysts and non-blastocysts is a 329 

universally accepted categorization that is relevant to embryologists, while the 5 class 330 

categorization is specific to the neural network training, performance and evaluation (32).  331 

Networks that were focused on estimating an embryo’s implantation potential used a two-class 332 

training and inference system- positive for implantation and negative for implantation.  333 

Neural network training for 113 hpi 334 

The 113 hpi evaluation dataset included images of 2,440 embryos categorized across five classes 335 

post-cleaning based on their clinical annotations made at 113 hpi. Our training set for this 336 

classification task used 1,188 images with a validation dataset of 510 images obtained at 113 hpi. 337 

With the availability of unskewed validation sets prior to augmentation, we used a data generator 338 

during training, which performed random rotations and flips across all classes on the fly. The 339 

system performing with an accuracy of 90.97% was used in this study in combination with our 340 

genetic algorithm. The genetic algorithm was trained and tested with the training data prior to 341 

testing it with our independent test data. No human interaction was required/performed once the 342 

images were provided to the system during testing, as the entire process was fully automated. 343 

The independent non-overlapping test set consisted of 742 images of embryos originating from 344 

97 patients. The selections were compared with embryologist selections. The network was also 345 

trained to classify embryos with successful and unsuccessful implantation. 281 embryo images 346 

with known implantation outcomes were used for training. Implantation signifies the attachment 347 

of a blastocyst into the endometrium. The status of implantation was clinically verified by 348 

ultrasound ~6 weeks after embryo transfer. 97 euploid embryos were evaluated by 15 349 

embryologists, including director level embryologists from 5 different fertility centers.  350 

Embryo selection algorithm development 351 
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A genetic algorithm was designed to perform selections in combination with the neural network. 352 

The genetic algorithm component utilizes the probability scores of every embryo belonging to 353 

each of the 5 different classes to generate a transfer score that can be used to effectively identify 354 

the best embryo available in a cohort. For system evaluations, we used an independent set of 355 

embryos (100 patients; 2-12 embryos per patient), with no overlap with the training data set used 356 

for any prior exercise. The patient cohorts were chosen under the following criteria: (i) each 357 

patient embryo cohort had to possess at least two 2PN embryos, and (ii) at least one embryo of 358 

the patient embryo cohort developed to blastocyst stage by 113 hpi.  359 

Genetic algorithm 360 

We trained a genetic algorithm to select the morphologically highest quality embryo from a given 361 

cohort. There are four phases namely initialization, selection, crossover, and mutation. The 362 

classified embryos for each patient were sorted according to their identifier numbers allotted by 363 

the deep neural network. A population of weights was generated at random during initialization. 364 

A population size of 100 was generated with a 5×1 matrix representing each weight. Each weight 365 

defined a possible solution for the rank-ordering of embryos based on their quality using the 5 366 

training classes. The dot product of the weights with the output logits provided by the CNN was 367 

used in the calculation of the fitness. The algorithm runs multiple cycles to select the optimal set 368 

of weight towards achieving the appropriately suitable rank order of embryos based on their 369 

qualities. At each cycle, all the weight sets obtained using the given population were used rank-370 

ordering embryos within the training set. The best 20 weight sets were selected in each cycle. 371 

These selected weights (specimens) were then bred with each other with a probability set to 20%. 372 

It randomly selected 2 specimens from the selected top pool and created a random binary 5×1 373 

matrix, where 1 represents that the given element should be switched in cohort and 0 represents 374 
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that given element should not be switched within the cohort. The fitness function checks if the 375 

selected embryo belongs to the highest class available within the tested cohort. It checks if the 376 

selected solution (specimen) picked the embryo belonging to the top class in a given cohort of 377 

patient embryos. If the selected embryo belonged to the top class, the score was increased and if 378 

it did not, the score was not modified. After iterating for all patients’ cohorts, the total scores 379 

were used to select the best 20 weights of the given population and were taken for crossover and 380 

mutation to repeat the process. The new specimens replaced their parents in the top selected 381 

group of embryos. Otherwise, the matrix remained the same. After breeding, each specimen from 382 

the top selected group was mutated to give 5 mutations by adding a random float 5×1 matrix with 383 

a probability of 20%. These mutations were then added to the new population and the selection 384 

step was repeated with the new population of 100. The genetic algorithm ran until the entire 385 

population converged to the same score after which a random weight was selected from the 386 

population as the final weight. Thus, final generated weights were used to further test the embryo 387 

cohorts within our test set. 388 

 389 

Acknowledgements 390 

The authors would like to thank embryology staff from Massachusetts General Hospital for 391 

participating in this study. The authors would also like to thank the Massachusetts General 392 

Hospital and Brigham and Women’s Hospital Center for Clinical Data Science for their support 393 

and fruitful contributions. Data and materials availability: Patients did not explicitly consent to 394 

their data being made public and access is therefore restricted. Requests for the anonymized data 395 

should be made to Charles Bormann (cbormann@partners.org) and Hadi Shafiee 396 

(hshafiee@bwh.harvard.edu). Requests will be reviewed by a data access committee, taking into 397 



19 
 

account the research proposal and intended use of the data. Requestors are required to sign a 398 

data-sharing agreement to ensure patients' confidentiality is maintained prior to the release of any 399 

data. 400 

 401 

Figures and results 402 

 403 

 404 

Figure 1. Classification and selection of embryos at 113 hpi. The schematic shows neural 405 

networks that classify, and rank order embryos based on their morphological quality (network A) 406 

and classify embryos based on the implantation potential (network B). The two networks share a 407 

common Xception architecture but the classification layers are specific to each task. Network A 408 

also uses a genetic algorithm that helps in generating embryo scores by using the softmax output 409 

of the network with weights generated by the algorithm during training. Embryo(s) with the 410 
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highest scores are evaluated for single embryo and double embryo transfer scenarios using the 411 

retrospective test set. The implantation potential is given by the softmax output of the neural 412 

network.  413 

 414 

Figure 2. Classification and selection of embryos at 113 hpi. A. The performance in single 415 

embryo selections by embryologists and the algorithm in selecting blastocysts using embryo 416 

morphologies obtained at 113 hpi from 97 patient cohorts. B. The performance in double embryo 417 

selections by the two groups in selecting blastocysts (n=97 patient cohorts). C. The performance 418 

in single embryo selections by the two groups in selecting the highest quality blastocysts (n=97 419 

patient cohorts). D. The performance of the two groups in selecting the highest quality 420 

blastocysts when two selections were provided (n=97 patient cohorts).  421 

 422 

Figure 3. Performance in identifying embryos based on implantation outcomes. A. The 423 

performance of the neural network system in identifying embryos that implanted compared to the 424 
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baseline historical implantation for the image set (n=29). The error-bar represents the Clopper-425 

Pearson exact binomial 95% confidence interval. B. The performance of the neural network 426 

system in identifying euploid embryos that implanted compared to the performance of 15 427 

embryologists in identifying implanting embryos (n=97).  The error-bar represents the 95% 428 

confidence interval of the embryologists’ performance in identifying implanting embryos. 429 

Supplementary figures 430 

Figure 2 – figure supplement 1. Confusion matrix of the network in classifying embryos 431 

based on their morphological quality. The matrix provides the network’s confusion between 432 

the 5 training classes. The dotted lines represent the separation between non-blastocysts (classes 433 

1 and 2) and blastocysts (classes 3,4, and 5). The reported accuracy is the binary classification 434 

performance accuracy of the CNN in differentiating between the two inference classes (non-435 

blastocysts and blastocysts). 436 

 437 

Figure 3 – figure supplement 1. Implantation potential and the relative implantation rates 438 

using the euploid embryo test set. The scatter plot illustrates the implantation potential of the 439 

euploid embryos evaluated in this study as measured by the neural network (n=97). The ground 440 

truth represents actual clinical transfer outcomes. 441 

 442 

Supplementary file 1: 443 

Supplementary file 1A. Patient population characteristics. All embryo images (except the 444 

PGT screened embryos) utilized for experiments reported in the study were obtained from cycles 445 
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that belong to the presented distribution of parameters. All values in table are presented as 446 

median along with the range unless noted otherwise.  447 

 448 

Supplementary file 1B. Total number of transfer outcomes for embryos selected by the 449 

network. A total of 102 fresh-transfer embryos had known implantation outcomes (45 embryos 450 

implanted). 28 frozen transfers were performed by the clinic where 18 implanted. The table lists 451 

only embryos which were selected by the network with known outcomes for both fresh cycles 452 

and in frozen subsequent transfers.  453 

 454 

Supplementary file 1C. Cycle characteristics of the euploid test set. Embryos used in the 455 

euploid embryo differentiation experiment based on the implantation outcomes, originated from 456 

cycles that belong to presented distribution of characteristics. These cycles are independent of 457 

the original 97 patient cohort test set and also the training data sets. All values in table are 458 

presented as median along with the range unless noted otherwise. 459 

 460 
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