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1. Introduction

Injection molding is a widely used manufacturing process for the
mass production of plastic materials. The method consists of a
mold, an injection machine, and molten polymer. First, solid

polymer pellets are melted via pressure
and heating, as it passes through a screw.
Then, the molten polymer is injected into a
mold and cooled until it solidifies. This pro-
cess is appropriate for complex-shaped
products that require short cycle times.
More than 1/3 of all thermoplastic materi-
als are created via injection molding to
meet the mass throughput of various
product industries, including those of elec-
tronics, medical devices, and automobile
parts.[1,2] Apart from its limitations (e.g.,
material selection for high fluidity polymer,
surface-quality problems, high costs of
machine and mold, and the need for expert
process condition control), injection mold-
ing still enables high competitiveness
because of its overwhelming throughput
compared with additive manufacturing
and machining.

Product quality is greatly influenced by
process conditions (e.g., time, pressure,
velocity, and temperature), which are set
by engineers.[3] In most cases, the process

conditions are controlled by field experts based on experience.
However, in some cases, an engineer uses computer-aided engi-
neering (CAE) software to optimize the injection molding.[4,5]

Simulation-based process optimization can be divided into two
methods: direct discrete and metamodel-based methods.[6]
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This study combines an artificial neural network (ANN) and a random search to
develop a system to recommend process conditions for injection molding. Both
simulation and experimental results are collected using a mixed sampling
method that combines Taguchi and random sampling. The dataset consists of
3600 simulations and 476 experiments from 36 different molds. Each datum has
five process and 15 geometry features as input and one weight feature as output.
Hyper-parameter tuning is conducted to find the optimal ANN model. Then,
transfer learning is introduced, which allows the use of simultaneous experi-
mental and simulation data to reduce the error. The final prediction model has a
root mean-square error of 0.846. To develop a recommender system, random
search is conducted using the trained ANN forward model. As a result, the
weight-prediction model based on simulated data has a relative error (RE) of
0.73%, and the weight prediction using the transfer model has an RE of 0.662%.
A user interface system is also developed, which can be used directly with the
injection-molding machine. This method enables the setting of process condi-
tions that yield parts having weights close to the target, by considering only the
geometry and target weight.
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Direct discrete numerical optimization does not require explicit
objective functions. However, it requires numerous simulations
and cannot be used to develop an integrated process optimization
system that covers various geometries andmaterials. Metamodel-
based optimization, which is more popular than direct
optimization, uses objective functions that are used to make
approximate results with acceptable accuracy. Initially, the sim-
plest metamodel-based optimization can predict the quality
of products using a simple regression model.[7] Moreover,
response-surface methodologies, artificial neural networks
(ANNs), radial basis functions, and Kriging methods are com-
mon metamodels used for injection-molding optimization.[8,9]

Among the various metamodels, ANN-based optimization has
been widely applied, because they can adopt major technical
advancements, such as new activation functions, improved ini-
tializers, dropout regularization, and emerging optimization.[10]

Mok et al. attempted to apply an ANN to set the initial process
conditions using a single hidden layer ANN under fixed geome-
try and material conditions. They demonstrated that ANN-based
optimization could surpass trial-and-error-based time and accu-
racy. Various additional studies have been conducted to improve
the performance of ANN-based optimization. Early studies devel-
oped ANNmodels based on a limited number of simulation data.
For example, the Taguchi method was applied to 27 data samples
for ANN training.[11–13] Due to the limited number of data, they
select the test data samples from the 27 cases, which cannot
ensure the accuracy about arbitrary data. Shen et al. collected
the 252 samples that dramatically reduced errors.[14] Data sam-
pling methods and data numbers have been studied using vari-
ous design-of-experiment (DoE) methods to find the optimal
sampling method with limited data. Full factorial sampling,
the Taguchi method, and combinations have been applied to con-
trol process conditions using trained ANN models.[11,15]

Input and output features were changed according to each
research’s objective. Mold and melt temperature, injection time,
packing pressure, and packing time are usually applied as
process conditions. Dynamic input data, such as pressure and
velocity profile data (instead of a single point), are normally
preprocessed using self-organizing maps (SOM).[16] For quality
characteristics, most cases measure warpage and weight. The
maximum von Mises stress is used as an output feature to eval-
uate the product’s impact resistance based on the simulation
data.[17] However, when experimental data are used, quality char-
acteristic features are restricted to easy measurable features,
such as temperature and weight (instead of warpage and maxi-
mum stress).

Metamodel-based optimization requires both an ANN predic-
tion model (from process condition to quality feature) and an
optimization method for the reverse model (from quality feature
to process condition). Genetic algorithms and particle-swarm
optimization have been used[18,19] to reduce computational cost
and to find reverse solutions (output feature to input features).
However, these studies only used simulation and experimental
data. Others, however, used simulation data to develop a predic-
tion model, testing it using experimental data.[20] Verification
results about injected lens curvature showed 4.28–16.2% relative
error (RE) between prediction and experimental results, which is
too high for the real applications. Furthermore, previous models
could not consider the characteristics of geometrically distinct

components, because they only dealt with single mold. This lim-
itation could be overcome using variety of mold data for training.
Hopmann et al. developed a prediction model that could be
applied to two different molds. However, each ANN model
was used for only one; an integrated ANN model was not
achieved.[21]

The major contributions of this article are the introduction of
versatile geometrical molds and applying transfer learning.
Various molds-based ANNmodel is first introduced for a general
prediction model. Most previous studies only changed the pro-
cess condition under one fixed-geometry condition. Therefore, to
apply a process-control system that uses an ANN, an engineer
must conduct the simulation or experiment to gather the training
data to create a surrogate model. However, we gather both
simulation and experimental data from 36 different molds
(3600 simulations and 476 experiments). After that, the influence
of geometry information is quantified and used as an input fea-
ture. We also introduce transfer learning,[22] which can combine
both simulation and experimental data, to improve accuracy.
It can minimize the gap between the simulation and real data,
and thus, it can improve the performance with limited experi-
mental data. Furthermore, we conduct the systemic approach to
determine data sampling and DoE methods, hyper-parameters,
and optimization to maximize the ANN’s performance. As a
final process, the system is integrated with a real injection-
molding machine based on a user interface system. This
research develops a system that recommends appropriate
process conditions by considering only geometry and the final
product information. With this system, non-expert engineers
can set up the machine in a short time.[23] The remainder of this
article is composed as follows. Section 2 describes the method of
data acquisition for simulation, experiment, and geometry.
Section 3 specifies the ANN algorithm for injection molding.
Section 4 develops the process-condition recommender
system. Section 5 presents discussion and conclusions.
Overall procedure of development of recommender system is
shown in Figure 1.

2. Data Acquisition

A data-driven ANN model required a training dataset of input
and output features. Thus, we must first determine the input fea-
tures, the output features, and the total sample number.
Following data acquisition and training, the ANN model can
predict its output using arbitrary input feature combinations.
The result of the ANN prediction model is a prediction value,
and the result of simulation or experiment (not the metamodel)
is the actual or true value. An example of a complete dataset is
shown in Table 1.

2.1. Sampling Method

Prior to gathering data, the process and quality features were
determined. The input and output features required several
necessary requirements: input features need to have a high influ-
ence on the product quality; it should be easy to quantify ANN
training, and it should be easily measured by both experiments
and simulations. Based on these requirements and previous
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Figure 1. Overall procedure of the process recommender system development. It comprises three main parts: data acquisition, ANN, and process
recommender system. Several sampling methods were considered, but mixed sampling gave the best result. With this sampling method, data from
simulation (3600 cases from 36 molds) and experiments (11 molds from 476 cases) were collected. Each datum contained 15 geometric features, which
were quantified by CAD viewer software. Then, the data were preprocessed for ANN learning. To increase the prediction model ability, feature extraction
and hyper-parameter tuning were applied. Furthermore, transfer learning was introduced to combine data from simulation and experiment to overcome
the limitations of experimental data (i.e., high noise, small amount). The well-trained ANNmodel was used to develop a recommender system by applying
a random search method. Finally, simulations and experiments were repeated to verify the recommender system.
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works, we selectedmelt temperature, mold temperature, filling time,
packing time, and packing pressure as variables. In previous works,
cooling time was used for high throughput. We assumed that the
cooling time is set to be long enough to not require optimization,
because we focus on product quality. As an output feature, only
the product’s weight is used. Many previous studies used warp-
age. However, in experiments, it has not been possible to mea-
sure displacement quickly and precisely. Thus, only weight was
used. For this reason, we demonstrate that weight can represent
the overall product quality by plotting the scattering of weight
and warpage having linear coefficients of determination R2

0.7023 (Figure S2, Supporting Information). Thus, the weight
can determine the product quality with the acceptable level.

Data were collected for use in developing the ANN prediction
algorithm. In general, the amount of required data increases if
the number of input and output parameters is large and the rela-
tionship between input and output is complex and non-linear.[14]

However, with most real problems, the relationship between
input and output cannot be expressed as a simple equation.
Thus, the complexity of given data must be determined
empirically.[24]

To find an optimal sampling method and the right number of
experiments, we compared various DoEs. Geometric and mate-
rial parameters were fixed, and only the process parameters were

changed (Figure 2a). All data were generated using simulation,
not by experiment. We upped the number of data from 48 cases
to 108 and 243. For each set, we compared full factorial
sampling,[25] random sampling, Taguchi’s method,[6,12] and a
mixed sampling that combined Taguchi with random
(Table S1, Supporting Information).

The same test set is required to determine the sampling
method. To obtain an effective test result, we randomly selected
the variables for each step size within the specified ranges
(Figure 2a) to generate 50 randomly sampled test sets. For exam-
ple, for filling time, the range was 0.5–1.5 s, and the step size was
0.1 s. Therefore, we selected one of 0.5, 0.6, … 1.4, 1.5 s.

For the case of 48 conditions, the full factorial sampling used
3� 2� 2� 2� 2 (filling time�melt temperature�mold tem-
perature� packing pressure� packing time, respectively) levels.
Random sampling was performed the same way as for the test
set. For Taguchi’s method, 27 of 48 cases were collected among
the combinations of three levels of the five features. For mixed
sampling, 27 out of 48 cases were extracted using Taguchi’s
method, and the remaining 21 cases were extracted via random
sampling.

The 108- and 243-sample cases were treated similar to the
48-sample cases. The 108-sample case with full factorial used
3� 3� 3� 2� 2 (filling time�melt temperature�mold

Table 1. The example of CAE dataset. Full dataset has 100 cases for each 36 molds. Geometry features are the same for identical mold number.

Mold
number

Fill
Time [s]

Melt
temp [�C]

Mold
temp [�C]

Packing
pressure [MPa]

Packing
time [s]

Overall
volume [cm3]

Cavity
volume [cm3]

Overall surface
area [cm2]

Cavity surface
area [cm2]

Weight
[g]

1 1 210 30 30 1 16.82 14.80 240.52 223.72 13.27

1 1 210 30 30 2 16.82 14.80 240.52 223.72 13.66

1 1 210 30 30 3 16.82 14.80 240.52 223.72 14.10

1 1 225 45 50 1 16.82 14.80 240.52 223.72 13.07

1 1 225 45 50 2 16.82 14.80 240.52 223.72 13.45

1 1 225 45 50 3 16.82 14.80 240.52 223.72 13.88

2 1 210 30 30 1 42.85 41.38 383.34 369.79 33.11

2 1 210 30 30 2 42.85 41.38 383.34 369.79 33.62

2 1 210 30 30 3 42.85 41.38 383.34 369.79 34.32

2 1 225 45 50 1 42.85 41.38 383.34 369.79 32.66

3 1 237 31 70 1 217.72 192.28 2270.21 2078.45 172.73

3 1 234 45 57 1 217.72 192.28 2270.21 2078.45 170.49

3 1 227 36 65 2 217.72 192.28 2270.21 2078.45 177.28

3 1 228 34 69 2 217.72 192.28 2270.21 2078.45 178.11

3 1 227 51 33 1 217.72 192.28 2270.21 2078.45 169.47

3 1 240 60 45 2 217.72 192.28 2270.21 2078.45 173.27
..
.

36 2 210 60 50 3 19.12 14.44 282.74 242.97 16.20

36 2 225 30 70 1 19.12 14.44 282.74 242.97 15.73

36 2 225 30 70 2 19.12 14.44 282.74 242.97 16.13

36 2 225 30 70 3 19.12 14.44 282.74 242.97 16.42

36 2 240 45 30 1 19.12 14.44 282.74 242.97 15.41

36 2 240 45 30 2 19.12 14.44 282.74 242.97 15.81

36 2 240 45 30 3 19.12 14.44 282.74 242.97 16.13
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temperature� packing pressure� packing time, respectively)
levels. Minimum and maximum levels were used for packing
pressure and packing time. Mixed sampling combined 27 samples
obtained using Taguchi’s method and 87 obtained randomly.
The 243-sample case used 3� 3� 3� 3� 3 (filling time�melt
temperature�mold temperature� packing pressure� packing
time, respectively) levels. Mixed sampling used the 27 cases cho-
sen using Taguchi’s method and 216 chosen randomly.

The methods yielded different results (Figure 2c). The error of
each model was quantified using root mean-square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

i¼1

ðyi � tiÞ
2

v

u

u

t (1)

whereN is the number of samples. yi is the predicted value of the
ith data sample, and ti is its true value.

Figure 2. a) Values of process parameters for sampling. Minimum, middle, and maximum levels (given) were used for the full-factorial and Taguchi’s
methods. Minimum, maximum and step values were used for the random sampling method. b) Schematics of full factorial, random, and mixed sampling
methods. c) Comparisons of results of sampling method and sample number. Mixed sampling method had the smallest RMSE error in most cases.
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Full-factorial sampling always showed poor results. Mixed
sampling obtained the best results when the number of the
sample was 48 or 243, giving similar results as those of random
sampling when the number of samples was 108. Therefore, in
this article, we used the mixed sampling method to maximize
the accuracy of machine-learning algorithms using limited data.
A training data example is described in Table 1.

2.2. Simulation

Machine-learning algorithms require different datasets to repre-
sent different patterns. There are various CAE approaches (e.g.,
finite volume method [FVM], boundary element method [BEM],
and finite-element method [FEM]) for this purpose. FVM is only
good for simple geometric processes, owing to its hexahedrons
mesh type. BEM has limited capability handling inhomogeneous
and nonlinear problems. Polymer behavior from solid to liquid is
highly non-linear, making it difficult to solve using BEM.
Therefore, FEM is the most appropriate method that can be used
to describe the process of injection molding with high accuracy,
despite being time-consuming.[5,26] Most commercial numerical
injection-molding simulations are built using FEM, including
Moldflow, Moldex, and Auto desk.

In this research, we simulated 36 molds of different shapes.
Injection-molding simulation required 2000–3000 s per case,
depending on the size and complexity of the mold. We conducted
100 cases for each mold, and we used a mixed sampling method.
The total number of cases generated from 36 molds was 3600.
Table S1, Supporting Information, shows an example of one of
the molds. The simulations were conducted using Maps 3D
(VMtech, Korea) CAE software.[27] The material was polypropyl-
ene, Hopelen J-150 (Lotte chemical, Korea) for all cases. We also
verified the simulation model by comparing the results of
arbitrary mold simulation and experimental data, as shown in
Figure S1, Supporting Information.

2.3. Experiment

A simulation requires a long setup and execution times and has
limited accuracy, and, although simulation and experimental
results have similar patterns, experimental values are generally
more accurate and useful than simulated ones.[28] Therefore,
the process recommender system built from CAE data is not
appropriate for application in real industry. Experimental data
must instead be obtained to guide the controls of an injection-
molding machine. Unfortunately, experimental data are much
more difficult to collect than CAE data. When process conditions
are changed, data are only accurate after the system reaches a
stable state. For example, when the mold temperature is
reduced from 50 to 45 �C, stabilization requires many cycles.
Furthermore, to reduce experimental error, the average weight
is used after repeating experiments ten times per condition.
These constraints limit the amount of data to be collected,
compared with the simulation case. We experimented with
50 conditions for each mold and used mixed sampling: 27 cases
obtained using Taguchi’s method, and 23 cases obtained by ran-
dom sampling (Table S2, Supporting Information). Using 11 dif-
ferent molds yielded 650 conditions. However, we only used 476,

because the others caused faults (e.g., burning, short shots, and
sink marks). The same materials that were used in the simula-
tion were used in the experiments. The measured weight was the
total of the runner and the product.

2.4. Geometry

Geometry information was quantified and included among the
ANN input variables. If the 3D or mesh information were to
be used as geometry information, the dimension of the data
would become too large, and learning could not be performed
as normal. Therefore, only variables that can be automatically
quantified using a printing stereolithography (STL) file were used
to make injection-molding ANN models.[29] The 15 pieces of
shape features (Figure 3a) were extracted and jointly developed
using computer-aided design (CAD) viewer software (VMtech,
Korea). Table S3, Supporting Information, shows the list of 36
molds and the data number of each.

Using the CAD viewer, a user can extract quantified geometry
information using the product STL file without simulation. Most
geometry features (e.g., volume, surface area, and projection
area) can be easily obtained from the STL file without special
methods. Some features, however, require analysis using appro-
priate algorithms. For example, we used the shrink-sphere
method to obtain thickness information for the geometry of
the injection-molding product.[28] In this method, to calculate
the thickness of a point, several spheres are created surrounding
that point. Then, each sphere’s volume is increased until all
spheres touch. Then, the thickness of the point is obtained by
the smallest diameter that fits within the surrounding spheres.[30]

Another feature is flow length, which is an index that evaluates
the distance from the gate to the filling end, using only the shape
information without simulation. To do this, the shortest path
between elements is found using the Dijkstra algorithm.[31]

The final output from the CAD viewer is Json-type data divided
into entire information, cavity information, and gate information
at the first level. Detailed values are included at the next level.
To utilize this information, we developed a Python module that
passes the geometry information of Json-type data from the CAD
viewer.

3. Artificial Neural Network

An ANN algorithm was used to predict the final product proper-
ties. The smallest unit cell is a neuron. Each neuronmultiplies its
input by a weight, and then uses a transfer function to generate
an output netj as

netj ¼
X

n

i¼1

ðxiwij þ bÞ (2)

where wij is the weight value from j to i, xi is the i input value,
n is the number of input, and b is the bias value. Then, netj
passes to a non-linear activation function. Various activation
functions can be used, depending on the model structure
and data.

The neuron is one node of the overall ANN structure, which
consists of three parts: the input, output, and hidden layers.
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The ANN training procedure consists of forward and backward
propagation. Forward propagation calculates the final value using
the updated weight value from input to output layers. Thus,

appropriate updating of weight and bias values is the key point
of ANN training. Backward propagation updates those weight
and bias values to minimize the error between the forward

Figure 3. a) Schematic of data gathering for 36 different molds. Each mold has 15 geometric features and five process features. b) Sensitivity analysis
result depending on the number of geometric features. c) Feature extraction error comparing result. The case using four features case was most accurate
for averages of both the best-300 models and best-10 models.
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propagation result and the data output.[32] The gap between the
target value and forward result is evaluated by calculating
the RMSE.[33]

Our weight-prediction model was generated in three steps.
First, the data were preprocessed for machine learning. This pro-
cess includes scaling and data separation. Next, the appropriate
ANN structure and parameters for the data were selected using
hyper-parameter tuning. We compared both grid and random
searches for hyper-parameter optimization. Finally, transfer
learning was used to combine simulation and experimental data.

3.1. Data Preprocessing

Data preprocessing consists of two main parts: unification of the
distribution of the input data, and separation of the data into
training, validation, and test sets. If the scales of the input values
are different, the convergence speed slows, and the accuracy
decreases.[34] The process conditions also have very different
scales. For example, melt temperature varies from 180 to 200 �C,
whereas a filling time varies from 0.5 to 1.5 s. Feature scaling is
performed to eliminate this scale difference. We want to use
information about patterns of data in machine learning via scal-
ing methods.[35] In this study, min–max normalization was used

P ¼ D�Dmin

Dmax � Dmin
� ðPmax � PminÞ þ Pmin

Pmax ¼ 0.9

Pmin ¼ 0.1

(3)

where P is a normalized datum, D is the input datum, Dmin and
Dmax are, respectively, the minimum andmaximum values of the
original data, and Pmax and Pmin are, respectively, the upper and
lower boundaries, after normalization. After normalization, all
variables range from 0.1 to 0.9.

After data re-scaling, the data were divided into a training set, a
validation set, and a test set. The training set was used to learn the
ANN model, and the validation set was used for hyper-parameter
tuning. The test set was used to evaluate the accuracy of the tuned
model. In general, the ratio between the validation and test sets is
10–15%, depending on the number of data. The validation and test
set ratios decrease with the total amount of data. When the num-
ber of data is very small, “leave one out” cross-validation is used.[33]

In this study, data separation was performed differently for the
simulation and experimental cases, because the numbers of sim-
ulation data and experimental data were different. The simula-
tion considered 36 molds (3600 samples). The 28 molds (2800
samples) were used as the training set, six molds (600 samples)
were used as the validation set, and two molds (200 samples)
were used as the test set. The experiment evaluated 50 samples
from 11 molds. Some samples were not available. Thus, we used
data that had been collected previously. We used ten molds
(327 samples) as the training set, two molds (99 samples) as
the validation set, and one mold (50 samples) as the test set.

3.2. Sensitivity Analysis

A sensitivity analysis was conducted using Equation (4)[36] to
determine the main features for the prediction model.

Sensitivity ≡ Output change ð%Þ= Input change ð%Þ (4)

The relationship between the input and output of injection
molding is not simply linear. Thus, we performed sensitivity
analysis for changing ratios. We built an ANN model with sim-
ulation data. The volume- and surface-area-related features have
a significant effect on the final product weight.

To select the final geometry features for an ANN model, we
built several models with different geometries (i.e., different
input dimensions) (Figure 3b). Models having 300 different
hyper-parameters were generated for each number of geometry
features used, and the appropriate number of geometry features
was evaluated using the average of the top 10 and 300 ANN
models. The averages of top-10 RMSEs were 0.373, 0.530, and
1.698 for 4, 9, and 15 geometry features, respectively. The aver-
age of the 300 RMSEs was 2.749, 4.542, and 6.215 for 4, 9, and 15
geometry features, respectively. The tendency was similar to the
top-10 result (Figure 3c). Therefore, we used four geometry fea-
tures for the final ANNmodel. In the general case, more features
will help increase accuracy. However, in this article, the mini-
mum geometry features case had the best RMSE, because the
output feature was the only weight of products. Volume and
surface area information have significant effects on the final
product’s weight compared with other features, such as flow
length, projection area, and thickness. Moreover, owing to the
lack of geometrical diversity (36 different molds), more geometry
features were not available.

3.3. Hyper-Parameter Tuning

To build an ANNmodel, many parameters should be considered,
(e.g., activation function, optimizer, initializer, learning rate,
layer, node, epoch, dropout, and batch size). Those hyper-
parameters have significant effects on prediction accuracy. In
this section, we compare and analyze various types of hyper-
parameters. For the activation function, optimizer, and initial-
izer, we used the widely used methods.[37] Then, we conducted
a random search to determine the remaining hyper-parameters
(i.e., layer, node, epoch, dropout, learning rate, and batch size).

Determining the activation function, optimizer, and initializer
is a very complex problem. The appropriate method depends on
the data. Some papers have shown that the appropriate initializer
depends on the type of activation function.[38] Therefore, in this
article, we empirically determined this function by combining
three hyper-parameters: activation function, optimizer, and
initializer. We then used RMSEs to compare the error. For com-
parison, we applied the 3600 cases of simulation data and fixed
the other hyper-parameters. The comparison test used one
hidden layer, 30 nodes, a learning rate of 0.01, 3000 epochs, drop-
out turned off, and a batch size of 1500.

The choices of activation function, optimizer, and initializer
affected the accuracy of the result. The average RMSEs, accord-
ing to the activation function, were 7.691, 6.317, 5.655, and 4.893
for sigmoid,[39] tanh, the rectified linear unit (ReLU),[40] and the
exponential linear unit (ELU),[41] respectively. This means that
ELU was the most appropriate activation function for injection-
molding data. The initializer had a minor effect on the RMSE
of the prediction model. For the optimizer, the accuracy was
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highest using Adam,[42] with accuracy descending using
RMSProp,[43] gradient descent,[44] and Adagrad[45] in that order.
The ELU activation function, the Xavier initialize,[46] and the
Adam optimizer gave the best accuracy. Therefore, we used them
for each model (Table 2).

Random search is an optimization method that can seek addi-
tional feature space for a given trial. In this research, we tried 324
random searches. The hyper-parameter list and its minimum,
maximum, and step size were specified for each parameter
(see Table 3). For example, in the case of the number of layers,
from Steps 2 to 5, the step size was 1. Thus, we selected 2, 3,
4, or 5 as the number of layers. The RMSEs of the models obtained
using grid search were 0.4, 0.416, and 3.112 for the top average, the
top-10 average, and the average of the entire 324, respectively. The
RMSEs of models obtained via random search were 0.314, 0.367,
and 2.749 in the same order. These four comparisons indicate that
the models obtained using the random search were advantageous
in finding the global best for the same number of trials. The best
model had two layers, 28 nodes, 5500 epochs, a 0.05 learning rate,
a 0.9 dropout rate, and a 1152 batch size (Table 3).

3.4. Transfer Learning

Thus far, all processes were performed only via simulations.
However, as noted, the results of the simulations and the experi-
ments differ (Figure 4a).[22,41,47] Furthermore, practical applications

require a model that is derived from experimental data. The
amount of experimental data is limited. Thus, the ANN model
did not give good results (RMSE 7.178, average RE 13.604%) when
using the same hyper-parameters as the simulation data. These
inferior results occurred, because the experimental data had more
noise than the simulation data, so prediction was inaccurate. To
solve this problem, we implemented transfer learning. In deep
learning, a model can be trained with sufficient data and labels.
However, this method results in overfitting or underfitting when
the number of data is insufficient. Injection-molding data have
similar problems. Simulation data are cheaper and easier to gather
than experimental data. Transfer learning can conquer the
immense error that occurs when only experimental data were used.

Transfer learning consists of two steps. First, a model is
trained using a large number of cheap data. Then, only a few
layers of the model are trained with the small amount of expen-
sive target data (Figure 4b). In this article, we use the simulation
data as source data and experimental data as target data
(Figure 4c). This approach achieved better accuracy (RMSE
0.846, average RE 0.715%) than cases that used experimental data
only (Figure 4d).

4. Process Condition Recommender System

We used a weight-prediction model to develop a system that rec-
ommends initial process conditions. This weight-prediction sys-
tem uses 20 input features to predict the weight of the final
product by combining the shape information and the process
conditions. However, the system used to derive initial conditions
should reverse the model to recommend process conditions that
satisfy the target weight. This task requires an ANN forward
model that predicts the weight accurately in real time from pro-
cess conditions and weight. We also need an optimization algo-
rithm to find the solution.

4.1. Random-Search Optimization

Random searching for optimization is very similar to random
searching to find the hyper-parameter. The optimization search

Table 2. Hyper-parameter tuning result for initializations, optimizers, and
activation functions. Each of hyper-parameters has widely used methods.
The grid combination is 4� 4� 4¼ 64 cases. RMSE is calculated for all
64 cases; then, the model with lowest RMSE is chosen: it was He
initializer, ELU activation function, and Adam optimizer.

RMSE Normal Truncated normal He Xavier

ReLU

Adagrad 8.942 10.99 9.776 11.918

Gradient 5.971 4.175 4.415 4.65

RMSProp 3.096 4.621 5.886 5.589

Adam 2.724 3.171 2.322 2.437

Tanh

Adagrad 8.806 14.828 14.036 10.757

Gradient 6.273 6.101 4.108 3.937

RMSProp 6.232 6.249 3.957 2.619

Adam 3.8565 2.598 3.7 3.018

Sigmoid

Adagrad 16.965 14.339 14.128 14.579

Gradient 5.607 4.95 5.598 5.013

RMSProp 5.394 4.773 5.297 3.701

Adam 6.663 5.397 5.376 5.276

ELU

Adagrad 10.086 11.896 11.205 10.532

Gradient 5.282 3.049 6.981 4.138

RMSProp 2.356 2.414 2.192 4.412

Adam 1.587 0.8614 0.672 0.732

Table 3. Hyper-parameter tuning for layers, nodes, epochs, learning rate,
dropout rate, and batch size. Each of parameter has minimum, maximum,
and step value. To find the optimal hyper-parameter, random search is
conducted by combining those parameters (324 different models).
As a result, two layers, 28 nodes, 5500 epochs, a 0.05 learning rates,
0.9 dropouts, and 1152 batch size had minimum RMSE error for
validation data set.

Number
of layers

Number
of nodes

Number
of epochs

Learning
rate

Dropout Batch
size

Min 2 5 1000 0.005 0.9 512

Max 5 30 20 000 0.1 1.0 2048

Step 1 1 500 0.005 0.1 128

Top 1 RMSE 0.400 0.314

Top 10 RMSE 0.416 0.367

Total 324
RMSE

3.112 2.749
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Figure 4. a) Example of weight difference between experimental and simulation data. They have similar patterns but different values because of simula-
tion errors. b) Concept of transfer learning. c) Application of transfer learning to injection-molding data. “Large amount data” are 3600 cheap simulation
data. “Small amount of data” are 476 expensive experimental data. The model first learns using the simulation data. Then, it copies the weight except
for the last layer. Then, the final layer’s weights are updated from scratch using the experimental data. Distribution of actual and predicted weights
d1) before transfer learning (only experimental data) and d2) after transfer learning (both experimental and simulation data). Both graphs are arranged
by ascending order for visualization.
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can be completed in real time, because only the forward process
of the trained ANN is used. The optimization that conducts the
random search proceeded as follows: 1) extract the minimum
and maximum values of input process conditions; 2) set a step
size for each process condition, and make a candidate list; for
example, for fill time, 0.5 s, 0.6 s, 0.7 s … , and 1.5 s; 3) combine
the process features from the list from Step 2 10 000 times;
4) predict the list of 10 000 random process conditions to the
trained ANN model; and 5) from the 10 000 weight-prediction
results, extract the process conditions that satisfy the target
weight range (Figure 5a).

4.2. Ordering System

The system that uses random search to optimize initial condi-
tions yields 70–80 process conditions, depending on the model.
However, the user only wants to obtain a few conditions that are
approximate to the current state of the injection-molding
machine. Therefore, we develop an ordering system that is easy
to apply to injection-molding machines. The system comprises of
four major steps: 1) normalizing all recommended process con-
ditions and the current state of injection molding; 2) calculating
absolute error from recommended process conditions to the
current state; 3) obtaining the weight sum (Equation (5)); and
4) selecting the top ten process conditions and re-ordering by
mold temperature.

Weighted sum ¼ ajMeltTempcurrent �MeltTempij
þ bjMoldTempcurrent �MoldTempij
þ cjFilltimecurrent � Filltimeij
þ djPacktimecurrent � Packtimeij
þ ejPackpresscurrent � Packpressij

(5)

where a¼ b¼ 0.35 and c¼ d¼ e¼ 0.1 are weight coefficients.
The first step of normalization unifies each feature’s effect to

calculate the weighted sum at step 3. In our case, the normalized
process conditions were subtracted from normalized values of
the current machine state. Then, Equation (5) was used to calcu-
late the weighted sum. We applied high coefficients for melt and
mold temperatures, because temperature-related features are
difficult to control. We calculated the weighted sum only for
the top ten results. As a final step, we sorted these ten process
conditions again by mold temperature. Using this ordering sys-
tem, the user can apply the process condition from low-to-high
mold temperatures (Figure 5a).

4.3. Verification

We built an ANN model that estimated product weight by
considering geometry information and process conditions.
As a result, we obtained two systems: one that was learned using
simulation data, and the other that was created by transfer learn-
ing using combined simulation and experimental data. To verify
that these systems are usable, we used CAE software for the
simulation-driven model and conducted experiments for the
transfer-learned model. Finally, ten recommendation conditions
were re-simulated and re-experimented. The mean REs were
0.656% for a cup mold and 0.804% for a cosmetic container.

Similarly, the system using transfer learning had an average
RE of 0.662% in experiments (Figure 5b). These results indicate
that the process recommender system can suggest reasonable
process conditions at values near the target weight. The ANN-
based system searches the proper process condition using vari-
ous methods. Past recommended process conditions mainly
used temperature, pressure, or velocity. Thus, they used only
one optimal solution. Our recommender system, on the other
hand, explores multiple optimal solutions. However, for actual
system use, users still must manually control the machine to find
the optimal process condition due to the error. These errors are
caused by various reasons: simulation error, experimental mea-
suring error, and ANN model error. Both simulation and experi-
mental errors are hard to correct. Therefore, in this article, we
focused on reducing the ANN-model error via gathering large
datasets, hyper-parameter tuning, and transfer learning.

4.4. User Interface

The algorithm was trained using a powerful 2950x thread ripper
(Advanced Micro Devices, lnc.) central processing unit worksta-
tion, a Titan volta 12 GB graphical processing unit (GPU) with
python tensorflow GPU. However, the use of such expensive
computers may not be viable in an actual industrial environment.
Therefore, we stored only the forward model of the trained ANN-
based prediction model and made it into an executable file,
including a random search and an ordering system. Such files
can be run in real time on a cheap panel computer. A serial com-
munications protocol called Modbus is used to transfer the
results from the panel computer to the injection-molding
machine to help it automatically apply the process conditions.
A user interface system was also developed to utilize and
control these systems on the injection-molding machine screen
(Figure 5c).

5. Discussion and Conclusion

We developed a system that recommends injection-molding
process conditions in real time under fixed material conditions.
To construct this system, various methods (e.g., data sampling,
feature extraction, hyper-parameter tuning, transfer learning,
and optimization) were applied. Several widely used methods
were compared at each step to find an optimized method for
the injection-molding process. Data were sampled using a mix-
ture of Taguchi and random sampling. The 3600 cases of simu-
lation data (from 36 molds) and 476 cases of experimental data
(from 11molds) were collected as training, validation, and testing
for ANN model. We also conducted geometry-feature extraction
guided by the results of sensitivity analysis. As a result, four
geometry features related to surface area and volume were
applied for the final ANN model. After gathering data, a random
search was conducted to find the optimal hyper-parameters.
Then, we used transfer learning to enable the model to use exper-
imental data. The completed weight-prediction ANN model was
used to develop a system to recommend process conditions via
random search. Then, the final recommendation condition was
extracted using an ordering system and verified by simulation
and experiment. The final model achieved an average RE of
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Figure 5. a) Schematic of random search optimization. First, geometric features are extracted from the target molds. Then, 10 000 random combinations
are generated within the range of minimum to and maximum of each process condition. Then, 10 000 random product weights are predicted, and the
conditions that yielding the target weight are selected. As a last step, the nearest-10 process conditions are sorted and selected. b) Verification result of the
process recommender system. Verification of simulation results of b1) cup and b2) cosmetic case and b3) experimental verification of the cup mold. Each
graph’s left-10 points are verification result, and right-50 or -100 points are the training source data. Comparison confirms that the recommender system
can reduce the distribution of the product weight to near the target weight. c) Left: concept and equipment setup of connecting method between injection
machine and panel computer; right: user interface for the process recommender system. Material and geometry information are needed to calculate and
recommend the optimal process conditions.
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0.73% from simulation and 0.63% from experiments. We then
developed a user interface.

This study differs from existing studies in two major ways.
First, this one considers the geometry conditions. Second, we
used data from both simulation and experiment. In general, a
manufacturing system can consider three types of inputs:
process conditions, geometries, andmaterials. Most prior studies
that combined ANNs and injection molding only considered
changes in process conditions of fixed mold shape and molding
material. In contrast, in this article, the process was optimized by
obtaining a large amount of data from a range of geometric
conditions (36 molds). In addition, extant studies used only sim-
ulation or experimental data, whereas ours introduced transfer
learning for both. This combined use of a small number of
expensive experimental data and a large number of cheap simu-
lation data achieved similar performance as methods using large
experimental data.

As a result of the final verification, the weight mean RE was
0.63%, which is acceptable in an actual industrial machine.
There are various reasons for this level of error. First, it exists
in the training data itself. Simulation data have inevitable errors,
as shown in Figure S1, Supporting Information. Similarly, as
shown in Table S2, Supporting Information, experimental data
have small fluctuations, despite the same process conditions.
Moreover, the lack of experimental and geometry data increased
the error. The number of molds and experimental data was insuf-
ficient compared with the complexity of injection molding.
However, these data required a great deal of time and cost to
acquire. Therefore, it is important to consider an alternative algo-
rithm to performwell using a small amount of data. Nonetheless,
this study changed the process and geometry conditions, but it
did not consider changes in material. In addition, it used only the
weight of the product as the index to evaluate product quality.
This decision was made, because the output feature must be
easily quantifiable and measurable with both experiments and
simulations for various geometries. Therefore, further research
should quantify the properties of the material, and data should
be collected via simulation and experiments using various
materials.

In conclusion, this research developed a system that even a
non-expert in injection molding can use to set up process con-
ditions using the artificial intelligence (AI) system. Assuming
that the material is polypropylene, the user only needs a 3D file
with an STL extension and the target weight of the product. Then,
the recommender system suggests ten process conditions having
less than 1% RE. As a final step, the engineer selects one condi-
tion among the ten recommended conditions and performs fine-
tuning. Previous studies have only considered laboratory-level
development that combined the ANN and injection molding.
This article, on the other hand, shows the possibility of optimiz-
ing AI-based injection molding at actual industrial sites.
Future work should improve the quality and quantity of data.
Qualitative development should consider factors, such as mate-
rial conditions, environment conditions, process features, and
geometric features. Quantitative improvement should consider
various molds and materials. As a result, the system will be able
to respond quickly to new products and could be used to control
the process conditions of a smart factory.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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