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Stored red blood cells (RBCs) are needed for life-saving blood
transfusions, but they undergo continuous degradation. RBC storage
lesions are often assessed by microscopic examination or biochemical
and biophysical assays, which are complex, time-consuming, and de-
structive to fragile cells. Here we demonstrate the use of label-free
imaging flow cytometry and deep learning to characterize RBC
lesions. Using brightfield images, a trained neural network achieved
76.7% agreement with experts in classifying seven clinically rele-
vant RBC morphologies associated with storage lesions, comparable
to 82.5% agreement between different experts. Given that human
observation and classification may not optimally discern RBC qual-
ity, wewent further and eliminated subjective human annotation in
the training step by training a weakly supervised neural network
using only storage duration times. The feature space extracted by
this network revealed a chronological progression of morphological
changes that better predicted blood quality, as measured by physiolog-
ical hemolytic assay readouts, than the conventional expert-assessed
morphology classification system.With further training and clinical test-
ing across multiple sites, protocols, and instruments, deep learning and
label-free imaging flow cytometry might be used to routinely and
objectively assess RBC storage lesions. This would automate a
complex protocol, minimize laboratory sample handling and prep-
aration, and reduce the impact of procedural errors and discrep-
ancies between facilities and blood donors. The chronology-based
machine-learning approach may also improve upon humans’ assess-
ment of morphological changes in other biomedically important
progressions, such as differentiation and metastasis.
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Many clinically important assays involve expert assessment of
images and the determination of the quality of red blood

cells (RBCs) is no exception. RBCs are needed for life-saving
blood transfusions and there is a worldwide shortage. RBCs are
degraded by continued storage, yielding oxidative damage, de-
creased oxygen release capability, and membrane deformation,
which can affect the in vivo circulation of transfused RBCs (1–6).
Technological progress in the preservation and storage of cells
has enabled blood banks to store RBCs at 1 to 6 °C for up to 8 wk
in some countries (7–10). During storage, however, the loss of
membrane integrity causes the red cells to morph reversibly from
regular biconcave discocytes (smooth/crenated discs) into echino-
cytes (crenated discoid and spheroid), characterized by membrane
protrusions or spicula. Eventually, these echinocytes further degrade
irreversibly into spheroechinocytes (crenated spheres and smooth
spheres) (11, 12). An increased presence of spheroechinocytes is

associated with increased viscosity and disturbed capillary blood flow
and oxygen delivery (2, 13), leading to decreased safety and efficacy
of the transfusion. In addition to these degradation events during
storage, each blood sample already contains a mixture of morphologies
due to the cells’ varying biological ages. While prospective clinical trials
have failed to show a clear relationship between the duration of
RBC storage and patient outcomes, there continues to be a
strong interest in understanding how the physiological changes
that occur to RBCs during ex vivo storage are captured by their
morphology, and in turn how this impacts RBC quality (14–18).
The quality of a stored blood unit is often assessed using mi-

croscopic examination or biochemical and biophysical assays,
which are complex, time-consuming, and destructive to fragile
cells (3–5, 12). In the microscopic approach, which is tedious and
requires expertise, a sample is spread (smeared) on microscopic
slides and the relative fractions of the six subclasses of RBCs
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(smooth disc, crenated disc, crenated discoid, crenated spheroid,
crenated sphere, and smooth sphere) are estimated by manual
cell counting (12, 19). These fractions are then multiplied by
corresponding shape factors (1.0, 0.8, 0.6, 0.4, 0.2, and 0.0, re-
spectively) and summed to yield the Morphology Index (MI), a
quality metric for quantifying the morphological profile of RBCs
during storage (20). This technique is labor-intensive, prone to
subjective bias, and limited by small sample sizes. The smearing
itself may affect the state of the fragile RBCs, causing adverse
alterations to the sample’s true morphological profile. To avoid
this adverse effect, wet preparations of RBC samples can some-
times be used to assess morphology to avoid the artifact created by
the standard blood-smearing technique. However, this method
requires even more expertise, does not remove subjective bias, and
does not shorten the time required to perform the microscopic
evaluation. Improved methods to objectively assess degradation
events would thus improve quality assessment of manufactured
blood products for transfusion and help identify donor factors and
manufacturing methods that would produce higher-quality
RBC products, potentially leading to better patient outcomes
and helping meet the dramatically growing worldwide demand for
stored blood (21).
Deep learning has shown great promise to detect biomedically

important cell states in images (22). We hypothesized that a
deep-learning–based morphological assessment approach might
provide a reliable proxy for RBC quality (although we emphasize
that RBC quality cannot be absolutely measured without treating
patients and measuring outcomes). We therefore tested recent
deep-learning methods on RBC images from three completely
independent cohorts in two different countries using imaging
flow cytometry (IFC) to assess whether: 1) A neural network might
be trained to replicate an expert’s judgment in classifying the stages
of RBC degradation in cell images and, going further, 2) whether
a neural network might extract subtle degradation-related features
of RBCs more objectively than humans. Success in the latter case
would lend evidence that deep learning can extract features rep-
resenting clinically important biological progressions from images
that are not detectable to the human eye.

Results
Expert-Supervised Deep-Learning–Based Automation of the Standard
RBC MI. We aimed to devise improved methods to assess RBC
blood quality by training deep convolutional neural networks to
characterize the morphology of unstained RBCs at different time
points during blood storage (Fig. 1 and SI Appendix, Fig. S1). We
used an imaging flow cytometer to capture images of single
RBCs as they flow through the instrument (23). The instrument
naturally favors cells in suspension, such as blood cells, capturing
images at a rate of hundreds to thousands of cells per second. This
yields a large number of isolated, single-cell images well-suited to
deep-learning algorithms, which learn from raw pixel information
and benefit from a large pool of images to extract meaningful
features. Through a hierarchical architecture of feature layers, a
deep neural network identifies patterns in the input image rele-
vant to discriminating morphologies of interest while suppressing
irrelevant variations (24).
We first developed a supervised classifier (Fig. 1A), where the

machine-learning model is supervised to “learn” to categorize
cells into the six morphological classes of RBCs mentioned above,
plus an additional side-view class where the true class was indis-
cernible. We collected blood samples from healthy volunteers at
two sites on different continents (Canadian Blood Services, hereafter
“Canadian,” and the University Hospital of Geneva, hereafter
“Swiss”) and processed red cell units using standard blood bank
protocols (25), followed by IFC analysis every 3 to 7 d until
expiration at 6 wk (SI Appendix, Figs. S1A and S2) (25–27). Five
researchers annotated ∼52,700 RBCs spanning across the blood
units (SI Appendix, Fig. S3), creating the largest freely available

public dataset of its kind (see Data Availability; ∼67,400 cells
including the undecidable class and held-out dataset, described
later). The brightfield images of ∼40,900 annotated RBCs were
then used as ground truth to train a ResNet50 model (28), a
well-known neural network for image classification (29).
This fully supervised model was able to approximate human

annotators in categorizing cells into one of the seven expert-
defined morphological classes. Taking great care not to “con-
taminate” any test sets with cell images from samples used for
training (SI Appendix, Fig. S4), we assessed the performance and
robustness of this fully supervised model in several tests. First
(Validation in SI Appendix, Fig. S4), we observed strong accuracy
(79.1 to 80.1% agreement with experts) of the models; as a
baseline, a random classifier yields only 14.3% accuracy for seven
classes. These values were obtained for the optimized network
trained on images solely from one site and tested on the other,
even though the samples were prepared by different facilities
across continents without any prior knowledge of each other
(Fig. 2 A and B). We hypothesize the simplicity of label-free IFC
contributes to this success across cohorts. Training the network
on combined Canadian and Swiss training data (Test 2 in SI
Appendix, Fig. S4) achieved an average accuracy of 76.7% on a
held-out dataset, which was only tested a single time prior to
submission of this report (Fig. 2 D–F); this approaches the 80.3%
accuracy (average recall of 0.80, precision of 0.81, and F1-score
0.80) seen on the nonheld-out data that was used in optimizing
the network (Test 1 in SI Appendix, Fig. S4), indicating the model
is not overfit. To further assess the robustness and the variability
of the classification model when different subsamples of the
training data are selected, a 10-fold leave-one-out cross-validation
approach has also been conducted. We iterated the training-
validation partitions in which 9 of 10 bags (green blocks in SI
Appendix, Fig. S5 A–J) are used to train a model that is then
evaluated on the remaining bag (red block in SI Appendix, Fig.
S5 A–J). This procedure is then repeated for 10 possible choices
for the left-out bag, and the predictive performance scores from
the 10 runs are then reported as an average classification accu-
racy of 86.7% ± 3.5% (mean ± SD) as well as receiver operating
characteristic (which plots sensitivity as a function of one minus
specificity) curves and its associated area under the curve (SI
Appendix, Fig. S5 A–L). Because all of these accuracy values are
comparable to the accuracy between different experts (82.5%)
(Fig. 2C), we conclude the trained deep-learning model is roughly
as effective as an expert. With proper clinical validation and ide-
ally additional training images from other facilities, this strategy
could be implemented for routine automated assessment of RBCs
by IFC. We freely provide the trained model for training and testing
on data from other blood bank facilities (Code Availability).
Despite this successful result, we questioned whether visual

inspection by experts best captures RBC storage lesions. As
mentioned above, each individual expert only agrees with the
experts’ consensus around 82.5% of the time (Fig. 2C). This
means that an automated method trained to replicate an expert
cannot do better than 82.5%. We noted that most of the experts’
discrepancies, as is also the case for the supervised deep-learning
model, occurred between adjacent RBC subclasses (SI Appendix,
Figs. S6 and S10), indicating that classification of RBCs into
discrete “bins,” whether human-annotated or automated, may be
a poor fit to this relatively continuous biological process (visu-
alized in SI Appendix, Fig. S7).

Weakly Supervised, Deep-Learning–Based Self-Learned MI. We thus
investigated an alternative training strategy based on weakly
supervised learning (30–33), in which the neural network learns
the morphological properties of RBCs independently from visual
categories defined by experts. The fundamental strategy is to
train the network to predict an auxiliary but biologically mean-
ingful property: The storage duration of the blood unit from
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which each cell was sampled (Fig. 1B). Although storage dura-
tion correlates with RBC health, predicting storage age is not the
goal for two reasons. First, the storage age of blood bags is typically
already known, thus there is no need to predict it. Second, storage
duration correlates imperfectly with RBC health, in the same way
that individual humans’ age and health are correlated but not
completely predictive. For RBCs of identical storage duration,
there are dramatic biological age variations and cell heterogeneity
that are more medically relevant than storage age. Nevertheless,
weak supervision in this context means that the model is trained on
a variable (RBC storage duration) that causes the network to pay
attention to features in images that correspond to this variable.
Once a network is trained, storage duration predictions themselves
are ignored, and an intermediate layer of the network is used to
compute thousands of features from the input images; these features
should capture morphological changes that occur in response to stor-
age. A dimensionality reduction method is then applied to map cells
onto a linear continuum that captures this biological phenomenon.

Following this strategy, we trained the ResNet50 network to
estimate (regress) the storage duration of RBC images. Because
no human annotation is required with this strategy, we could use
more than one million RBCs pooled from the entire joint dataset
(Canadian and Swiss, not mapping to any abovementioned data-
sets). Not surprisingly, given biological age variations and cell
heterogeneity, the model was not particularly accurate in pre-
dicting the age of a blood unit from a single-cell image in the held-
out test sets (average error was 18.87 ± 6.96 d in a prediction
range spanning 48 d), nor did it show strong ability to predict the
known morphological classes, based on the ∼40,900 annotated
cells used in the previous supervised learning framework (SI Ap-
pendix, Fig. S8A).
Nevertheless, an intermediate layer of this trained network

(Materials and Methods) learned to extract single-cell features
that revealed a meaningful order of morphological progression.
Visually inspecting an embedding space obtained with Uniform
Manifold Approximation and Projection (UMAP) (34, 35) suggests

Fig. 1. Two alternate machine-learning pipelines to assess RBC quality by morphology. The input of the pipeline is single-cell RBC images from imaging flow
cytometry. (A) Supervised learning automates the classification of cells into expert-defined categories (SI Appendix, Figs. S1 and S3). The neural network
ResNet50 was trained to classify each individual cell into one of the seven morphology classes (smooth disc, crenated disc, crenated discoid, crenated spheroid,
crenated sphere, smooth sphere, and side view), as guided by expert annotations of those classes. (B) Weakly supervised learning, by contrast, learns a new
quality metric independent of human input, the SMI. The network ResNet50 was trained to identify the storage date of the blood unit a given RBC could
belong to, as an auxiliary task. The morphological features extracted by a layer of the network during the training phase can be then used to assign each cell
to a point along a continuum from healthy to degraded.
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that the single-cell features could be approximately aligned on a
low-dimensional manifold (Fig. 3 A and B) (see ref. 36). This
progression proceeds correctly from healthy to unhealthy cell
phenotypes: Discocytes (smooth discs and crenated discs) to echi-
nocytes (crenated discoids and crenated spheroids) to spherocytes
(crenated spheres and smooth spheres). The progression is con-
firmed by the annotated cells, but the linear pattern is detectable
even in their absence. The trajectory also positioned side-view cells
in proximity to disc-like cell classes, which is sensible because only
disc-shaped objects could present in flank angles, while spheres are
spherical regardless of the view. Other trajectory recovery methods,

such as diffusion map (37) and diffusion pseudotime (38, 39), did
not provide as clear a resolution of the progression; they are well-
suited to trajectories that branch (40) (Materials and Methods). In
contrast, the same analysis using classic image features extracted by
CellProfiler (41) organized cells into discrete clusters (SI Appendix,
Fig. S9) rather than a continuous progression of morphologies.
We therefore defined the recovered 1D UMAP manifold from

healthy to unhealthy as a new metric of blood unit quality, self-
learned MI (SMI), where cells that possess higher values in the
1D manifold of deep-learning features are associated with older
storage duration and lower quality for blood transfusion (Fig. 3C).

Fig. 2. Supervised deep learning (Automated Morphology Index) approaches human-level performance for assessing RBC morphology. (A and B) Validation
of the supervised deep-learning classifier across two facilities, which include distinct instruments, operators, sample preparation procedures, and donors.
Samples were collected independently, with no effort to standardize across the two sites. Most “errors” are in chronologically adjacent categories. Confusion
matrices show the prediction of seven categories of RBC morphologies performed by a ResNet50 model (A) trained on the Canadian dataset (n = ∼15,500
cells) and tested on Swiss data (n = ∼25,400 cells) and (B) vice versa; comparable accuracy is seen in both cases. (C) Discrepancies between five human an-
notators when assigning the exact same cells (n = 1,500) into RBC morphology classes. Detailed analysis of human discrepancies is shown in SI Appendix, Figs.
S6 and S10; the average is shown here. (D–F) Validation of the trained supervised models on held-out datasets (Test 2 in SI Appendix, Fig. S4). The held-out
datasets were not used in training and were only tested once, immediately before the submission of the work. As is the case for the supervised deep learning
model in A and B, most of the errors are in adjacent classes, pointing to inconsistency in human-defined categories (SI Appendix, Fig. S11). Because the
accuracy shown in F, 76.7%, is comparable to that between experts (in C, 82.5%), we conclude the trained deep-learning model is roughly as effective as
an expert.
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Validating this metric is challenging, given that there is no perfect
ground truth. Expert morphological annotation cannot be deemed
as correct, given intraexpert discrepancies as mentioned above.
The current regulatory gold standard for RBC quality requires
radio-labeling (or biotinylating) RBCs, transfusing them into

volunteers, and measuring the percentage that circulates after 24
h, with 75% being the threshold. This was not feasible for our
study and furthermore is a methodology that many in the field
seek to replace, as it does not capture the ultimate endpoint of
interest, oxygen delivery (42).

Fig. 3. Data-driven ordering of RBC morphologies by weakly supervised learning allows robust blood quality assessment. (A–C) We discovered a relatively
linear progression for major morphological classes of RBCs using features extracted from an intermediate layer (Res4a_ReLU) of the trained weakly supervised
model projected into low-dimensional space using a UMAP algorithm. This continuum is observed in 3D (A), 2D (B), or 1D (C) embedding space and interactive
3D-PCA, t-SNE, and UMAP projections of 7,000 representative cells can be explored in a public browser-based tool (ref. 36), select colors and labels for better
visualization). Color coding in A, B, and C is consistent, showing that the extracted weakly supervised features place cells along their correct biological
progression, from discocytes (smooth discs, crenated discs) to echinocytes (crenated discoids, crenated spheroids, crenated spheres) to spherocytes (smooth
sphere). The boxes in A overlap due to continuous transitions between morphology categories, which could not be further resolved by the chosen ResNet50
architecture. The red dotted line in C indicates the threshold in the 1D UMAP, above which RBCs were categorized as unhealthy; this includes most spher-
oechinocytes (crenated spheroid, crenated spheres, and smooth spheres). The increasing fraction of unhealthy cells (x) over the total number of cells is termed
SMI. (D) Distribution of unannotated cells according to the 1D UMAP of weakly supervised features. For each blood unit, deep-learning features were
extracted from label-free images of 20,000 cells by a trained weakly supervised neural network. The extracted features were then projected in 1D UMAP
space (x axis of each histogram). The shift of distributions from the left to the right as time progresses is clearly visible (more healthy biconcave RBCs are
toward the negative end of the x axis; spheroechinocytes are toward the positive end). (E–H) Results from different approaches for evaluating the quality of
blood units, with the y axes unified to the same scale. (E) Blood quality according to the proposed SMI. (F) Blood quality according to our automated MI
morphology analysis using a fully supervised classifier. (G) Blood quality as assessed by a physiological assay for hemolysis. (H) Blood quality as assessed by
expert manual MI morphology analysis (∼4,000 cells per blood unit per time point). (I–L) Pairwise comparisons between proposed machine learning ap-
proaches and classic methods for evaluating the quality of red cell units. (I) There is a stronger correlation between the proposed weakly supervised-based
quality assessment and hemolytic readouts (coefficient of determination, R2 = 0.93) than that of (J) human manual annotations of morphology (R2 = 0.67). (K
and L) In contrast, the proposed supervised learning-based method shows the opposite trend. The x and y axes of plots I–L were unified to the same scale.
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We therefore subjected three blood units to two parallel
quality assessments at weeks 0, 2, and 6 of the storage period.
The quality assessments were 1) a biochemical assay for hemo-
lysis, which focuses on red cell stability, and 2) IFC with the
standard expert morphology classification, MI. These two as-
sessments correlate, but not strongly (R2 = 0.65) (SI Appendix,
Fig. S8D). Two blood units were analyzed during the validation
of the weakly supervised framework (Test 3 in SI Appendix, Fig.
S4), and one was held out and tested a single time prior to the
submission of this manuscript (Test 4 in SI Appendix, Fig. S4). A
morphological ordering of single cells shows the expected deg-
radation events over time (Fig. 3 D–H).
We found that the SMI of the three blood units corresponded

better to the physiological–biochemical readout, the hemolytic
score (coefficient of determination, R2 = 0.93) (Fig. 3I) than to
the classic inspection-based MI (R2 = 0.67) (Fig. 3J). This sug-
gests that the SMI can produce measures of blood quality that
are more consistent with biochemical readouts, and less consis-
tent with a subjective morphological inspection. The automated
MI by fully supervised learning showed the opposite trend (R2 =
0.74 compared to the hemolytic score and R2 = 0.93 compared to
classic MI) (Fig. 3 K and L), indicating that fully supervised
models carry over subjective biases and are less consistent with
more objective biochemical readouts. Applying a healthy/un-
healthy threshold (as in SMI) instead of indexing (0, 0.2, 0.4, 0.6,
0.8, 1, as in MI) using manually annotated images is also less
correlated to the hemolytic score (R2 = 0.85) (SI Appendix, Fig.
S8E), indicating that the improvement is due to the weakly super-
vised approach rather than a change in thresholding versus indexing.
As a final test of generalizability and robustness, we combined

the Swiss and Canadian training data and tested the SMI scoring
system on an additional 20 red cell units sampled at five storage
durations acquired by a third facility, the Blood for Research
Facility (netCAD, Vancouver, BC, Canada) (Fig. 4). Again, we
observed the low-dimensional manifold progression of cells from
healthy to degenerated. Furthermore, with the caveat of one
sample particularly prone to hemolyze, likely due to unknown
donor factors (Materials and Methods), we observed the expected
correlation between SMI and hemolytic scores (Fig. 4D). The R2

of 0.58 is lower than that observed in the tests in Fig. 3, but still
indicates the ability of the SMI strategy to be relatively robust to
samples collected by different operators at different clinical
locations.

Discussion
Methods and metrics for the assessment of RBC quality are
rapidly developing and uncertain, given the lack of sufficient
clinical data to conclusively determine ideal proxies (whether
morphological or biochemical) for in vivo circulation or for the
clinical outcomes of interest (42, 43). Our work does not aim to
resolve this controversy nor claim the superiority of any one
assessment method over others. Rather, in this study we present
two strategies that are capable of providing more reliable and
convenient quantitative data in future studies of RBC quality
that aim to resolve some of these controversies and identify
useful donor factors.
The first strategy used supervised deep learning to automate

and standardize the current standard blood-quality scoring pro-
cedure, which is based on expert visual classification of RBCs
into morphological classes and computation of the MI; this work
automates and standardizes a tedious and subjective assay, pro-
viding near expert-level results. The second strategy derived an
SMI to measure blood quality using weakly supervised deep
learning trained on storage age; this approach went beyond hu-
man vision and matched physiologically relevant physical tests of
RBC quality better than expert manual morphology assessment,
while avoiding assessment subjectivity. It is important to note
that the SMI failed to recognize the unusually high hemolysis

levels of one blood sample (Fig. 4). The discrepancy between
morphology and hemolysis in this instance, and as observed in
prior studies (44, 45), is precisely the phenomenon that the field
wishes to scrutinize in order to determine the underlying caus-
ative factors of this discrepancy; our methodology makes this
easier to study. If the field conclusively determines that hemo-
lysis, as measured here, is an ideal target metric for patient
outcomes, then rare samples like this one would need to be
collected and included in the training of SMI models.
We tested for overfitting, a common machine-learning prob-

lem that yields success on one set of data but failure on data from
other facilities: Here, we obtained similar accuracy when the
model was trained and tested across entirely different patient
cohorts (Swiss vs. Canadian, whose samples were prepared
completely independently on different continents and without
knowledge of the others’ protocol and set-up). Robustness was
further confirmed using samples from a third independent site.
This generalizability is presumably because sample preparation
and imaging for brightfield IFC have few variables and param-
eters. We anticipate that the system would likely benefit from
retraining on a broader, consortium-scale collection of data, in-
cluding multiple donor demographics, preparation procedures,
and manufacturing facilities, as well as inclusion of samples that
are hemolysis-sensitive. This would allow testing the power and
limitations of the two new strategies, especially with respect to
actual clinical transfusion outcomes or proxies agreed upon by
the field as being relevant to clinical transfusion outcomes (42).
Such an effort would be worthwhile: Our proposed assay offers

simple, label-free sample preparation, enabling nonexperts to
assess the quality of stored blood. This is in contrast to micro-
scopic examination (which requires experts and whose smearing
step may damage the sample), conventional biochemical/bio-
physical assays (which require complex laboratory procedures),
or IFC followed by manual gating (11, 12, 25) (which adds a step
and is subjective). Although substantial engineering and testing
would be needed, in principle the presented strategy could be
adapted to an inexpensive laser-free imaging flow cytometer for
resource-poor situations. Improved techniques to monitor blood
product quality would revolutionize efforts to personalize allo-
cation of blood products based on factors thought to impact
RBC quality, including donor characteristics (age, sex, ethnicity,
frequency of donation) (44, 46–50). Like many artificial-
intelligence–driven analysis systems introduced in recent years,
the goal need not be to entirely eliminate expert interaction but
instead to screen samples or cell images to identify the most
readily classifiable, so that the expert’s time is used on samples or
cells that are more borderline.
More broadly, in this work we found that machine learning can

surpass humans’ visual assessment of biomedically important
morphological changes that occur over time. The weakly super-
vised approach discovered the natural progression of RBC de-
terioration without relying on human observations. In several
applications, machine-learning–based systems have proven su-
perior to humans but these have been straightforward supervised
tasks (classification), including natural image classification (51),
radiology (52), dermatology (53, 54), and pathology (55). Con-
versely, here machine learning itself reveals a clinically important
chronological progression of cells based on their morphology, as
has been previously done using other data types, most commonly
mRNA levels (56–59), and also biomarker staining (60). Our
weakly supervised strategy based on chronology might be applied
to the morphological analysis of a variety of other noisy biolog-
ical processes that occur over time, such as differentiation and
metastasis.

Materials and Methods
Sample Preparation. For the initial rounds of training, 18 red cell concentrate
units were collected; 10 (bags A to J) at the Blood for Research Facility, Centre
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for Innovation, Canadian Blood Services, and 8 (bags CE44 to CE52) at the
Transfusion Center of the University Hospital of Geneva, Switzerland. The
Canadian Blood Services Research Ethics Board approved (Protocol #nc0058)
the collection of the blood products used in this study that were obtained
from volunteer, healthy blood donors, who provided written, informed
consent. The utilization of blood samples from healthy donors for research
was approved by the Ethical Committee of the University Hospital of Geneva.
As this was general approval for the use of blood samples for nondiagnostic
anonymized research signed by all donors, there is no specific ethical com-
mittee approval number. Written informed consent was received from
participants, and samples were anonymized prior to inclusion in the study.
Further details about sample protocols have been described in Pinto et al. (25)
and in SI Appendix, Fig. S1.

An additional (third) dataset comprised of hemolytic and IFC measure-
ments of 20 red cell units sampled at 5 storage durations (total 100 data
points) were collected at the Blood for Research Facility (netCAD, Vancouver,
Canada) and shipped to Canadian Blood Services in Edmonton, Alberta for
testing (Fig. 4). The sample preparation protocol for IFC was similar to that of
the other Canadian samples. Samples were then analyzed at the University
of Alberta Faculty of Medicine and Dentistry Flow Cytometry Facility. One
sample in this batch showed an elevated hemolysis levels compared to the
others (Fig. 4A). It is unlikely that this was due to bacterial contamination as
no common visual indicators of bacterial contamination were present and
the hemolysis levels, although higher than the other samples, are still ac-
ceptable at day 42 (<0.8%). Additionally, a review of the IFC images them-
selves at two time points did not reveal any significant presence of bacteria.
This outlier is therefore more likely caused by donor factors that make this
unit more susceptible to hemolysis; this could not be confirmed as the
sample was not available for further investigation.

IFC Data Acquisition and IDEAS Analysis. For each sample, 5 μL of red cell
concentrate were suspended in 200 μL of PBS (magnesium and calcium-free)
in a 1.5-mL low-retention microfuge tube (Sigma T4816-250A). Samples
were placed on an Amnis ImageStreamXMark II (Amnis, EMDMillipore), five
laser two-camera system (ASSIST calibrated) with a brightfield area lower
limit of 50 m2 used to eliminate debris and speed beads. Channels 1, 9
(brightfield), and 12 (dark-field) were used to capture 100,000 brightfield/
darkfield RBC images per sample using the low-speed/high-sensitivity
settings at 60× magnification (0.9 numerical aperture, 0.33 per square pixel

resolution, 40-μm field-of-view, 2.5-μm depth-of-field). The IFC measurements
were repeated for each scheduled time point throughout the blood storage.

The instrument-associated analysis software IDEAS v6.2 was used to
preliminarily process the acquired IFC data to remove out-of-focus cells, ar-
tifacts, debris, and clumped objects, as previously described (25–27). Images
of in-focus single cells were then used for manual annotation and down-
stream deep-learning analysis. Brightfield and darkfield images were
exported in .CIF or .TIF formats. Darkfield images were ignored for the final
results shown in this study.

Ground Truth Annotation. For the supervised machine learning procedure,
each RBC was manually annotated by assigned human annotators, in con-
sultation with an RBC morphology expert. Five annotators with different
backgrounds (biologists, engineers, and a hematologist) were tasked to
manually label allocated RBCs (see next section) as smooth disc, crenated disc,
crenated discoid, crenated spheroid, crenated sphere, smooth sphere, side-
view, and undecidable class. The undecidable category includes debris or
cells that are blurry, blebbed, or folded, and typically represent artifacts of
the testing process (SI Appendix, Fig. S3, bottom row; see also description in
figure legend). Brightfield and darkfield images of annotated cells were
then exported as .TIF.

Data Splitting and Validation Strategy. The overall strategy is schematized in
SI Appendix, Fig. S4.
Training. Image data from replicate samples of bags A, B, D, E, F, H, CE47, CE49,
CE50, and CE52 were pooled together. About 17,000 cells of that pooled
dataset were annotated by three different annotators. Two annotators were
tasked to annotate images from the same blood bags, but different individual
cells from them; one annotated cells with an even object index and the other,
cells with an odd object index. Finally, one additional annotator reviewed
every cell individually and flagged dubious annotation mistakes for correc-
tion or removal.
Test 1. A class-balanced set of ∼1,500 cells pooled from bags C, G, and I (SI
Appendix, Fig. S3) were selected to test interobserver variation and labeling
replicability between the five annotators; that is, each individual was tasked
to label the exact same cells using an in-house web application (SI Appendix,
Fig. S12).
Test 3 (morphology). Image sets randomly sampled from (unpooled) bags CE47
and CE49 were used to test the robustness of the trained neural network on
imbalanced data. During and after Tests 1 and 2, if suboptimal settings were

Fig. 4. Generalizability of SMI to blood samples from a third facility. (A) Additional data for comparison of SMI (as developed in this report) and conventional
hemolysis scores of 20 red cell units sampled at five storage durations were analyzed at Canadian Blood Services in Edmonton, Alberta. (B) Hemolytic scores
based on the standard physiological hemolysis tests for the collected red cell units. Sample 6 showed an elevated level of hemolysis from day 3 to day 42
(deeper red shades in the table, blue diamonds in B–D), which is likely due to donor factors (Materials and Methods). This data point is therefore marked as
blue in the data plots but excluded from statistics. (C) SMI scores by weakly supervised learning of the corresponding red cell units. (D) The correlation
between hemolysis and SMI scoring systems. Coefficient of determination R2 = 0.5833. Shaded bands around the regression line display the 95% confidence
interval for the regression estimate. With the inclusion of elevated hemolyzed sample (sample 6, shown as blue diamonds), the coefficient of determination
R2 is 0.2520, likely because the current neural network was not trained to tolerate certain confounding factors such as donor factors that lead to unusually
high hemolysis levels.
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detected, retraining of the supervised and weakly supervised models were
allowed and optimization with improved parameters was implemented until
the models were satisfactorily considered final. Once finalized, no further
changes to the model weights were allowed and only a single inference was
done on the hold-out test sets.
Tests 3 and 4 (physiology). In particular, bags CE47, CE48, and CE49 have parallel
data for bothmorphological (assayed by an IFC) and physiological (assayed by
hemolysis test) assessments. Physiological readouts were used as a means to
validate conclusions drawn by morphological findings.
Tests 2 and 4. More than 20,000 annotated cells of bags C, G, I, J, CE44, CE45,
CE48, and CE51 were kept held-out during the development and optimi-
zation of the machine learning algorithms. These data were unlocked only
when all machine learning models were final. The prediction on this held-
out data were computed a single time, immediately before the submission
of the report for the final validation of the trained models.

Supervised Deep Learning. Protocols for image preprocessing and deep-
learning training of the supervised classification are similar to our previ-
ously established label-free imaging flow cytometry machine vision frame-
work (61). In brief, the input images were contrast-stretched channel-wise
and resized to 48 × 48 pixels by cropping or padding. To counter illumina-
tion variations in image inputs, the data were zero-centered using channel-
wise mean subtraction and augmentation was implemented, such as ran-
dom combinations of horizontal or vertical flips, horizontal, or vertical shifts
(up to 50% of the image size), and rotations up to 180°. We implemented a
ResNet50 architecture (62) (SI Appendix, Fig. S13), with categorical cross-
entropy as the loss function and accuracy as the performance metric. The
model was compiled using the Adam optimizer with a learning rate of
0.0001. The learning rate was reduced by a factor of 10 when the validation
loss failed to improve for 10 consecutive epochs. The model was trained for a
maximum of 512 epochs, although early stopping generally terminated
training before 200 epochs when there is no improvement in the validation
loss after 50 consecutive epochs, as detailed in Doan et al. (61). Training and
validation data were randomly undersampled per blood unit across cell
types to create a balanced dataset. Eighty percent of sampled data were
assigned to the training dataset, with the remaining 20% assigned to in-
ternal validation of the model during its training. Prediction metrics in-
cluded recall, precision, F1-score, and weighted accuracy.

Weakly Supervised Learning.
Regression model. The architecture of the weakly supervised ResNet50 neural
network is essentially similar to that of the supervised ResNet50, except for
two modifications: 1) We removed the last seven-class (categorical) layer and
replaced with a dense layer without activation function (for regression
purpose instead of classification) and 2) we used “mean absolute error” as a
loss function for the weakly supervised regression model, instead of “cate-
gorical cross-entropy” as in the supervised classification model.

The weakly supervised ResNet50 was trained to predict the age of storage
time for each presented single-cell RBC image. In the last layer of this ar-
chitecture, the duration of 49-d storage was regressed to a real number in a
continuous range from −5 to 5. This range was adopted to introduce a
contrast between short (negative) and long (positive) duration values, which
facilitates learning-relevant morphology features. After the training phase,
the intermediate and penultimate layers of the network, including
Res4a_ReLU, Res5a_ReLU, and pool5 were benchmarked for the efficiency of
feature extraction: the features extracted as each layer were used as inputs
to train a support vector machine to classify 1,500 cells of bags C, G, and I
into seven morphological categories; Res4a_ReLU was selected as the layer
of choice given the best support vector machine classification reports. This
layer was then used as a feature extractor to retrieve embeddings of cells
from brightfield images. The direct outputs from the last layer (regression)
were also tested for self-learned morphology trajectory recovery and MI (SI
Appendix, Fig. S8 B and C).
Dimensionality reduction. The set of features (1,024) extracted by the regression
model was visualized using UMAP in three dimensions and two dimensions,
which revealed that cells lay approximately on a 1D manifold. We explored
methods to recover this manifold, including t-distributed stochastic neighbor
embedding (t-SNE) (63), UMAP (34, 35), diffusion map (37), and diffusion
pseudotime (38, 39) (SI Appendix, Fig. S14).

Ultimately, we used UMAP to map cell deep-learning embeddings onto a
1D distribution. The parameters used for generating the 1D UMAP (calculated
independently of the 2D and 3D visualizations in Fig. 3) were as follows: 12
nearest neighbors were set to approximate the overall shape of the manifold
using a Euclidean metric; effective minimum distance between embedded
points was set at 0.1; a spectral embedding method was used to initialize

UMAP embedding; 200 training epochs and a learning rate of 1.0 was used to
optimize the embedding. The seed used by the random number generator
was kept constant at 42 throughout the study. The distribution of cells along
this unidirectional UMAP axis allowed the estimation of the cell degradation
phenotype for the given blood unit. Based on the visual inspection of a subset
of annotated data (merged bags A, B, D, E, F, H, CE50, and CE52), we cate-
gorized all RBCs below a manually selected threshold in the component space
of the 1D UMAP as healthy, which when summed can exclude most spher-
oechinocytes (crenated spheroid, crenated spheres, and smooth spheres),
thought to have negative attributes for blood transfusions (SI Appendix, Figs.
S15 and S16; see legends for details about threshold selection). The fraction of
unhealthy cells (x) over the total number of cells is termed SMI.

Physiological (Hemolysis) Assay. For the data shown in Fig. 3 E–L, at time
points day 0, day 14, and day 42, storage media was collected by performing
double centrifugation at 2,000 × g for 10 min to remove RBCs. The super-
natant was added to an equal volume of Drabkin’s solution (Sigma). Hemoglobin
concentrations were determined spectrophotometrically at 540 nm. Hemolysis is
determined as a percentage of lysed erythrocytes and was calculated based on
an average total hemoglobin concentration of 181.6 g/L and an average he-
matocrit of 54% (n = 122 blood units) (SI Appendix, Table S1).

For the 20 units in the additional dataset (Fig. 4), hemolysis measurements
were performed following the testing facility protocol as previously de-
scribed (46), with the exception that the supernatant preparation (storage
media collection) was performed as described above.

Conventional Image Analysis. Images contained within .CIF files were stitched
into montages by using a Python script. Cellular objects from the montages
were identified (segmented) using CellProfiler 3.1.8 (41, 64). More than 600
object features were extracted by a series of built-in measurement modules,
including measuring object intensity, size, shapes, textures, and correlations.
Data cleaning and feature selection were performed by Cytominer (65) to
remove features with near-zero variance and features that have poor cor-
relation across replicates. Redundant features that are highly correlated
were then identified and only one feature for each of these groups was
retained. After pruning, 135 relevant cell features were retained, in which
no pair of features had a correlation greater than the 95% cutoff threshold.

Data Availability. Annotated data of ∼67,400 cells (including undecidable
class and held-out dataset) can be found in Figshare (66). Unannotated data
for weakly supervised learning can be found in Figshare (67). The 3D-PCA,
t-SNE, and UMAP visualization of supervised learning embeddings (penul-
timate layer, pool5) for 7,000 annotated RBCs are available in ref. 68;
extracted features are available in Figshare (69). The 3D-PCA, t-SNE, and
UMAP visualization of weakly supervised learning embeddings (intermedi-
ate layer, Res4a_ReLU) for 7,000 annotated RBCs are available in ref. 36;
extracted features are available in Figshare (70). The 3D-PCA, t-SNE, and
UMAP visualization of classic image features (extracted by CellProfiler) for
5,000 cells randomly selected from the pooled annotated Swiss test sets
(33,467 RBCs) are available in ref. 71; extracted features are available in
GitHub (72).

Code Availability. The complete vignette of fully supervised and weakly su-
pervised learning for red blood cell morphology analysis is disseminated in
GitHub (73). The code for the web-based application for human annotation
can be found in GitHub (74). We disseminated a more generalizable deep
learning package, Deepometry (28). This open-source pipeline eases the
analytic workflow for single-cell images, from handling raw images to oper-
ating the neural network ResNet50 architecture. This workflow was originally
built for imaging flow cytometry data but can be readily adapted for mi-
croscopic images of isolated single objects. Unlike other deep-learning
frameworks, which are limited to three-channel RGB images, our modifi-
cation of ResNet50 allows researchers to use any number of stained or unstained
channels. Deepometry embedding outputs can be viewed using public web-based
visualization tools, such as Tensorflow projector (http://projector.tensorflow.org/)
or Morpheus (https://clue.io/morpheus), for interactive inspection.
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