
ARTICLE OPEN

Deep-learning-based image segmentation integrated with
optical microscopy for automatically searching for
two-dimensional materials
Satoru Masubuchi 1✉, Eisuke Watanabe1, Yuta Seo1, Shota Okazaki2, Takao Sasagawa2, Kenji Watanabe 3, Takashi Taniguchi1,3 and
Tomoki Machida1✉

Deep-learning algorithms enable precise image recognition based on high-dimensional hierarchical image features. Here, we report
the development and implementation of a deep-learning-based image segmentation algorithm in an autonomous robotic system
to search for two-dimensional (2D) materials. We trained the neural network based on Mask-RCNN on annotated optical microscope
images of 2D materials (graphene, hBN, MoS2, and WTe2). The inference algorithm is run on a 1024 × 1024 px2 optical microscope
images for 200 ms, enabling the real-time detection of 2D materials. The detection process is robust against changes in the
microscopy conditions, such as illumination and color balance, which obviates the parameter-tuning process required for
conventional rule-based detection algorithms. Integrating the algorithm with a motorized optical microscope enables the
automated searching and cataloging of 2D materials. This development will allow researchers to utilize a large number of 2D
materials simply by exfoliating and running the automated searching process. To facilitate research, we make the training codes,
dataset, and model weights publicly available.
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INTRODUCTION
The recent advances in deep-learning technologies based on
neural networks have led to the emergence of high-performance
algorithms for interpreting images, such as object detection1–5,
semantic segmentation4,6–10, instance segmentation11, and image
generation12. As neural networks can learn the high-dimensional
hierarchical features of objects from large sets of training data13,
deep-learning algorithms can acquire a high generalization ability
to recognize images, i.e., they can interpret images that they have
not been shown before, which is one of the traits of artificial
intelligence14. Soon after the success of deep-learning algorithms
in general scene recognition challenges15, attempts at automation
began for imaging tasks that are conducted by human experts,
such as medical diagnosis16 and biological image analysis17,18.
However, despite significant advances in image recognition
algorithms, the implementation of these tools for practical
applications remains challenging18 because of the unique
requirements for developing deep-learning algorithms that
necessitate the joint development of hardware, datasets, and
software18,19.
In the field of two-dimensional (2D) materials20–22, the recent

advent of autonomous robotic assembly systems has enabled
high-throughput searching for exfoliated 2D materials and their
subsequent assembly into van der Waals heterostructures23. These
developments were bolstered by an image recognition algorithm
for detecting 2D materials on SiO2/Si substrates23,24; however,
current implementations have been developed on the framework
of conventional rule-based image processing25,26, which uses
traditional handcrafted image features, such as color contrast,
edges, and entropy23,24. Although these algorithms are computa-
tionally inexpensive, the detection parameters need to be

adjusted by experts, with retuning required when the microscopy
conditions change. To perform the parameter tuning in conven-
tional rule-based algorithms, one has to manually find at least one
sample flake on SiO2/Si substrate, every time one exfoliates 2D
flakes. Since the exfoliated flakes are sparsely distributed on SiO2/
Si substrate, e.g., 3–10 thin flakes in 1 × 1 cm2 SiO2/Si substrate for
MoS2

23, manually finding a flake and tuning parameters requires
at least 30 min. The time spent for parameter-tuning process
causes degradation of some two-dimensional materials, such as
Bi2Sr2CaCu2O8+δ

27, even in a glovebox enclosure.
In contrast, deep-learning algorithms for detecting 2D materials

are expected to be robust against changes in optical microscopy
conditions, and the development of such an algorithm would
provide a generalized 2D material detector that does not require
fine-tuning of the parameters. In general, deep-learning algo-
rithms for interpreting images are grouped into two categories28.
Fully convolutional approaches employ an encoder–decoder
architecture, such as SegNet7, U-Net8, and SharpMask29. In
contrast, region-based approaches employ feature extraction by
a stack of convolutional neural networks (CNNs), such as Mask-
RCNN11, PSP Net30, and DeepLab10. In general, the region-based
approaches outperform the fully convolutional approaches for
most image segmentation tasks when the networks are trained on
a sufficiently large number of annotated datasets11.
In this work, we implemented and integrated deep-learning

algorithms with an automated optical microscope to search for 2D
materials on SiO2/Si substrates. The neural network architecture
based on Mask-RCNN enabled the detection of exfoliated 2D
materials while generating a segmentation mask for each object.
Transfer learning from the network trained on the Microsoft
common objects in context (COCO) dataset31 enabled the
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development of a neural network from a relatively small (~2000
optical microscope images) dataset of 2D materials. Owing to the
generalization ability of the neural network, the detection process
is robust against changes in the microscopy conditions. These
properties could not be realized using conventional rule-based
image recognition algorithms. To facilitate further research, we
make the source codes for network training, the model weights,
the training dataset, and the optical microscope drivers publicly
available. Our implementation can be deployed on optical
microscopes other than the instrument utilized in this study.

RESULTS
System architectures and functionalities
A schematic diagram of our deep-learning-assisted optical
microscopy system is shown in Fig. 1a, with photographs shown
in Fig. 1b, c. The system comprises three components: (i) an
autofocus microscope with a motorized XY scanning stage (Chuo
Precision); (ii) a customized software pipeline to capture the
optical microscope image, run deep-learning algorithms, display
results, and record the results in a database; (iii) a set of trained
deep-learning algorithms for detecting 2D materials (graphene,
hBN, MoS2, and WTe2). By combining these components, the
system can automatically search for 2D materials exfoliated on
SiO2/Si substrates (Supplementary Movie 1 and 2). When 2D flakes
are detected, their positions and shapes are stored in a database
(sample record is presented in supplementary information), which
can be browsed and utilized to assemble van der Waals
heterostructures with a robotic system23. The key component
developed in this study was the set of trained deep-learning
algorithms for detecting 2D materials in the optical microscope
images. Algorithm development required three steps, namely,
preparation of a large dataset of annotated optical microscope
images, training of the deep-learning algorithm on the dataset,
and deploying the algorithm to run inference on optical
microscope images.
The deep-learning model we employed was Mask-RCNN11 (Fig.

1a), which predicts objects, bounding boxes, and segmentation
masks in images. When an image is input into the network, the
deep convolutional network ResNet10132 extracts the position-
aware high-dimensional features. These features are passed to the
region proposal network (RPN) and the region of interest
alignment network (ROI Align), which propose candidate regions
where the targeted objects are located. The full connection
network performs classification (Class) and regression for the
bounding box (BBox) of the detected objects. Finally, the
convolutional network generates segmentation masks for the
objects using the output of the ROI Align layer. This model was
developed on the Keras/TensorFlow framework33–35.
To train the Mask-RCNN model, we prepared annotated images

and trained networks as follows. In general, the performance of a
deep-learning network is known to scale with the size of the
dataset36. To collect a large set of optical microscope images
containing 2D materials, we exfoliated graphene (covalent
material), MoS2 (2D semiconductors), WTe2, and hBN crystals onto
SiO2/Si substrates. Using the automated optical microscope, we
collected ~2100 optical microscope images containing graphene,
MoS2, WTe2, and hBN flakes. The images were annotated manually
using a web-based labeling tool37. The training was performed by
the stochastic gradient decent method described later in
this paper.
We show the inference results for optical microscope images

containing 2D materials. Figure 1c–f shows optical microscope
images of graphene, WTe2, MoS2, and hBN flakes, which were
input into the neural network. The inference results shown in Fig.
1g–j consist of bounding boxes (colored squares), class labels
(text), confidences (numbers), and masks (colored polygons). For

the layer thickness classification, we defined three categories:
“mono” (1 layer), “few” (2–10 layers), and “thick” (10–40 layers).
Note that this categorization was sufficient for practical use in the
first screening process because final verification of the layer
thickness can be conducted either by manual inspection or by
using the computational post process, such as color contrast
analysis24,38–42, which would be interfaced with the deep-learning
algorithms in the future works. As indicated in Fig. 1g–j, the 2D
flakes are detected by the Mask-RCNN, and the segmentation
mask exhibits good overlap with the 2D flakes. The layer thickness
was also correctly classified, with monolayer graphene classified as
“mono”. The detection process is robust against contaminating
objects, such as scotch tape residue, particles, and corrugated 2D
flakes (white arrows, Fig. 1e, f, I, j).
As the neural network locates 2D crystals using the high-

dimensional hierarchical features of the image, the detection
results were unchanged when the illumination conditions were
varied (Supplementary Movie 3). Figure 2a–c shows the deep-
learning detection of graphene flakes under differing illumination
intensities (I). For comparison, the results obtained using
conventional rule-based detection are presented in Fig. 2d–f. For
the deep-learning case, the results were not affected by changing
the illumination intensity from I= 220 (a) to 180 (b) or 90 (c) (red,
blue, and green curves, Fig. 2). In contrast, with rule-based
detection, a slight decrease in the light intensity from I= 220 (d)
to 200 (e) affected the results significantly, and the graphene
flakes became undetectable. Further decreasing the illumination
intensity to I= 180 (f) resulted in no objects being detected. These
results demonstrate the robustness of the deep-learning algo-
rithms over conventional rule-based image processing for
detecting 2D flakes.
The deep-learning model was integrated with a motorized

optical microscope by developing a customized software pipeline
using C++ and Python. We employed a server/client architecture
to integrate the deep-learning inference algorithms with the
conventional optical microscope (Supplementary Fig. 1). The
image captured by the optical microscope is sent to the inference
server, and the inference results are sent back to the client
computer. The deep-learning model can run on a graphics-
processing unit (NVIDIA Tesla V100) at 200ms. Including the
overheads for capturing images, transferring image data, and
displaying inference results, frame rates of ~1 fps were achieved.
To investigate the applicability of the deep-learning inference to
searching for 2D crystals, we selected WTe2 crystals as a testbed
because the exfoliation yields of transition metal dichalcogenides
are significantly smaller than graphene flakes. We exfoliated WTe2
crystals onto 1 × 1 cm2 SiO2/Si substrates, and then conducted
searching, which was completed in 1 h using a ×50 objective lens.
Searching identified ~25 WTe2 flakes on 1 × 1 cm2 SiO2/Si with
various thicknesses (1–10 layers; Supplementary Fig. 2).
To quantify the performance of the Mask-RCNN detection

process, we manually checked over 2300 optical microscope
images, and the detection metrics are summarized in Supple-
mentary Table 1. Here, we defined true- and false-positive
detections (TP and FP) as whether the optical microscope image
contained at least one correctly detected 2D crystal or not
(examples are presented in Supplementary Figs 2–7). An image in
which the 2D crystal was not correctly detected was considered a
false negative (FN). Based on these definitions, the value of
precision was TP/(TP+ FP) ~0.53, which implies that over half of
the optical microscope images with positive detection contained
WTe2 crystals. Notably, the recall (TP/(TP+ FN) ~0.93) was
significantly high. In addition, the examples of false-negative
detection contain only small fractured WTe2 crystals, which cannot
be utilized for assembling van der Waals heterostructures. These
results imply that the deep-learning-based detection process does
not miss usable 2D crystals. This property is favorable for the
practical application of deep-learning algorithms to searching for
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2D crystals, as exfoliated 2D crystals are usually sparsely
distributed over SiO2/Si substrates. In this case, false-positive
detection is less problematic than missing 2D crystals (false
negative). The screening of the results can be performed by a
human operator without significant intervention43. In the case of

graphene (Supplementary Table 1), both the precision and recall
were high (~0.95 and ~0.97, respectively), which implies excellent
performance of the deep-learning algorithm for detecting 2D
crystals. We speculate that there is a difference between the
exfoliation yields of graphene and WTe2 because the mean
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average precision (mAP) at the intersection of union (IOU) over
50% mAP@IoU50% with respect to the annotated dataset (see
preparation methods below) for each material does not differ
significantly (0.49 for graphene and 0.52 for WTe2). As demon-
strated above, these values are sufficiently high and can be
successfully applied to searches for 2D crystals. These results
indicate that the deep-learning inference can be practically
utilized to search for 2D crystals.

Model training
The Mask-RCNN model was trained on a dataset, where Fig. 3a
shows representative annotated images, and Fig. 3b shows the
annotation metrics. The dataset comprises 353 (hBN), 862
(graphene), 569 (MoS2), and 318 (WTe2) images. The numbers of
annotated objects were 456 (hBN), 4805 (graphene), 839 (MoS2),
and 1053 (WTe2). The annotations were converted to the JSON
format compatible with the Microsoft COCO dataset using our
customized scripts written in Python. Finally, the annotated
dataset was randomly divided into training and test datasets in
a 8:2 ratio. To train the model on the annotated dataset, we
utilized the multitask loss function defined in refs 11,33

L ¼ αLcls þ βLbox þ γLmask (1)

where Lcls, Lbox, and Lmask are the classification, localization, and
segmentation mask losses, respectively; α – γ is the control
parameter for tuning the balance between the loss sets as
(α, β, γ)= (0.6, 1.0, 1.0). The class loss was

Lcls ¼ �log pu (2)

where p= (p0, …, pk) is the probability distribution for each region
of interest in which the result of classification is u. The bounding
box loss Lbox is defined as

Lbox tu; vð Þ ¼
X

i2 x;y;w;hf g
smoothL1 tui � vi

� �
(3)

where smoothL1 xð Þ ¼ 0:5x2; xj j<1
xj j � 0:5; otherwise

�
is an L1 loss. The

mask loss Lmask was defined as the average binary cross-entropy
loss:

Lmask ¼ � 1
m2

X

1�i;j�m

yij � log ŷkij þ 1� yij
� �

log 1� ŷkij
� �h i

(4)

where yij is the binary mask at (i, j) from an ROI of (m ×m) size on
the ground truth mask of class k, and ŷkij is the predicted class label
of the same cell.
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Fig. 2 Comparison between deep-learning and rule-based detection. Input image and inference results under illumination intensities of I=
a 220, b 180, and c 90 (arb. unit) for deep-learning detection, and I= d 220, e 210, and f 180 (arb. unit) for rule-based detection. The scale bars
correspond to 10 µm.

Fig. 1 Deep-learning-assisted automated optical microscope for searching for two-dimensional (2D) crystals. a Schematic of the deep-
learning-assisted optical microscope system. The optical microscope acquires an image of exfoliated 2D crystals on a SiO2/Si substrate. The
images are input into the deep-learning inference algorithm. The Mask-RCNN architecture generates a segmentation mask, bounding boxes,
and class labels. The inference data and images are stored in a cloud database, which forms a searchable database. The customized computer-
assisted-design (CAD) software enables browsing of 2D crystals, and designing of van der Waals heterostructures. b, c Photographs of (b) the
optical microscope and (c) the computer screen for deep-learning-assisted automated searching. d–k Segmentation of 2D crystals. Optical
microscope images of (d) graphene, (e) hBN, (f) WTe2, and (g) MoS2 on SiO2 (290 nm)/Si. h–k Inference results for the optical microscope
images in d–g, respectively. The segmentation masks and bounding boxes are indicated by polygons and dashed squares, respectively. In
addition, the class labels and confidences are displayed. The contaminating objects, such as scotch tape residue, particles, and corrugated 2D
flakes, are indicated by the white arrows in e, f, i, and j. The scale bars correspond to 10 µm.
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Instead of training the model from scratch, the model weights,
except for the network heads, were initialized using those
obtained by pretraining on a large-scale object segmentation
dataset in general scenes, i.e., the MS-COCO dataset31. The
remaining parts of the network weights were initialized using
random values. The optimization was conducted using a
stochastic gradient decent with a momentum of 0.9 and a weight
decay of 0.0001. Each training epoch consisted of 500 iterations.
The training comprised four stages, each lasting for 30 epochs
(Fig. 3c). For the first two training stages, the learning rate was set
to 10–3. The learning rate was decreased to 10–4 and 10–5 for the
last two stages. In the first stage, only the network heads were
trained (top row, Fig. 3c). Next, the parts of the backbone starting
at layer 4 were optimized (second row, Fig. 3c). In the third and
fourth stages, the entire model (backbone and heads) was trained
(third and fourth rows, Fig. 3c). The training took 12 h using four
GPUs (NVIDIA Tesla V100 with 32-GB memory). To increase the
number of training datasets, we used data augmentation
techniques, including color channel multiplication, rotation,
horizontal/vertical flips, and horizontal/vertical shifts. These

operations were applied to the training data with a random
probability online to reduce disk usage (examples of the
augmented data are presented in Supplementary Figs 8 and 9).
Before being fed to the Mask-RCNN model, each image was
resized to 1024 × 1024 px2 while preserving the aspect ratio, with
any remaining space zero padded.
To improve the generalization ability of the network, we

organized the training of the Mask-RCNN model into two steps.
First, the model was trained on mixed datasets consisting of
multiple 2D materials (graphene, hBN, MoS2, and WTe2). At this
stage, the model was trained to perform segmentation and
classification, both on material identity and layer thickness. Then,
we use the trained weights as a source, and performed transfer
learning on each material subset to achieve layer thickness
classification. By employing this strategy, the feature values that
are common to 2D materials behind the network heads were
optimized and shared between the different materials. As shown
below, the sharing of the backbone network contributed to faster
convergence of the network weights and a smaller test loss.

Name
SiO2

Thickness (nm)
# of

Images
# of Objects

(Total)
# of Objects

(Mono)
# of Objects

(Few)
# of Objects

(Thick)

BN 290 232 274 0 0 274
BN 90 121 182 13 111 58

Graphite 290 862 4805 1858 2081 866
MoS2 290 569 839 239 523 77
WTe2 290 318 1053 148 582 323
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on the MS-COCO dataset. Solid (dotted) curves are test (train) losses. Training was performed either with (red curve) or without (blue curve)
augmentation.
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Training curve
Figure 3d shows the value of the loss function as a function of the
epoch count. The solid (dotted) curves represent the test (training)
loss. The training was conducted either with (red curves) or
without (blue curves) data augmentation. Without augmentation,
the training loss decreased to zero, while the test loss was
increased. The difference between the test and training losses was
significantly increased with training, which indicates that the
generalization error increased, and the model overfits the training
data13. When data augmentation was applied, both the training
and validation losses decreased monotonically with training, and
the difference between the training and validation losses was
small. These results indicate that when 2000 optical microscope
images are prepared, the Mask-RCNN model can be trained on 2D
materials without overfitting.

Transfer learning
After training on multiple material categories, we applied transfer
learning to the model using each sub-dataset. Figure 4a–d shows
the learning curves for training the networks on the graphene,
hBN, MoS2, and WTe2 subsets of the annotated data, respectively.
The solid (dotted) curves represent the test (training) loss. The
network weights were initialized using those at epoch 120
obtained by training on multiple material classes (Fig. 3d) (red
curves, Fig. 4a–d). For reference, we also trained the dataset by
initializing the network weights using those obtained by pretrain-
ing only on the MS-COCO dataset (blue curves, Fig. 4a–d). Notably,
in all cases, the test loss decreased faster for those pretrained on
the 2D crystals and MS-COCO than for those pretrained on MS-
COCO only. The loss value after 30 epochs of training on 2D
crystals and MS-COCO was of almost the same order as that
obtained after 80 epochs of training on MS-COCO only. In
addition, the minimum loss value achieved in the case of
pretraining on 2D crystals and MS-COCO was smaller than that
achieved with MS-COCO only. These results indicate that the

feature values that are common to 2D materials are learnt in the
backbone network. In particular, the trained backbone network
weights contribute to improving the model performance on each
material.
To investigate the improvement of the model accuracy, we

compared the inference results for the optical microscope images
using the network weights from each training set. Figure 4e–h
shows the optical microscope images of graphene and WTe2,
respectively, input into the network. We employed the model
weights where the loss value was minimum (indicated by the red/
blue arrows). The inference results in the cases of transferring only
from MS-COCO, and from both MS-COCO and 2D materials, are
shown in Fig. 4f, g for graphene, and Fig. 4I, j for WTe2. For
graphene, the model transferred from MS-COCO only failed in
detecting some thick graphite flakes, as indicated by the white
arrows in Fig. 4f, whereas the model trained on MS-COCO and 2D
crystals detected the graphene flakes, as indicated by the white
arrows in Fig. 4g. Similarly, for WTe2, when the inference process
was performed using the model transferred from MS-COCO only,
the surface of the SiO2/Si substrate surrounded by thick WTe2
crystals was misclassified as WTe2, as indicated by the white arrow
in Fig. 4d. In contrast, when learning was transferred from the
model pretrained on MS-COCO and 2D materials (red arrow, Fig.
4b), this region was not recognized as WTe2. These results indicate
that pretraining on multiple material classes contributes to
improving model accuracy because the common properties of
2D crystals are learnt in the backbone network. The inference
results presented in Fig. 1 were obtained by utilizing the model
weights at epoch 120 for each material.

Generalization ability
Finally, we investigated the generalization ability of the neural
network for detecting graphene flakes in images obtained using
different optical microscope setups (Asahikogaku AZ10-T/E, Key-
ence VHX-900, and Keyence VHX-5000 as shown in Fig. 5a–c,
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respectively). Figure 5d–f shows the optical microscope images of
exfoliated graphene captured by each instrument. Across these
instruments, there are significant variations in the white balance,
magnification, resolution, illumination intensity, and illumination
inhomogeneity (Fig. 5d–f). The model weights from training epoch
120 on the graphene dataset were employed (red arrow, Fig. 4d).
Even though no optical microscope images recorded by these
instruments were utilized for training, as shown by the inference
results in Fig. 5g–i, the deep-learning model successfully detected
the regions of exfoliated graphene. These results indicate that our
trained neural network captured the latent general features of
graphene flakes, and thus constitutes a general-purpose graphene
detector that works irrespective of the optical microscope setup.
These properties cannot be realized by utilizing the conventional
rule-based detection algorithms for 2D crystals, where the
detection parameters must be retuned when the optical condi-
tions were altered.

DISCUSSION
In order to train the neural network for the 2D crystals that have
different appearance, such as ZrSe3, the model weights trained on
both MS-COCO and 2D crystals obtained in this study can be used
as source weights to start training. In our experience, the Mask-
RCNN trained on a small dataset of ~80 images from the MS-COCO
pretrained model can produce rough segmentation masks on
graphene. Therefore, providing <80 annotated images would be

sufficient for developing a classification algorithm that works for
detecting other 2D materials when we use our trained weights as
a source. Our work can be utilized as a starting point for
developing neural network models that work for various 2D
materials.
Moreover, the trained neural networks can be utilized for

searching the materials other than those used for training. For
demonstration, we exfoliated WSe2 and MoSe2 flakes on SiO2/Si
substrate, and conducted searching with the model trained on
WTe2. As shown in Supplementary Figs 10 and 11 in supplemen-
tary information, thin WSe2 and MoSe2 flakes are correctly
detected even without training on these materials. This result
indicates that the difference of the appearances of WSe2 and
MoSe2 from WTe2 are covered by the generalization ability of
neural networks.
Finally, our deep-learning inference process can run on the

remote server/client architecture. This architecture is suitable for
researchers with an occasional need for deep learning, as it
provides a cloud-based setup that does not require a local GPU.
The conventional optical microscope instruments that were not
covered in this study can also be modified to support deep-
learning inference by implementing the client software to capture
an image, send an image to the server, receive, and display
inference results. The distribution of the deep-learning inference
system will benefit the research community by saving the time
needed for optical microscopy-based searching of 2D materials.

(a)

(e)

(c)

(d)

(h)

(g)

Input Inference

(f) (i)

Fig. 5 Generalization ability of the neural network. a–c Optical microscope setups used for capturing images of exfoliated graphene
(Asahikogaku AZ10-T/E, Keyence VHX-900, and Keyence VHX-5000, respectively). d–f Optical microscope images recorded using instruments
(a–c), respectively. g–i Inference results for the optical microscope images in d–f, respectively. The segmentation masks are shown in color,
and the category and confidences are also indicated. The scale bars correspond to 10 µm.
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In this work, we developed a deep-learning-assisted automated
optical microscope to search for 2D crystals on SiO2/Si substrates.
A neural network with Mask-RCNN architecture trained on 2D
materials enabled the efficient detection of various exfoliated 2D
crystals, including graphene, hBN, and transition metal dichalco-
genides (WTe2 and MoS2), while simultaneously generating a
segmentation mask for each object. This work, along with the
recent other attempts for utilizing the deep-learning algorithms44–46,
should free researchers from the repetitive tasks of optical
microscopy, and comprises a fundamental step toward realizing
fully automated fabrication systems for van der Waals hetero-
structures. To facilitate such research, we make the source codes
for training, the model weights, the training dataset, and the
optical microscope drivers publicly available.

METHODS
Optical microscope drivers
The automated optical microscope drivers were written in C++ and Python.
The software stack was developed on the stacks of a robotic operating
system47 and the HALCON image-processing library (MVTec Software GmbH).

Preparation of the training dataset
To obtain the Mask-RCNN model to segment 2D crystals, we employed a
semiautomatic annotation workflow. First, we trained the Mask-RCNN with
a small dataset consisting of ~80 images of graphene. Then, we conducted
predictions on optical microscope images of graphene. The prediction
labels generated using the Mask-RCNN were stored in LabelBox using API.
These labels were manually corrected by a human annotator. This
procedure greatly enhanced the annotation efficiency, allowing each
image to be labeled in 20–30 s.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
The source code, the trained network weights, and the training data are available at
https://github.com/tdmms/.
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