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The past decade has seen a significant increase in the amount 
of experimental data gathered in the natural sciences, as well 
as in the computer resources used to store and analyse these 

data. Prompted by this development, data-driven machine-learning 
methods are beginning to be widely used in the natural sciences, 
for example in condensed-matter physics1,2, microscopy3,4, fluid 
mechanics5 and biology6.

During the past few years, active-matter research7 has also begun 
to successfully employ machine-learning approaches. This is not 
surprising, because active-matter systems, like complex systems in 
general, tend to exhibit many more degrees of freedom than con-
servation laws, causing fundamental challenges for mechanistic 
models. This was realized already about 50 years ago, when chaos 
theory emerged as the basis for statistical descriptions of complex 
systems—causing a paradigm shift from mechanistic to probabi-
listic interpretations of experimental data, highlighting the funda-
mental difficulty in predicting the dynamics of non-linear complex 
systems8. Furthermore, standard statistical-physics approaches are 
most easily applied to systems in thermodynamical equilibrium, 
while active matter often features far-from-equilibrium dynamics.

Data-driven machine-learning methods offer unprecedented 
opportunities for active-matter research, where the availability of 
a large amount of data is matched by the lack of simple statistical-
physics models. For example, data-driven methods can be used to 
obtain model-free predictions, which can be extraordinarily useful 
for many purposes (weather forecasting is an important example). 
But will machine learning initiate new trends in active-matter 
research? Will this lead to ground-breaking insight and applica-
tions? More fundamentally, how can machine learning contribute 
to our understanding of active matter? Can this help us identify uni-
fying principles and systematize active matter?

In this Review, after a brief introduction to active matter, we illus-
trate the potential of machine-learning methods in active-matter 
research by describing the most successful recent machine-learning 
applications in this field. Then we discuss the main opportunities and, 
most importantly, the principal challenges for future applications.

Active matter
The term active matter was coined to describe natural and artificial 
systems (Fig. 1a) made of active particles that draw energy from 

their local environment to perform mechanical work7. Natural sys-
tems, from molecular motors, to cells and bacteria, to fish, birds and 
other organisms, are intrinsically out of thermodynamic equilib-
rium as they convert chemical energy. Their biochemical networks 
and sensory systems are optimized by evolution to perform specific 
tasks: in the case of motile microorganisms, for example to cope 
with ocean turbulence, to navigate along chemical gradients, and 
more generally to follow specific strategies in foraging9–12 (Fig. 1b). 
Artificial active matter covers a similar size range from self-propel-
ling artificial molecules and microparticles, whose development is 
just in its infancy, to macroscopic robots, which consume energy 
from sources such as heat and electricity.

Active-matter research is concerned with understanding how 
macroscopic spatio-temporal collective patterns may emerge, 
driven by energy conversion from the smallest to the largest scales, 
mediated by physical interactions (Fig. 1c). Dense systems of bac-
teria, for example, develop active turbulence at length scales where 
only laminar flows are expected from the underlying physical 
laws13,14. Cells grow into tissues and sometimes may form tumours. 
Dense filaments and motor proteins, which are the structural build-
ing blocks of cells, develop active nematic structures with new 
physical properties15. The onset of such collective behaviours is also 
observed in artificial systems where increased energy input above a 
threshold density drives a phase transition to an aggregated state16,17.

In dilute systems, when active particles have no direct physical 
interaction with each other, natural systems have evolved sens-
ing capabilities, which allow them to gain information about their 
environments or to communicate. This introduces a new dimen-
sion with entirely different challenges and importance in other 
fields such as ecology18,19. In schools of fish and flocks of birds or 
midges, individuals exchange information as part of their behaviour 
to self-organize into a collective state20. The underlying behavioural 
rules are often hard to identify but could be extremely useful for the 
application in robots swarms21–23 or for information-based structure 
formation in microscopic systems24.

Experimental active-matter studies provide the testing grounds 
for new non-equilibrium descriptions, which are by necessity often 
computational. They are either based on hypothesized mechanis-
tic models for local interactions, coarse-grained hydrodynamic 
approximations25 or basic fluctuation theorems26. The question is 
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often how local energy input and physical interactions determine 
the macroscopic spatio-temporal patterns. Answers are sought by 
simulation using molecular dynamics27, Monte Carlo methods28, 
cellular automata29 or numerical solutions of hydrodynamical equa-
tions30. Data-driven machine-learning methods offer radically dif-
ferent, and partly complementary, opportunities. The reasoning is 
reversed: instead of asking how spatio-temporal patterns emerge 
from given microscopic interactions, the goal is to determine the 
fundamental principles that govern the spatio-temporal dynamics 
directly from the data, obtained from experiments or simulations.

Machine learning for active matter
During the past 70 years, the formulation and improvement of 
machine-learning algorithms has benefited from the understand-
ing of biological systems31. Recently, this development has acceler-
ated substantially1,2,5,6, sparked by the the availability of large amounts 
of training data that has led to a tremendous success of neural-net-
based algorithms in image recognition and classification32 (Box 1). 
One usually distinguishes between supervised, semi-supervised and 
unsupervised methods. Supervised-learning models are trained on 
labelled datasets annotated with the correct classifications (targets). 
Semi-supervised methods rely on partial target information for learn-
ing. Unsupervised methods do not require training on annotated 
data, while they uncover hidden relations in high-dimensional data 

that are not easily discernible. The application of these techniques in 
active-matter research can be grouped into four different fields.

Data acquisition and analysis. The most important and common 
use of machine learning in active-matter research is in the analysis 
and classification of experimental data using supervised learning 
models (usually neural nets)33–37 (Box 1). In fact, most active-matter 
experiments are performed using video microscopy, which provides 
large, high-quality training datasets that also cover less likely exper-
imental conditions, which are ideally suited to image analysis with 
supervised machine-learning methods38.

Supervised learning based on convolutional nets (Box 1) has 
enhanced video microscopy by improving its spatial resolution39, 
extending its depth of field40 and retaining objects in focus41. 
More generally, detecting and following microscopic active  
particles in video-microscopy recordings poses enormous chal-
lenges, especially for heterogeneous samples with multiple species,  
varying contrast and low signal-to-noise ratio. Recently, convolu-
tional nets were shown to improve particle imaging velocimetry33, 
to localize particles in holographic microscopy34, and to track 
particles36. Convolutional nets outperform conventional centroid-
based algorithms in the analysis of video-microscopy recordings of  
microscopic particles and motile cells (Fig. 2a). They have also  
been used to track thousands of individual honey bees in a hive, 
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Fig. 1 | Active-matter systems and phenomena. a, Examples of active particles range in size from micrometres to metres (for example, biomolecular 
motors, motile bacteria, sperm cells, artificial microscopic particles, fish, birds, mammals and robots). b, Active particles react to environmental signals 
and optimize their behaviour to reach certain goals—for example, biomolecular motors move along microtubules, microorganisms swim in turbulent flows, 
motile cells respond to chemotactic gradients, and animals look for food (foraging). c, Interactions between active particles may lead to complex collective 
behaviours, such as the growth of metastable clusters of particles, and to the emergence of collective dynamics such as swarming and milling.
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obtaining the data necessary to analyse how their social structure is 
reflected in their collective dynamics35, an important question also 
for other species, such as flocking jackdaws42 and even humans43. 

Often the study of active-matter systems requires time-series 
analysis, a task that lends itself to supervised machine-learning 
approaches (Box 1).

Box 1 | Overview of machine-learning methods

Supervised learning builds on labelled datasets containing the 
inputs as well as the properties (targets) the algorithm is trained 
to learn. Supervised models are often based on neural nets38: net-
works of non-linear computation units (artificial neurons) con-
nected by weights. These weights are iteratively adjusted (trained) 
until the neural net learns to associate the correct target to each 
input. Deep neural nets with many layers of neurons have great 
potential, but deeper nets are more prone to training instabilities99. 
Convolutional nets are particularly well-suited for image analy-
sis99,100 and recurrent nets for time-series prediction101. Apart from 
neural nets, decision trees and random forests (ensembles of deci-
sion trees) are frequently used models for supervised learning102. 
Unsupervised learning, by contrast, does not require training on 
labelled data, but exploits redundancy in the input data38 to learn 

to compress data, identify likely input patterns, and find patterns in 
the data using non-linear projections103 or self-organized maps104. 
Several common statistical-analysis methods fall into this cat-
egory: principal-component analysis105, k-means clustering106 and 
other clustering algorithms107. Semi-supervised methods, such as 
reinforcement learning78,108–111, learn from partially labelled data, 
or from incomplete feedback in the form of penalty or reward. Ge-
netic algorithms112 are inspired by the genetic-sequence evolution 
through drift, mutation and recombination; penalty and reward 
are modelled on natural selection. Reservoir computing46 uses re-
current nets where only the output neurons are trained, while the 
others form a reservoir of recurrently connected neurons. Adver-
sarial pairs of neural nets113 train each other to generate synthetic 
data that is very difficult to distinguish from authentic data.
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Unsupervised machine-learning methods (Box 1) can auto-
matically categorize large amounts of video-microscopy data on the 
collective motion of swarming agents. Figure 2b illustrates how a 
variant of k-means clustering manages to identify different dynami-
cal phases of swarming bacteria, which, combined with a numeri-
cal model analysis, explains the observed swarming behaviours44. 
Unsupervised learning will also be used in the Human Cell Atlas 
project, which aims to classify all human cell types based on their 
molecular profiles45.

Data-driven models. The dynamics of dense active matter results 
from the interaction between many, often microscopic, parts. While 
microscopic motion typically appears random, well-defined spatio-
temporal patterns may emerge at meso- and macroscopic scales. 
Such patterns are notoriously difficult to describe, understand and 
predict from first principles. Semi-supervised learning can tackle 
this problem using time-series data to construct numerical models 
for the spatio-temporal dynamics. For example, reservoir comput-
ing (Box 1) managed to forecast complex spatio-temporal patterns, 
which may exist in chemical, biological and physical systems, 
directly from the input data46 (Fig. 3a). As another example, motile 
cells, bacteria or artificial active particles may exhibit anomalous 
diffusion7. Their subdiffusive and superdiffusive dynamics have 
been classified and characterized using recurrent nets47 (Fig. 3b) 
and random forests48, determining the value of the anomalous dif-
fusion exponent and its temporal fluctuations, which is essential 
to discover the mechanisms that generate motility, and determine 
anisotropic and heterogeneous motility patterns49,50.

More generally, one can infer underlying models from time-series 
data by symbolic regression using genetic algorithms51. Sparse regres-
sion ensures that the model has as few fitting parameters as possible52. 
This method has achieved some success in finding partial differential 
equations from spatial time-series data53. An efficient way to obtain 
a model from high-dimensional time-series data is to reduce the 
dimensionality by projection—that is, to find a low-dimensional sur-
rogate model that is easier to handle and analyse, but still describes 

the main features of the original data. The best projection is often 
not simply a spatial one, but perhaps a projection onto the relevant 
modes54. Machine learning appears to be ideally suited to solve this 
problem. For example, it has already been used to solve the difficult 
task of elucidating the intricate three-dimensional spatio-temporal 
patterns associated with turbulent flows55. Furthermore, machine 
learning can provide invaluable help to infer dynamic information 
and underlying models from static information56,57.

Navigation and search strategies. Motility, navigation and search 
strategies are interesting for physics, biology, ecology and robot-
ics. Like foraging animals, active particles can navigate and search 
complex environments58,59. To understand how evolution shaped 
search strategies of small motile organisms, one can use rein-
forcement learning to identify optimal and alternative strategies60  
(Fig. 4a). A challenge is that many active-matter systems are sus-
pensions, presenting the agents with a fluctuating environment. 
For example, motile plankton must cope with ocean turbulence61. 
A recent proof-of-principle study demonstrated how reinforce-
ment learning finds good strategies for navigation in a steady flow62  
(Fig. 4b), and for point-to-point navigation in complex fluid envi-
ronments63–65. Reinforcement learning can be used to find strate-
gies for marine probes to target certain oceanic regions of interest64, 
and also yields fundamental insight into how birds soar in thermal 
updrafts guided by cues from the turbulent air flow66, enabling glid-
ers to soar in such updrafts67 (Fig. 4c).

Collective dynamics in interacting populations. Groups of animals 
often feature organized collective behaviours, from swarms of insects 
to flocks of birds68. Swarming provides several benefits to the indi-
viduals: it can reduce the risk of predation, increase the opportuni-
ties for feeding, provide chances for reproduction, and reduce energy 
consumption by optimizing hydrodynamical interactions in schools 
of fish or flocks of birds58,68. However, swarming requires different 
navigation skills compared to moving alone69. Developing such skills 
entails a cost, so the corresponding strategies can only emerge through 

a Digital video microscopy b Classification of different dynamical phases in swarming bacteria 
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evolution if they lead to significant gains. Multi-agent reinforcement 
learning allows one to determine under which circumstances collec-
tive sensing may emerge, where a group may sense scalar gradients 
(turbulence intensity, food concentration, or light intensity), despite 
the fact that individuals can only measure scalars70–73.

Machine learning offers opportunities far beyond categorizing 
the different dynamical phases of swarming (Fig. 2b), permitting the 
exploration of the yet-unknown physical mechanisms underlying 
such advanced behaviours. For example, reinforcement learning74 
and deep reinforcement learning75 have been used to find optimal 

swimming strategies that minimize drag and energy consumption 
in a simulated school of fish (Fig. 5a).

Opportunities and challenges
The recent success of machine-learning approaches in active-mat-
ter research provides a glimpse into possible future applications. 
Naturally, these opportunities come with challenges, primarily the 
fact that many machine-learning methods are effectively black-box 
models that cannot provide the interpretability that is expected 
in the natural sciences. In the following we summarize the most 
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far-reaching opportunities and the most significant challenges for 
machine learning in active-matter research.

Opportunities. We identified a number of so-far-unexplored 
research directions with great potential.

Improvement of data acquisition and analysis. Until now, active-
matter research has used standard machine-learning models for 
image processing (for example, convolutional nets for particle 
tracking33–37) and for time series analysis (recurrent nets for data 
classification44,45). Going forward, suitable neural-net architectures 
for analysing more complex, multimodal data will require more tar-
geted, hybrid approaches76.

The use of machine-learning methods in data acquisition and 
analysis will go along with improved feedback control of experi-
mental setups and protocols. For example, machine-learning control 
could improve temperature stabilization when actuating artificial 
active particles, or material deposition when microfabricating such 
particles. Machine learning may also help to find optimal parameters 
in real time during experiments, and support data acquisition and 
analysis methods that dynamically adapt to a time-varying signal (for 
example, due to the presence of drifts in the experimental setup).

Inspiration from swarm robotics. Active-matter research should 
seek analogies with the problems studied in swarm robotics21,77, 
where genetic algorithms21,22 (Box 1) and reinforcement learning23 
have been applied for some time. Recent trends in swarm-robotics 
research are deep reinforcement learning78, model-based behaviour 
trees evolved using genetic programming that result in human-
readable output79, and machine-learning methods based on gen-
erative adversarial networks80 (Box 1 and Fig. 5b). Engineering the 
interplay between system length and time scales, correlated noises 

and sensorial delays, it is even possible to tune the macroscopic 
swarm dynamics70,71,81–83 (Fig. 5c). These methods developed in 
swarm-robotics research can also have important implications for 
biological active-matter systems.

Systematiation of active matter. On a more fundamental level, 
machine learning can help to tame the diversity of active matter. 
There are many different active-matter systems (Fig. 1): dense or 
dilute, granular or fluid, biological or artificial, microscopic or 
macroscopic. These systems are subject to quite different interac-
tion mechanisms, such as hydrodynamic, electrostatic, adhesive, 
chemical or just steric interactions. One of the main challenges is to 
determine the fundamental underlying similarities and differences. 
Machine learning can help by using its ability to mine information 
from large experimental and numerical datasets. For example, the 
governing equations of physical phenomena have been recently dis-
covered from large datasets using sparse regression52,53.

A possible route towards this systematization goal is to under-
stand and classify how different interaction mechanisms are related 
to macroscopic spatio-temporal patterns observed in many dif-
ferent active-matter systems. Active particles use energy for loco-
motion and drive the system at the smallest scales; they may also 
use local information to find suitable strategies, resulting in mac-
roscopic patterns or collective behaviours. Often, we do not know 
what these local, microscopic interactions look like. Devising mod-
els for such a diverse range of emergent behaviours is no simple task. 
This has been mostly attempted by proposing heuristic mechanis-
tic rules for the dynamics at the individual level, such as matching 
velocities, avoiding collisions or forming a centred group68. Instead, 
machine-learning methods can suggest possible local interaction 
mechanisms from the data. Reinforcement learning, for example, 
can help to find candidate strategies, either for an individual or for 
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Fig. 5 | Collective dynamics in interacting populations. a, Energy-efficient swimming. Numerical simulations of energy efficient swimming strategies from 
deep reinforcement learning to exploit the wake of leading swimmers with one leader and one follower (top panel), one leader and two followers (middle 
panel), and two leaders and one follower (bottom panel). b, Self-organized aggregation in a robot swarm. The behaviour is inferred from the observation 
of aggregating robots. c, Delayed sensorial feedback. A group of three phototactic robots, which emit a radially decaying light intensity around themselves 
and adjust their speed as a function of the sensed light intensity, aggregate into a dynamic cluster if their sensorial delay is positive (left panels) and 
segregate if it is negative (right panels). The trajectories show a period of 10 s preceding the time indicated on the plot, and the dots indicate the final 
position of the robots. Figure adapted with permission from ref. 75, PNAS (a); ref. 80, Springer (b); and ref. 70, APS (c).
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the population as a whole, to reach certain goals. As we have seen 
in the previous section, similar algorithms have been widely used in 
robotics22,23 and research along these lines has recently started also 
in models of biological active matter62,73. The next steps will be to 
develop more complex strategies, which work in realistic environ-
ments and respond to environmental cues.

Insight into biological active matter. During evolution, biological 
species have developed sensorial networks to interact with their 
environment. Active matter, machine learning and biology can join 
forces to decode how this sensorial information is used to deter-
mine the interaction strategies. Reinforcement learning and simple 
neural nets are particularly well-suited to compare the importance 
of different sensorial inputs61. For example, consider how birds sur-
vive and navigate local air turbulence. Reinforcement learning has 
been recently employed to identify strategies for the birds to cope 
with turbulence66. However, this pioneering work tested only a lim-
ited discrete set of possible signals and cues that inform the birds 
about their environment, which do not necessarily reflect what the 
birds actually sense.

Many species rely on chemotaxis to find potential mating part-
ners or prey84. This is straightforward in a quiescent environment 
where the strategy is simply to climb the concentration gradient. 
But what is the best strategy when there is flow, as, for example, 
in nutrient-rich upwelling regions in a turbulent flow? This prob-
lem becomes still more challenging when the chemical signal is 
intermittent or in unsteady flows. Different search strategies have 
been proposed, found using standard algorithmic approaches58,59. 
Machine-learning methods can improve on these results and find 
strategies that are even better at specific tasks, and are adapted to 
complex, time-varying environments.

Evolution of biological active matter. The morphology, function-
ality and behaviour of biological active matter evolved as a trad-
eoff between benefit, cost and risk. Evolution is an optimization 
problem with multiple cost functions, which may even vary over 
time. Optimizing one cost function may frustrate or promote other 
important goals. A far-reaching, fundamental question is how these 
strategies, morphologies and functions have evolved in dynamical 
environments, and to what extent the morphological features of an 
organism are themselves part of its computing power85. Leading 
further, one should compare strategies that are optimal for a single 
individual with strategies that are optimal for a swarm. Are there 
swarming strategies that are equally beneficial for the individuals, 
but cost less (for example, require fewer sensory inputs, or a smaller 
number of motility functions)? Are there circumstances where 
strategies evolve that are beneficial for the group as a whole, but 
that damage the individual? How does the behaviour of a species 
depend on other species it interacts with (for example, predators)? 
When it comes to swarms of motile organisms, there are funda-
mental open questions concerning the role of leadership, hierarchy 
and other social structure in collective decision making. This has 
been studied using mechanistic models68, but many open questions 
that can be addressed with machine learning remain, such as what 
changes when we take into account that the particles can adapt their 
behaviour in response to sensory inputs. In the long run, it may 
even be possible to use these insights into biological evolution to 
create evolvable artificial active matter, where machine-learning 
algorithms optimize the morphology and behaviour of artificial 
active matter to optimize some goals such as particle self-assembly, 
collective swarming or targeted drug delivery.

Active matter with embodied intelligence. In the conventional 
approaches to applying machine learning to microscopic active mat-
ter discussed until now, the machine-learning part is performed on 
a computer, which provides the computational power and speed to 

execute the machine-learning algorithms. An interesting avenue to 
explore in the future is to develop artificial active materials that are 
smart enough to carry out basic computation and adaption without 
referring to in silico training procedures. This requires new versatile 
ways to incorporate signal inputs, signal processing and memory 
storage into microscopic materials and agents that can then act 
truly autonomously. For example, such approaches may build on 
the networks of chemical reactions involving macromolecules and 
active components86. These possibilities are recently exploited in 
the development of DNA computing, where neural nets are imple-
mented by DNA strand displacement cascades87.

Challenges. In general, machine learning is used either as a tool 
or a model, and this applies to active-matter research too. In data 
processing, forecasting, projection and optimization, learning the 
final result is usually more important than the internal processing of 
the algorithm. One might think that the interpretation of the results 
is quite unproblematic under these circumstances, but it is worth 
noting a number of important caveats and challenges. Catastrophic 
forgetting88 may limit what a network can learn, and there is much 
speculation about which factors affect the ability of the network 
to generalize38, yet there are few definite mathematical results (see  
ref. 89 for an exception). A potentially even more serious problem is 
that convolutional nets tend to be quite certain in their classifica-
tion, even when they are wrong90. It is a question of ongoing research 
how to know when and why the network fails to classify correctly.

Many machine-learning tools work as black boxes91, which is 
problematic when using machine learning to generate a simple 
model of a complex system that can be intuitively understood 
and therefore generalized to other parameter values or situations. 
Reinforcement learning has the definite advantage that its results 
are interpretable, but there are nevertheless a number of caveats spe-
cific to active-matter research. Reinforcement-learning approaches 
often use simulation data instead of empirical data (see refs. 22,60,67 
for exceptions), because it is usually easier to generate the required 
large datasets using simulations. In some cases, the necessary infor-
mation may not even be accessible experimentally, as in many liv-
ing active-matter systems. Strategies found from simulation data 
usually work less well in the real world—this is the so-called reality 
gap21,22,92. Research on how to best avoid or overcome the reality gap 
is ongoing93.

Therefore, some caution must be taken when incorporating 
machine-learning models into the scientific process of understand-
ing active matter. Guidelines for how to apply machine learning 
have been compiled, taking into account the specific issues arising 
in different fields93–96. Below we give guidelines suitable for initial 
application of machine learning in active-matter systems.

	1.	 The performance of machine-learning models must be bench-
marked against other known and commonly used approaches. 
This serves as a sanity check, which establishes a baseline to 
beat. For example, ref. 37 demonstrates how a neural-network-
based particle-detection algorithm outperforms conventional 
particle-tracking methods (Fig. 2a). A second example is rein-
forcement learning, where the crucial question is whether the 
strategies found by reinforcement learning outperform previ-
ously known strategies (Fig. 4b)62.

	2.	 Machine-learning models with simpler architectures and fewer 
parameters are better97, not only because they are less prone to 
overfitting, but also because their results are usually easier to 
interpret. For example, there is no need for deep neural nets 
or random forests when a simpler clustering algorithm man-
ages to classify high-dimensional data accurately and efficiently 
(Fig. 3b)44.

	3.	 Usually the input data must be preprocessed. This appears to be 
at odds with a central dogma of the deep-learning revolution, 
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namely to avoid feature engineering before applying machine-
learning methods. However, preprocessing is essential to mini-
mize the risk of overfitting to spurious correlations that might 
be present in large datasets98, and because machine-learning 
methods have difficulties coping with distorted inputs38.

	4.	 It is important to avoid applying machine-learning models out-
side the range of input data for which they have been trained. 
This is obvious because extrapolation is a more complex and 
risky operation than interpolation. However, in the case of 
machine-learning models, a danger is that extrapolation occurs 
unintentionally and in an uncontrolled fashion. For example, 
recurrent nets may correctly predict an anomalous diffusion 
exponent in a certain range, but fail for data with smaller or 
larger exponents than the training set47. More fundamentally, 
it is not known how the method would perform on data that 
is generated by different models from those in the training set. 
In a similar vein, the spatio-temporal predictions of reservoir 
computing for chaotic systems46 are likely to fail for extreme 
initial conditions, outside the training set (Fig. 3a).

	5.	 The most important point, in our opinion, is that one should 
strive to use physics-informed machine-learning models, even 
though it is not yet clear how to do this in general. These are 
machine-learning models that take into account the physical 
properties of the system under investigation. For example, they 
could enforce the conservation laws and symmetries that char-
acterize the physical system under study. This will have the add-
ed benefit of allowing simpler machine-learning models that 
are also easier to understand, as well as allowing the evaluation 
of how the model changes as different symmetries or interac-
tions are implemented.

Potential benefits for machine learning. Active-matter systems 
may also serve as a tool to advance machine learning mostly by pro-
viding well-controlled reference systems:

	1.	 Active-matter systems in the lab can generate very large high-
quality datasets corresponding to complex but controllable 
physical phenomena. These datasets can be used to train ma-
chine-learning models and gain theoretical insights into how 
they work and what the best architectures are. Furthermore, 
these datasets can work as suitable benchmarks to test alterna-
tive machine-learning models.

	2.	 Thanks to their microscopic nature, many active-matter sys-
tems can be observed on multiple time and length scales, pro-
viding direct access to both their microscopic dynamics and 
the resulting macroscopic behaviours. Active colloidal particles 
undergo Brownian motion and/or turbulent diffusion, which, 
together with their intrinsic motility and external forces, may 
result in complex patterns at different scales. Video microscopy 
gives access to such colloidal motion at time and length scales 
ranging from microseconds to hours and from nanometres to 
millimetres. Thus, the study of active-matter systems may pro-
vide an ideal model system to connect microscopic and macro-
scopic dynamics. This may help to develop machine-learning 
algorithms that predict the dynamics of systems on long time 
scales when few samples of their short-time dynamics and local 
interactions are available.

	3.	 Thanks to the fact that we know the underlying physics for 
specific systems, several active-matter systems are ideally suit-
ed to explore how training data can be simulated in the most 
efficient and reliable way. For example, it is possible to accu-
rately simulate the hydrodynamic interactions between col-
loidal active particles, even though it is very computationally 
expensive. These accurate numerical datasets can be used as a 
testbed to study how we can generate sufficient training data 
for real-world applications, where it might be quite expensive, 

time-consuming and not straightforward to do so, such as in 
microscopy and virtual tissue staining.

Conclusions
Even though the application of machine learning to active-matter 
research is still in its infancy, the range of current applications 
already indicates what machine learning can do for future active-
matter research. Besides some standard ways of enhancing data 
analysis or controlling experimental conditions, machine learning 
will permit new insights into the functioning of biological systems 
and the process of how and why these functions evolved. As living 
active matter has often been the conceptual inspiration for machine 
learning, we expect that applying machine learning to active matter 
will quickly enhance machine learning as well, and eventually also 
lead to artificial active matter that embodies fundamental machine-
learning functionalities. Machine learning and active matter thus 
seem to be bound in a vivid, growing, far-reaching, synergetic rela-
tionship with mutual benefits.
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