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Abstract—The identification of sleep stages is essential in the 

diagnostics of sleep disorders, among which obstructive sleep 

apnea (OSA) is one of the most prevalent. However, manual 

scoring of sleep stages is time-consuming, subjective, and costly. 

To overcome this shortcoming, we aimed to develop an accurate 

deep learning approach for automatic classification of sleep stages 

and to study the effect of OSA severity on the classification 

accuracy. Overnight polysomnographic recordings from a public 

dataset of healthy individuals (Sleep-EDF, n=153) and from a 

clinical dataset (n=891) of patients with suspected OSA were used 

to develop a combined convolutional and long short-term memory 

neural network. On the public dataset, the model achieved sleep 

staging accuracy of 83.7% (κ=0.77) with a single frontal EEG 

channel and 83.9% (κ=0.78) when supplemented with EOG. For 

the clinical dataset, the model achieved accuracies of 82.9% 

(κ=0.77) and 83.8% (κ=0.78) with a single EEG channel and two 

channels (EEG+EOG), respectively. The sleep staging accuracy 

decreased with increasing OSA severity. The single-channel 

accuracy ranged from 84.5% (κ=0.79) for individuals without 

OSA diagnosis to 76.5% (κ=0.68) for severe OSA patients. In 

conclusion, deep learning enables automatic sleep staging for 

suspected OSA patients with high accuracy and expectedly, the 

accuracy lowered with increasing OSA severity. Furthermore, the 

accuracies achieved in the public dataset were superior to 

previously published state-of-the-art methods. Adding an EOG 

channel did not significantly increase the accuracy. The automatic, 

single-channel-based sleep staging could enable easy, accurate, 

and cost-efficient integration of EEG recording into diagnostic 

ambulatory recordings. 
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I. INTRODUCTION 

DENTIFICATION of sleep stages is crucial in diagnostics of 

various sleep disorders. One of the most common sleep 

disorders is obstructive sleep apnea (OSA) which has been 

estimated to affect up to 38% of the general population [1]. In 

the diagnosis of OSA, sleep staging is conducted to assess the 

sleep characteristics and to accurately determine the total sleep 

time [2]. Accurate determination of total sleep time is of 

paramount importance as it significantly affects the parameters 

used to assess the severity of OSA.    

According to the current sleep staging criteria [2], sleep is 

classified into five different stages: wake, rapid eye movement 

(REM) sleep and three stages of non-REM sleep (N1–N3). 

Classification into these stages is performed manually for 30-

second epochs of sleep using electroencephalography (EEG), 

electrooculogram (EOG), and submental electromyogram 

(EMG) signals measured during polysomnography (PSG). 

Currently, at least 13 electrodes, with the positions determined 

by the International 10-20 System, are required for the 

measurement protocol [2]. Thus, the overall measurement 

protocol and the sleep staging process is time-consuming, 

laborsome and requires experienced professionals [3]. 

Despite the major effort and expenses that go into manual 

sleep staging, there are still shortcomings. Mainly, the 

agreement of two different scores is generally unsatisfactory 

[4]–[9]. The inter-rater reliability (IRR), measured with 

Cohen’s kappa, between two scorers using the current sleep 

scoring criteria is commonly around 0.78 [4]. However, 

between international sleep centers, the reliability can be as low 
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as 0.58 to 0.63 [5], [6], particularly due to poor scoring of N1 

sleep [7], [8]. It has been shown that the agreement of N1 is 

approximately only 0.46 between sleep laboratories within 

Europe [4] and as low as 0.19 to 0.31 between international 

centers [5], [6]. Furthermore, the overall reliability of manual 

sleep staging may further decrease if an individual is 

experiencing medical conditions, for example, with OSA 

patients the reliability is worse than that of healthy individuals 

[8], [9]. Automatic scoring methods could potentially improve 

the consistency of sleep staging between different hospitals and 

health care systems. Furthermore, automatic methods capable 

of accurate sleep staging with a minimal number of measured 

signals could simplify the measurement protocol and reduce the 

related costs.  

A number of automatic sleep staging methods have been 

previously published [10]–[31]. Traditionally, automated 

methods have relied on pre-defined rules, carefully selected 

features extracted from the signals, and classification 

algorithms [22]–[26]. Recently, a few machine-learning-based 

solutions utilizing deep learning and artificial neural networks 

have been presented [10]–[12], [14], [16]–[21], [27]–[31]. For 

these solutions, the classification rules or features of each sleep 

stage were not explicitly defined. However, previous studies 

have generally relied on heavy preprocessing by usually either 

transforming the signals into 2D images representing the 

spectral information [19], [27]–[30] or by reducing the signals 

into a limited number of predefined features [10], [30], [31]. 

Furthermore, deep learning models developed on research 

datasets of healthy individuals have generally suffered from a 

loss of accuracy when generalizing into populations with sleep 

disorders such as OSA [28]. In addition, a few deep learning-

based automation attempts have demonstrated promising 

outcomes on sleep staging with a single EEG channel [10], [11], 

[13]–[16], [18]–[21]. While some of these have utilized deep 

learning [10], [11], [14], [16], [18], [19], [21], they have mostly 

relied on publicly available research datasets with a limited 

number of healthy individuals. Large clinical and well-balanced 

datasets have rarely been used, and the effect of sleep disorders 

on automatic sleep staging has not been thoroughly 

investigated. 

We aimed to develop an accurate deep learning-based 

automatic method for the classification of sleep stages in 

patients with suspected OSA. We further aimed to achieve this 

by utilizing the raw signals without conducting heavy 

preprocessing. Furthermore, we aimed to study the effect of 

OSA severity on the performance of automatic sleep staging. 

We hypothesize that deep learning methods enable accurate 

sleep staging based on a single EEG channel for patients with 

suspected OSA and that the sleep staging accuracy decreases 

with increasing OSA severity. 

II. METHODS  

A. Datasets 

1) Sleep-EDF  

We first utilized a public dataset, Physionet Sleep-EDF [32], 

[33], to allow comparison of the proposed deep learning-based 

approach with previous state-of-the-art methods. We utilized 

the version 2 of the expanded Sleep-EDF dataset released in 

March 2018. The dataset comprises 153 PSGs of 37 males and 

41 females from a study investigating the effects of age on sleep 

in a healthy population (Sleep Cassette). We utilized the Fpz-

Cz EEG signal for a single-channel input and combined it with 

a single horizontal EOG signal for two-channel input. Both 

signals were sampled with a 100 Hz frequency. No 

preprocessing was implemented on the signals. EMG recording 

was left out of this study due to its lower sampling frequency. 

The sleep stages were originally scored according to the 

Rechtschaffen and Kales manual [34] into following stages: 

wake, N1, N2, N3, N4, REM, M (movement), and ‘?’ (not 

scored). We combined the stages N3 and N4 into a single sleep 

stage to comply with the AASM guidelines [2]. Furthermore, 

the stages M and ‘?’ were excluded from the study. The PSG 

recordings included long periods of wake in the beginning and 

end of the recording. Similarly to previous studies [11], [18], 

we only included 30 minutes of the wake before and after the 

sleep to obtain more realistic results and to enable comparison.  

With the Sleep-EDF dataset, we conducted 10-fold cross-

validation to assess the performance of the network, meaning 

that with each fold, 90% of the population was used for training 

and 10% as an independent test set. Furthermore, 10% of the 

training set was further used as the validation set during each 

fold. This was done to avoid overfitting during training, to 

choose an optimal model, and to keep the test set separate 

during each fold. 10-fold cross-validation was chosen over a 

single split to training, validation, and test set due to relatively 

small dataset and to enable comparison with the previous 

studies [11], [17]–[21]. 

2) Clinical dataset 

The clinical dataset utilized in this study consists of 933 

consecutive diagnostic overnight polysomnographies (PSG) of 

patients with clinical suspicion of OSA. Out of these, 891 

individuals had successful recordings of all the required signals 

together with complete sleep stage scorings and were thus 

included in this study. The PSGs were conducted at the Princess 

Alexandra Hospital, Brisbane, Australia during 2015–2017 and 

recorded with the Compumedics Grael acquisition system 

(Compumedics, Abbotsford, Australia). The sleep stages were 

initially scored manually by multiple experienced scorers who 

participate regularly in intra- and inter-laboratory scoring 

concordance activities. Scoring was conducted based on the 

AASM rules [2] and the prevailing clinical practice of the 

Princess Alexandra Hospital. Ethical permissions for the data 

collection and processing were obtained from The Institutional 

Human Research Ethics Committee of the Princess Alexandra 

Hospital (HREC/16/QPAH/021). 

From the recorded PSGs, EEG (derivation F4-M1) was used 

for single-channel input and it was complemented with EOG 

(derivation E1-M2) for two-channel input. EMG was not 

included to enable comparison with the public dataset. The 

signals were recorded with 1024 Hz sampling frequency and 

were downsampled to 64 Hz to reduce the computational load. 

No additional preprocessing was applied. The frontal EEG 
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channel was selected due to its simple measurement setup. The 

dataset was split into three individual sets: a training set, a 

validation set, and a test set. The training set comprised 717 

whole night recordings (80%), and the validation and test sets 

comprised 87 recordings (10%) each. 

Out of the 891 studied individuals, 493 were males and 398 

females. The patients were mostly middle-aged and obese. 

According to the current severity classification of OSA, based 

on apnea-hypopnea index (AHI) [35], 152 individuals had no 

OSA (5 < AHI), 278 suffered from mild OSA (5 ≤ AHI < 15), 

208 from moderate OSA (15 ≤ AHI < 30), and 254 had severe 

OSA (AHI ≥ 30). Furthermore, 142 of the individuals were 

smokers, 197 suffered from diabetes, 368 had hypertension, 96 

had cardiac arrhythmia, 22 had cardiac failure, and 41 had 

suffered a stroke. Table I shows the medians and interquartile 

ranges for sleep parameters and demographic information. 

3) OSA severity 

The effect of OSA severity on the performance of the 

automatic sleep staging model was assessed by training and 

evaluating the model separately on each OSA severity group 

(no OSA, mild, moderate, and severe OSA) of the clinical 

dataset described above. In this phase, only a single frontal EEG 

channel (F4-M1) was used, and as with the Sleep-EDF dataset, 

the performance was evaluated using 10-fold cross-validation. 

The 10-fold cross-validation was chosen due to reduced size of 

the dataset compared to the complete clinical dataset, and to get 

more comprehensive and comparable results over all the 

severity groups. Table II presents the number of 30-second 

epochs of each sleep stage in all the utilized datasets.  

B. Neural network architecture 

The estimation of the sleep stages (wake, N1, N2, N3, and 

REM) was conducted with a combined convolutional network 

(CNN) and recurrent neural network (RNN) trained in an end-

to-end manner. The CNN aspect of the network was used to 

learn the characteristic features typical of each sleep stage, 

while the RNN considered the temporal distribution of the sleep 

stages overnight. The combined CNN and RNN structure was 

in essence similar to the architecture presented earlier by 

Supratak et al. [11]. However, sleep staging was conducted as 

a sequence-to-sequence classification problem, previously 

proposed by Phan et al. [29]. The network architecture was 

identical for the two-channel input and the single-channel input; 

the only difference was in the input dimension. The network 

was implemented in Python 3.6 using Keras API 2.2.4 with 

TensorFlow (version 1.13) backend. The training was 
 

 

    
conducted on a server with 32-core AMD Ryzen Threadripper 

2990WX, 128 GB RAM and NVIDIA GeForce RTX 2080. 

The CNN comprised six 1D convolutions each followed by 

batch normalization and a rectified linear unit (ReLU) 

activation, two max-pooling layers and a global average 

pooling layer (Fig. 1). The max-pooling layers were situated 

after the first two 1D convolutions and after the two following 

1D convolutions. The global average pooling layer followed the 

last two 1D convolutions. The kernel size of the first 1D 

convolution was 21 and the stride size was 5. The second 1D 

convolution had a kernel size of 21 and stride size of 1. The 

number of convolutional filters equaled the sampling frequency 

(64 Hz for the clinical dataset, 100 Hz for Sleep-EDF) of the 

used dataset in the first two 1D convolutions. The remaining 

four 1D convolutions had a kernel size of 5 with a stride size of 

1. The number of convolutional filters was two times the 

sampling frequency for the third and fourth 1D convolution and 

four times the frequency for the fifth and sixth 1D convolution.  

The complete network comprised a time distributed layer of 

the complete CNN structure, a 0.3 gaussian dropout layer and a 

bidirectional long short-term memory (LSTM) layer followed 

by time distributed dense layer with softmax activation (Fig. 1). 

The number of units in the bidirectional LSTM was 4 times the 

sampling frequency. The LSTM utilized a tanh activation 

function and a dropout rate of 0.3. In the recurrent step, a hard 

sigmoid activation and a dropout rate of 0.5 were used. The last 

layer of the network comprised a dense layer with softmax 

activation producing the output sequence of sleep stage 

probabilities. 

 

 

TABLE I 

DEMOGRAPHIC INFORMATION OF THE CLINICAL DATASET (N=891) 

 Median 
Lower and upper 

quartiles 

Apnea-hypopnea index (events/hour) 15.8 7.0–32.8 
Age (years) 55.8 44.7–65.8 

Body mass index (kg/m2) 34.5 29.4–40.4 

Arousal index (arousals/hour) 20.8 14.0–31.4 
Total recording time (min) 442.5 409.5–474.5 

Total sleep time (min) 308.8 253.8–359.8 

Wake after sleep onset (min) 102.8 61.3–150 
Sleep latency (min) 17.5 9.0-34.5 

N1 (%) 11.0 6.8–18.9 

N2 (%) 48.3 41.3–56.2 
N3 (%) 18.3 9.6–27.1 

REM (%) 17.1 11.8–22.1 

NREM (%) 82.9 77.8–88.1 
Sleep efficiency (%) 70.7 57.9–82.0 

N1, N2, N3, and REM mean the percentage of the sleep stage and NREM the 
percentage of non-REM sleep during total sleep time. Sleep efficiency means 

the percentage of sleep during total recording time. 

TABLE II 

THE NUMBER OF 30-SECOND EPOCHS OF EACH SLEEP STAGE IN THE SLEEP-EDF DATASET, CLINICAL DATASET, AND AMONG THE GROUPS WITH DIFFERENT 

OSA SEVERITY  

 Wake N1 N2 N3 REM Total 

Sleep-EDF 65655 (34%) 21522 (11%) 69132 (35%) 13039 (7%) 25835 (13%) 195183 
Clinical dataset 254278 (32%) 74102 (9%) 261317 (33%) 105298 (13%) 95800 (12%) 790795 

No OSA 37303 (28%) 7501 (6%) 47782 (35%) 23076 (17%) 19262 (14%) 134924 

Mild OSA 70532 (29%) 17947 (7%) 88412 (36%) 37554 (15%) 32485 (13%) 246930 
Moderate OSA 59653 (32%) 15938 (9%) 61534 (33%) 25340 (14%) 22820 (12%) 185285 

Severe OSA 86790 (39%) 32716 (15%) 63589 (28%) 19328 (9%) 212339 (9%) 223656 
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Fig. 1. The architecture of the combined convolutional neural network (CNN) 

and recurrent neural network (RNN). The parameters of the 1D convolutions 

(Conv1D) are given as (number of filters, kernel size, stride size) and as (pool 
size, stride size) for the max-pooling. Fs is the sampling frequency. For the 

LSTM and dense layer (Softmax) the number of units is given. The rate is given 

for the dropouts. The dropout layers were only active during training. 
Sequences of hundred 30-second epochs of the utilized signals were used as an 

input, and the model produced a sequence of softmax values representing the 

probabilities of each sleep stage for each epoch. 

The model was trained with sequences of hundred 30-second 

epochs. An overlap of 75% was used when forming the 

sequences in the training set to increase its size fourfold. No 

overlap was used in the validation set or the test set. The model 

was trained with categorical cross-entropy as the loss function 

and an Adam optimizer with warm restarts [36] using a learning 

rate range of 0.001 to 0.00001. This learning rate range was 

optimized with a learning rate finder [37]. The model was 

validated with the validation set after each training cycle i.e. 

after the entire training set was passed through the network. The 

model was trained for a maximum of 200 training cycles or until 

the value of the loss function in the validation set no longer 

decreased during 20 consecutive training cycles The 

performance of the model was then assessed using in an 

independent test set. 

C. Interpretation of the results 

The accuracies were calculated in an epoch-by-epoch manner. 

Moreover, the inter-rater agreement between manual and 

automatic sleep staging was evaluated using Cohen’s kappa 

coefficient (κ) [38] and the sensitivity and specificity of 

identifying sleep were calculated.  

III. RESULTS 

A. Sleep-EDF 

During the 10-fold cross-validation, the model achieved 

89.8% training accuracy, 83.0% validation accuracy, and 

83.9% testing accuracy with the two-channel input comprising 

single EEG and EOG channels. These accuracies corresponded 

to kappa values of 0.86, 0.77, and 0.78 in the training, 

validation, and test sets, respectively. Based on the guidelines 

by Landis and Koch [39], the kappa values indicate almost 

perfect agreement between manual and automatic sleep staging 

in the training set, and substantial agreement in the validation 

and test sets. In the test set, sleep was identified with 96.2% 

sensitivity and 93.7% specificity. For the individual sleep 

stages, the accuracy was 93.7% for wake, 87.3% for N2, 78.0% 

for N3, and 85.4% for REM in the test sets. The lowest 

concordance was seen with N1 (45.1%, Fig. 2 A).  

With the single EEG channel, the obtained accuracies were 

89.2%, 82.8%, and 83.7% in training, validation, and test sets, 

respectively. These correspond to kappa values of 0.85, 0.77, 

0.77, respectively, indicating almost perfect or substantial 

agreement. In the test set, sleep was identified with 96.0% 

sensitivity and 93.4% specificity. Wake was identified with 

93.4%, N1 with 43.4%, N2 with 87.3%, N3 with 78.7%, and 

REM with 85.4% accuracy (Fig. 2 B). The obtained accuracies 

and kappa values with single and two-channel input, alongside 

previous state-of-the-art results, are presented in Table III. 

B. Clinical dataset 

In the clinical dataset with the F4-M1 EEG and E1-M2 EOG 

channels, the model achieved 85.5% training accuracy and 

  
TABLE III 

PERFORMANCE COMPARISON 

 
Recordings 

(n) 

Cross-

validation 
Accuracy κ 

Two-channel: Fpz-Cz and EOG 

Present work 153 10-fold 83.9% 0.78 

Phan et al. [19] 39 20-fold 82.3% 0.75 

Andreotti et al. [17] 38 20-fold 76.8% 0.68 

Single-channel: Fpz-Cz 

Present work 153 10-fold 83.7% 0.77 

Mousavi et al. [18] 153 10-fold 80.03% 0.73 

Mousavi et al. [18] 39 20-fold 84.26% 0.79 

Supratak et al. [11] 39 20-fold 82.0% 0.76 

Phan et al. [19] 39 20-fold 81.9% 0.74 

Tsinalis et al. [20] 39 20-fold 78.9% - 

Tsinalis et al. [21] 39 20-fold 74.8% - 

Only studies utilizing the sleep cassette dataset of the Sleep-EDF, 

conducting cross-validation with an independent test set, and having 

truncated the excess wake periods from the recordings are included. 
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Fig. 2. Normalized confusion matrices of the classification accuracies from Sleep-EDF with (A) two-channel input (Fpz-Cz EEG and horizontal EOG) and (B) 

single EEG channel (Fpz-Cz) input.    

 
Fig. 3. Normalized confusion matrices of the classification accuracies from the clinical dataset with (A) two-channel input (F4-M1 EEG and E1-M2 EOG) and (B) 

single EEG channel (F4-M1) input. 

83.8% validation accuracy. In the independent test set, the 

accuracy was 83.8%. These accuracies corresponded to 

Cohen’s kappa values of 0.80, 0.78, and 0.78, respectively, 

indicating substantial agreement. Furthermore, the sensitivity 

of identifying sleep was 95.9% with 89.4% specificity in the 

test set. For individual sleep stages, the accuracy was 89.4% for 

wake, 87.2% for N2, 79.8% for N3 and 91.4% for REM in the 

test set. The lowest concordance between manual and automatic 

sleep staging was obtained in N1 with an accuracy of 46.9% 

(Fig. 3 A).  

With the single frontal EEG channel, the accuracies were 

86.3%, 83.4%, and 82.9% in the training, validation and test 

sets, respectively. These accuracies corresponded to kappa 

values of 0.82, 0.78, and 0.77. In the test set, the sensitivity for 

identifying sleep was 95.6% with 89.8% specificity. The N1 

sleep stage was the most challenging to identify (classification 

accuracy of 46.0%). In contrast, wake was identified with 

89.8% accuracy, N2 with 86.5%, N3 with 75.4%, and REM 

with 90.8% accuracy (Fig. 3 B).  

C. OSA severity 

When comparing the OSA severity groups, the accuracies and 

kappa values were lowest for patients with severe OSA (Table 

IV). The accuracy increased with decreasing OSA severity and 

were the highest for individuals without OSA. Similar behavior 

was perceived in the individual sleep stages, with the exception 

of N1 sleep which was most accurately classified for severe 

OSA patients (Fig. 4). 
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Fig. 4. Normalized confusion matrices of the classification accuracies with a single EEG channel (F4-M1) in individuals (A) with no OSA, (B) with mild OSA, 

(C) with moderate OSA, and (D) with severe OSA. 

TABLE IV 
PERFORMANCE IN OSA SEVERITY GROUPS 

IV. DISCUSSION 

In this study, we developed a deep learning-based method for 

automatic classification of sleep stages from raw EEG and EOG 

signals using both a large clinical dataset (n=891) comprising 

patients with suspected OSA and a publicly available dataset of 

healthy individuals (n=153). Sleep staging was implemented 

using both two-channel input and single-channel input. 

Furthermore, we also studied the effect of OSA severity on the  

 

performance of automatic sleep staging. Overall, the automatic 

sleep staging method achieved high accuracies: 83.9% (κ=0.78) 

and 83.6% (κ=0.77) with single and two-channel inputs, 

respectively, in the public dataset, and almost correspondingly 

82.9% (κ=0.78) and 83.8% (κ=0.77) in the clinical dataset. The 

accuracy of the sleep staging decreased with increasing OSA 

severity with the accuracy being the highest for individuals 

without OSA and lowest with individuals having severe OSA. 

 n Accuracy κ 

  Training Validation Test Training Validation Test 

No OSA  152 89.4% 84.4% 84.5% 0.86 0.79 0.79 
Mild OSA  278 87.7% 82.4% 82.8% 0.83 0.77 0.77 

Moderate OSA  208 87.2% 83.0% 82.2% 0.83 0.77 0.76 

Severe OSA 254 82.9% 76.7% 76.5% 0.77 0.68 0.68 
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Furthermore, deep learning could enable accurate sleep staging 

with a single easily measurable frontal EEG channel with 

practically the same accuracy as with the additional EOG 

channel. Overall, the reliability of these automatic sleep staging 

approaches was comparable with the reliability of manual sleep 

scoring as previously reported in numerous studies [4]–[9]. 

The developed deep learning model compared favorably to 

previous studies based on the publicly available Sleep-EDF 

dataset [32], [33]. Our method slightly surpassed the 

performance of previously published methods (Table III). 

Previously, Mousavi et al. have utilized the updated Sleep-EDF 

dataset with 153 recordings and included only 30 minutes of 

wake before and after sleep achieving an accuracy of 80.03% 

(κ=0.73) with a single EEG channel [18]. In comparison, we 

achieved a single-channel accuracy of 83.7% (κ=0.77) with the 

same dataset and identically truncated signals. Other studies 

based on state-of-the-art methods have been conducted with the 

smaller Sleep-EDF dataset with only 39 recordings [11], [17], 

[19]–[21] and thus direct comparison is difficult. However, it is 

noteworthy that Mousavi et al. compared the performance of 

their sleep staging method in both the smaller and updated 

datasets and achieved significantly higher accuracy (84.26% vs 

80.03%) im the smaller dataset [18]. This indicates that accurate 

sleep staging may be easier in the smaller dataset when 

compared to the larger, updated dataset used in the present 

study. Furthermore, direct comparison with previous studies is 

difficult due to non-standardized use of the database. The 

recordings in the database contain excessive wake periods 

before and after sleep. Inclusion of the excess wake periods to 

the automatic sleep staging can lead to overly optimistic results. 

Therefore, we only compared our results to studies truncating 

the excess amount of wake either by using only 30 minutes of 

wake before and after sleep [11], [18] or by only using the sleep 

itself [19], [20], [21]. Furthermore, the results cannot be 

compared to studies not using an independent test set to assess 

the performance, as these results could be distorted by 

overfitting.  

The PSGs collected from suspected OSA patients have been 

problematic for previous automatic sleep staging approaches 

and even the reliability of manual scoring is known to be lower 

than with healthy individuals [8], [9], [28]. This is most likely 

due to a fragmented sleep structure and an increase in N1 sleep 

stage, which are typical for OSA patients [9]. In the present 

study, the sleep staging accuracies decreased with increasing 

OSA severity, with an accuracy of 84.5% for individuals 

without OSA and 76.5% for patients with severe OSA. Wake 

and N1 sleep comprised a larger portion of the recording 

whereas N2, N3, and REM comprised a smaller portion of the 

recording for patients with severe OSA when compared to the 

other patient groups (Table II). Especially N1 comprised a 

significantly larger portion (15%) of the recordings in the 

severe OSA group compared to the other groups (6–9%). This 

supports the idea that fragmented sleep structure caused by 

OSA impairs the accuracy and reliability of sleep staging. 

However, it is noteworthy that the accuracy of staging N1 was 

47% for patients with severe OSA (Fig. 4 D) while it was only 

28% for individuals without OSA (Fig. 4 A). This increase in 

accuracy is likely due to a larger amount of N1 sleep epochs 

and transitions between wake and N1 available during the 

training of the deep learning model. Furthermore, it is possible 

that manually identifying the N1 sleep of an individual patient 

becomes more reliable when more N1 sleep and especially 

more transitions between wake and N1 are available. This could 

improve the automatic scoring of N1 in addition to the accuracy 

increasing simply due to the larger training material. However, 

the N1 staging accuracy remained the lowest amongst all sleep 

stages and the accuracy of the other stages decreased for severe 

OSA. Thus, the increase in N1 accuracy was insufficient to 

compensate for the reduction in total accuracy with increasing 

OSA severity. 

Implementation of automatic sleep staging system in a 

clinical setting could provide significant benefits over the 

prevailing practice. Currently, the manual sleep scoring lacks 

sufficient inter-rater reliability, as perceived from numerous 

studies [4]–[9]. It could be argued that since our deep learning-

based sleep staging method was trained with manual scorings, 

it cannot be better than human scorers. However, the developed 

automatic method may produce a consensus over multiple 

scorers and thus minimize the variability. The developed 

automatic sleep staging method did not learn only from a single 

scorer as the clinical PSGs were scored by multiple sleep 

technicians potentially differing in their scoring preferences and 

traditions. Thus, the optimal solution is not to mimic a single 

scorer but rather classify the stages as similarly as possible to 

the majority of the scorers. Furthermore, after training, the 

automatic method always scores the sleep stages similarly 

regardless of the situation. This can be a major advantage over 

a manual scorer, as the automatic scoring does not depend on 

factors such as human error, vigilance level, or the current 

scoring environment. 

In addition to high variability, manual sleep staging is highly 

time-consuming and requires trained specialists for a rather 

repetitive task. The sleep staging of a single patient could be 

performed in less than a second with the proposed automatic 

sleep staging method, whereas the manual scoring can take up 

to hours even for experienced scorers. Although the automatic 

sleep staging method is reliable for suspected OSA patients, the 

reliability of sleep stage classification of individuals with other 

sleep disorders remains to be studied. 

Accurate sleep staging with a single EEG channel may 

present opportunities for further development and application 

of various ambulatory EEG and PSG acquisition systems [40], 

[41]. Currently, conducting PSG is expensive and requires 

trained specialists. Thus, cheaper ambulatory recordings have 

been developed and shown to be accurate for the diagnosis of 

OSA [3]. Ambulatory recordings are even the preferred 

diagnostic method in some health care systems [42], [43]. 

However, the major disadvantage of ambulatory recordings is 

often the lack of EEG recording, preventing identification of 

sleep stages and resulting in crude approximations of the total 

sleep time from other signals. Thus, ambulatory EEG recording 

based on a single frontal channel could enhance the accuracy of 

the ambulatory recordings whilst ensuring simplicity and cost-

efficiency. However, further studies are warranted to assess and 
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verify the performance of the developed sleep staging method 

when applied together with an ambulatory recording device. 

The most significant limitation of the developed deep 

learning-based sleep staging method is the scoring of N1 sleep 

stage. With both the two-channel and single-channel 

approaches, the agreement with the manual scoring of stage N1 

was the lowest of all sleep stages with a variation of 43–47% 

between the public and clinical datasets. However, N1 is the 

most difficult sleep stage to identify even for experienced 

manual scorers [7], [8]. The agreement in N1 we achieved with 

the automatic sleep staging method is, however, comparable to 

the inter-rater agreement between manual scorers, which is 

between 0.19 and 0.46 [4]–[6]. Thus, the limited accuracy of 

scoring N1 sleep stage may not be due to the developed sleep 

staging method, but rather in the scoring definitions of N1 

resulting in disagreement between experienced manual scorers. 

V. CONCLUSION 

The proposed deep learning-based automatic method enables 

reliable, fast, and accurate sleep staging for suspected OSA 

patients. The accuracy of the sleep staging decreases with 

increasing OSA severity but with the utilized large clinical 

dataset, the sleep staging can be conducted for patients 

suffering from OSA with almost comparable accuracy to 

individuals without OSA. Practically, automatic sleep staging 

can be performed as accurately using either a combination of 

single EEG and EOG signals or using a single frontal EEG 

channel. The single-channel approach could enable a cost-

efficient, simple, and accurate sleep staging in OSA 

diagnostics.  
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