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Convergent evolution of face spaces across
human face-selective neuronal groups and
deep convolutional networks
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David M. Groppe3,5, Simon Khuvis 3, Jose L. Herrero 3, Michal Irani2, Ashesh D. Mehta3 & Rafael Malach1*

The discovery that deep convolutional neural networks (DCNNs) achieve human perfor-

mance in realistic tasks offers fresh opportunities for linking neuronal tuning properties to

such tasks. Here we show that the face-space geometry, revealed through pair-wise acti-

vation similarities of face-selective neuronal groups recorded intracranially in 33 patients,

significantly matches that of a DCNN having human-level face recognition capabilities. This

convergent evolution of pattern similarities across biological and artificial networks highlights

the significance of face-space geometry in face perception. Furthermore, the nature of the

neuronal to DCNN match suggests a role of human face areas in pictorial aspects of face

perception. First, the match was confined to intermediate DCNN layers. Second, presenting

identity-preserving image manipulations to the DCNN abolished its correlation to neuronal

responses. Finally, DCNN units matching human neuronal group tuning displayed view-point

selective receptive fields. Our results demonstrate the importance of face-space geometry in

the pictorial aspects of human face perception.
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Systems neuroscience research has been one of the fastest
growing fields of science in recent years, accumulating
detailed depictions of neuronal functional properties.

However, despite this progress, two fundamental questions
remain unsolved. First, we remain largely in the dark regarding
how the different functional selectivities of individual neurons
integrate in producing the observed cognitive and behavioral
tasks. Second, with the exception of relatively peripheral neuronal
circuits (e.g. directional selectivity in the retina1), no realistic
wiring diagram is available to demonstrate how higher order
neuronal tuning curves may actually be generated through neu-
ronal network connectivity.

Considering the example of the ventral stream visual recogni-
tion system, an invaluable body of research has been obtained,
depicting in great detail the neuronal selectivities in face-selective
areas in monkeys2 and in humans3,4. Furthermore, clinical5 as
well as causal manipulation evidence demonstrated the sig-
nificance of these regions to face perception and identification6–10.
However, the precise manner by which the neuronal tuning
profiles of face-selective populations combine to allow face dis-
crimination and person recognition are not yet fully understood,
with various hypotheses and classification models accounting for a
limited set of observations11–13. It is also not clear that classifiers
capable of decoding faces from neuronal activity patterns truly
reflect how the brain actually employs this neuronal activity for
face perception14. These limitations are not unique to visual
processes. In fact, all attempts to model high-level neuronal
properties rely on limited models that can only be loosely linked to
perception and behavior. The problem is largely due to the lack of
models whose functional performance can achieve realistic human
or animal levels15.

This problematic situation has been transformed in the last few
years with the discovery that artificial Deep Convolutional Neural
Networks (DCNNs) can now approach human-level performance
in a variety of visual tasks, for example in face recognition16–18.
This rapidly unfolding revolution offers the field of systems
neuroscience a new type of models that achieve realistic human
performance in specific tasks. Indeed, a number of recent studies
have provided encouraging indications for the usefulness of
DCNNs in predicting visual responses along the human visual
hierarchy19–21, as well as in capturing category-selective repre-
sentational geometries in visual cortex of humans and mon-
keys22–24.

A particularly interesting line of such modeling is the attempt
to find aspects of convergent evolution, i.e. similar functional
properties between artificial and biological systems20. The
rational here is that if two very different systems that solve a
similar functional task—face recognition in our case—develop
certain similar characteristics, this may point to the importance
of these characteristics in accomplishing the task. This can be
nicely illustrated in the convergent evolution of wings across
insects, birds, and even mammals—and most strikingly in their
appearance in man-made airplanes. The important point to note
is that in deducing function from convergent evolution, the
farther the two converging systems are from each other, the more
compelling is the role of the independently evolved property in
these systems.

Here, we employed this approach to explore the hypothesis,
originally proposed by Edelman and Grill-Spector25, that the
unique structure of the face-space geometry, as defined by pair-
wise similarities in activation patterns to different face images,
constitutes a critical aspect in face perception. Such pattern
similarity analysis, also termed Representation Similarity Analysis
(RSA)26, has been successfully employed in comparing activations
across visual categories between species27, and also in relation to
DCNNs22.

Our results reveal a significant and consistent similarity
between the face-space geometries of human cortical face selective
neuronal groups and that of an artificial DCNN achieving
human-level face recognition performance (VGG-Face17). We
further used the DCNN correlation to examine whether the
tuning properties of face-selective neuronal groups reflect a pic-
torial or person identity representation. In an identity repre-
sentation, a neuron is predicted to be invariant to viewpoint or
appearance changes of a person’s face, as long as the identity is
preserved. By contrast, a neuron that is part of a pictorial
representation of a face will modulate its activity following such
identity-preserving changes. Our results suggest a high-level
pictorial function for neuronal face representations since targeted
image manipulations revealed invariance of the matching DCNN
layers when presented with changes in low-level features (back-
ground removal, gray scale conversion, and luminance changes)
but shifting image viewpoints, without affecting the identity,
significantly reduced pair-wise similarities in the DCNN layers, as
well as the DCNN to neural match. Finally, receptive fields of
individual DCNN units that were found to match specific face
neuronal groups displayed view-specific face fragments such as
ears and eyes28.

Together, these findings highlight the power of DCNNs as a
productive model of neuronal function. They further argue for
the importance of face-space geometry in enabling face percep-
tion and they support, at least for the 1-back task employed in the
study, a pictorial function of high-order face-selective regions of
the human visual cortex.

Results
Face-selective contacts detected in three experimental tasks.
Visual responses to three independent sets of images, including
human faces and four or five additional categories, were recorded
using either subdural or depth intracranial EEG (iEEG) electrodes
(see Methods for stimuli and recording details). Figure 1a depicts
the three versions of a 1-back experimental design in which
patients were instructed to view images, presented 3–6 times in
pseudo-random order, for 250 ms (sets 1–2) or 500 ms (set 3) and
press a button for image repeats. We focused on the high fre-
quency amplitude (HFA, 48–154 Hz) signal, previously shown to
reveal functional-selectivity29,30, and to constitute a reliable index
of aggregate firing rate in humans31,32. Altogether, 8916 contacts
in 61 patients were analyzed. Face contacts were defined as having
significantly higher HFA response to faces relative to places and
to patterns (two paired t-tests, pFDR < 0.05). In total, 96 contacts
(33 patients) were found to be face selective. Figure 1b depicts the
cortical distribution of these face selective contacts which, as can
be seen, were concentrated mainly in the high-order ventral visual
cortex (see Supplementary Fig. 1 for the separate sets).

Exemplar selectivity of face selective contacts. Examination of
the responses to individual face exemplars in each face contact
revealed substantial differences in activation amplitudes across
exemplars. This can be readily discerned in the gallery of
responses obtained from a single contact shown in the left bottom
of Fig. 1c, where, for example, the response to the image of
Woody Allen was more than 1.5 times greater than the response
to Obama. To quantify this phenomenon, we defined an exemplar
selectivity index for each face contact (d′ between preferred and
least-preferred exemplars). The distribution of exemplar selec-
tivity indices and their corresponding anatomical sites are
depicted in Fig. 1b and in Supplementary Fig. 1. All face contacts
showed a significant level of exemplar selectivity (image permu-
tation test per contact, all pFDR < 0.01). Importantly, the specific
profile of exemplar selectivity changed across neighboring
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contacts (see Fig. 1c for an example of the different profiles in two
neighboring contacts).

At the level of contacts’ ensemble, such heterogeneous
exemplar selectivity in single face contacts could potentially
underlie neural discriminability between individual faces. To
examine this possibility, we applied a simple pattern-matching
decoding analysis (see Methods and Supplementary Fig. 2a for a

schematic illustration of decoding procedure). As presented in
Supplementary Fig. 2b., decoding accuracy was significantly
above chance in sets 1 and 2 (image permutation test: set 1: p=
0.001; set 2: p= 0.01). Set 3 showed only a positive trend, likely
due to a smaller number of patients who took part in the third
task version and consequently the smaller number of face
contacts included in this set (p= 0.24).
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Fig. 1 Experimental design, localization and exemplar selectivity of face selective iEEG contacts. a Schematic illustration of the 1-back visual tasks. Three
versions, each including a different set of face stimuli and additional images from other categories, were included in the study. Every patient took part
in either one or two versions out of the three. Faces used in set 3 (examples shown here) were taken from the face database by Minear and Park56.
b Anatomical distribution of detected face contacts, projected onto a common template of the inflated (ventral view, top) and flattened cortex. Color
coding denotes exemplar selectivity indices, defined as the d′ between the most- and the least-preferred face exemplars. Histogram presents the
distribution of selectivity indices alongside the color code bar. The same distribution is presented separately for each of the three sets in Supplementary
Fig. 1. c Example of two neighboring face contacts implanted in the same patient, their anatomical locations marked by black arrows on the inflated left
hemisphere. Top left panel depicts the mean HFA response across face, place, and pattern exemplars in set 1, demonstrating robust face selectivity. Top
right bar plot depicts the mean HFA response (50–500ms) to each of the exemplars in a descending order of activation, with bar colors denoting visual
category. Bottom galleries present the mean HFA response of each contact to the different faces with the corresponding images. Galleries are presented in
a descending order of mean response (as in the bar plots). HFA was normalized to % signal change from global baseline at −200 to 0ms. All error bars
denote s.e.m. Note the differences in response amplitude to different exemplars which was unique to each iEEG contact. Faces shown for sets 1 and 2 in all
figures are accurate illustrations of the original images used, in compliance with copy rights limitations. Exceptions are Fig. 4 and Supplementary Fig. 12, in
which original images of most exemplars in set 1 are shown
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Match between neural and DCNN face-spaces. What could be
the function of the observed face-exemplar selectivity? To find
out whether a DCNN with human-level face recognition per-
formance (VGG-Face) could serve as a realistic functional model
of these selectivities, we examined whether the face-space geo-
metry of face exemplars, as determined by pair-wise distances
between their activation patterns25,26, was similar between the
human cortex and individual DCNN layers. Pair-wise activation
distances were measured for all face exemplar pairs both in the
human cortex and in each of the VGG-Face layers. For the neural
data, we defined an activity pattern per exemplar as the vector of
concatenated responses at 50–500 ms obtained from all face
contacts in the relevant set (response time series was averaged
across repetitions). A pair-wise distance between two exemplars
was defined as the Euclidean distance between the two response
vectors generated by a pair of faces. Comparing all pair-wise
distances generated by the iEEG recordings with those generated
by VGG-Face when presented with the same face images revealed
a significant correlation that was consistent across the three sets.
Importantly, significant correlations were limited only to the
intermediate DCNN layers, and chance performance was evident
at early, low-level feature-selective layers of the hierarchy and at
the top, identity-selective layers. Figure 2 shows the correlation
between each iEEG data set and each DCNN layer (Fig. 2 left), the
scatter plots of the pair-wise distances for the two maximally
correlated layers in each set (Fig. 2 middle) and the actual pairs of
face exemplars presented on top of the scatter plot from the
maximally correlated layer in each set (Fig. 2 right). The corre-
lation between iEEG recordings and two specific intermediate
layers was significant in the first two sets (image permutation test
followed by FDR correction across layers; all pFDR < 0.05; see
Fig. 2 for correlation coefficients and p values) and a similar trend
was observed for two intermediate layers in the third set, which
included only 23 face contacts and also showed the weakest
exemplar decoding performance (image permutation test, p <
0.05, uncorrected).

We further performed a pooled analysis to assess the
consistency of the match across sets. Figure 2d depicts the
weighted-mean of correlations across the three sets for every
DCNN layer, with set weights assigned according to the
number of face contacts. Five intermediate layers, ranging from
layer pool4 to pool5, significantly matched the neural distances
(image permutation test followed by FDR correction, all
pFDR < 0.05).

To directly examine the nature of representation in these five
intermediate layers, we examined their sensitivity to changing
the view point of faces while preserving their person identity. We
generated the pair-wise distance matrix between frontal and full
profile views (conducted on 65 independent identities from the
KDEF database33) for each of the five DCNN layers, as well as for
the subsequent three fully connected layers (fc6–fc8). The
diagonal in such a matrix represents the representational distance
between frontal and profile view of the same identities, with low
values indicating viewpoint invariance, i.e. that the layer is able to
generalize person identity across view point rotations. As can be
seen in Supplementary Fig. 3, such low values along the diagonal
(dark pixels) were rare in the five intermediate layers matching
the neural face-space, and emerged only in the subsequent three
fully connected layers.

Was the effect a result of pre-training the artificial network on
a large set of face exemplars? To examine this, we ran the same
analysis on an untrained VGG-Face network, preserving the same
architecture while assigning its connections random weights
(xavier normal initialization). Randomizing the connection
weights resulted in a near complete abolishment of the correlation
to the neural face-space (Fig. 2, gray bars).

The high temporal resolution of the iEEG signal enabled us to
investigate whether the maximally correlated DCNN layers were
altered throughout the neural response. To this end, we computed
the maximally correlated DCNN layer at a sliding window of
200 ms, with a 50 ms stride. The results (Supplementary Fig. 4)
revealed a consistent assignment of the same layers observed in
the original analysis which focused on a single time window at
50–500 ms. Thus, we have found no evidence for an evolution in
the highest matching DCNN layer across time, at least for up to
500 ms presentation durations.

We further examined whether the effect was present also at the
individual patient level. To this end, we recomputed the
correlations separately in individual patients that had a minimum
of five face contacts, and averaged the individual correlational
patterns (13 patterns in total). The resultant average correlational
pattern, presented in Supplementary Fig. 5, followed a similar
pattern to that found when pooling face contacts from all patients
but with somewhat lower effect sizes, likely due to the reduction
in the number of contacts.

To ensure the correlation was not confounded by differences in
low-level image parameters between face exemplars, we also
computed the partial correlation between neural and DCNN face
spaces (reflected in pair-wise distances) in each of the three sets,
while partialing out the potential contribution of pair-wise
distances between luminance, saturation, mean gradient, and
RMS contrast on the observed match. We found no significant
change in any of the three sets (see Methods and Supplementary
Fig. 6), arguing against low-level variations between images
confounding the brain to DCNN match.

We next tested whether the temporal dynamics in the neural
responses contribute to the observed neural to DCNN match. The
same analysis presented in Fig. 2 was conducted while averaging
the response across time (50–500 ms) to eliminate the informa-
tion contained in the dynamic response profile. Despite averaging
the dynamic profile, correlations in all three sets remained
significant in the same layers as prior to averaging (Supplemen-
tary Fig. 7). This result suggests that the precise dynamical wave-
form was not critical in generating the distance correlations to the
DCNN layers.

Was the observed correlation dependent on training the
network specifically on face recognition? Comparing the distance
matrices in the same manner but this time using a different
network—VGG-1634, trained to categorize objects rather than
faces35, revealed that the average correlation across the three sets
to VGG-16 followed a similar pattern to that of VGG-face
(Supplementary Fig. 8). This result suggests that training on the
specific task of face identification is not necessary to achieve a
representational geometry that matches the neural face-space.

Low- and high-level manipulations on DCNN input images.
The availability of a functional model of the neural face-space
makes it possible to perform controlled manipulations on the
images presented to the network and examine their impact on its
internal representation and on its match to the neural data.
Figure 3 compares the correlation to neural data in set 1 given the
original images as DCNN input with the correlation after
applying six types of manipulations to the images presented to the
DCNN. Three manipulations addressed the issue of low-level
features: matching the overall luminance of the images (pink bar),
converting the background of the face images to black (turquoise
bars), and converting the colored faces to gray scale (gray bar).
These low-level manipulations had no significant effect on the
brain to DCNN correlations observed in sets 1 to 3 (95% image
bootstrap confidence interval test around the original correlation
value, and a permutation test on original correlation delta against
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those obtained from 1000 image permutations, all p > 0.27; see
Supplementary Fig. 9 for sets 2 and 3).

Conversely, presenting the DCNN with the same identities but
in a different appearance (e.g. facial expression, haircut), and the
same identities in similar appearance but with partial (~45°) head
rotation—manipulations that change pictorial aspects while
maintaining personal identity—significantly reduced the correla-
tion (pale orange bar and blue bar, respectively). Moreover, a
~90° rotation to a profile view completely abolished the

correlation (dark blue bar). Note that these identity-preserving
manipulations of the face exemplars were available only for set 1,
consisting of famous faces.

Comparing the pair-wise distances in the same DCNN layers
when presented with the original and manipulated images as
inputs yielded essentially similar results (Supplementary Fig. 11a):
low-level manipulations had a marginal impact on the pair-wise
distances in these DCNN layers (Spearman’s rho ranged from
0.97 to 0.93), whereas high-level manipulations significantly
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decreased the correlations (Spearman’s rho ranged from 0.59 to
0.37; image permutation test on correlations delta, all p < 0.05).

Could it be that the DCNN as a whole was unable to generalize
over view-points or appearance changes in the specific set of
images used in our study? Mean decoding accuracy of identities
across the high-level manipulations was 92% for the top fully
connected layer (fc8) but dropped to 63% and 66% for the layers
that matched the neural data (conv5–3 and pool5, respectively;
see Supplementary Fig. 10 and Methods), suggesting that identity
generalization can be achieved in the top DCNN layer. Further,
mean response amplitude of the relevant DCNN layers following
high-level manipulations remained unchanged (two-tailed Wil-
coxon signed-rank test; all p > 0.07; Supplementary Fig. 11b).
Plotting the activity distribution of units in the two layers
following all six image manipulations revealed that they remained
largely unaffected (Supplementary Fig. 11c), while the identity of
activated units was substantially altered only following the
three high-level manipulations (Supplementary Fig. 11d).

Receptive field visualization of model units. The match of the
neural face-space to specific DCNN layers opens the possibility of
modeling the actual tuning properties of individual face contacts
and exploring putative optimal receptive field properties that may
account for their tuning properties. By contrast to the RSA
method, this approach assumes a first order similarity between
tuning curves of single contacts and individual artificial units. To
examine such putative model units, we implemented a leave-one
out cross-validation search in the relevant DCNN layers to detect
single artificial units that could significantly predict the responses
of specific face contacts to different face exemplars (see Methods).
Our results uncovered a small set of such artificial units (cluster
correction applied, see Methods). Every detected model unit was
found to significantly predict responses of a face contact to the
held out exemplars based on a linear fit. Figure 4 depicts two
examples of such model units. The top left scatter plot in each
panel depicts the correlation between responses to face exemplars
in the model unit (y-axis) and in the face contact (x-axis),
reflecting the significant similarity between the two.

We then took the advantage of DCNN modeling to actually
map the optimal stimuli, i.e. receptive field, of the model units.
We applied two different methods for such mapping: deconvolu-
tion (also termed transposed convolution) and activation
maximization (see Methods for details). Applying deconvolution
on a model unit given its response to a specific input image
highlights the fragments in the image that initially gave rise to the
unit response19,36. Activation maximization takes the approach of
iteratively deconvolving (300 iterations) the receptive field and
adding it to the input image, to achieve an alternated image which
elicits a maximal response of the model unit. The resultant
putative receptive fields, presented in Fig. 4, appeared to share
common aspects: they highlighted consistent fragments
embedded in a larger part of the face image, with the right ear

Fig. 2 Pair-wise distances in the neural face-space match the same distances in intermediate DCNN layers. a Left: Purple and red bars denote the
correlation between pair-wise distances in iEEG face-selective contacts included in set 1 and in the different layers of a DCNN pre-trained on face
recognition (VGG-Face). Gray bars denote the same correlations, but to untrained VGG-Face layers. Face exemplars included in set 1 are presented above
the bar plot. Error bars denote image pairs bootstrap s.e.m. Middle: Scatter plots which underlie the correlation in the significantly correlated DCNN layers.
Red line is the least-squares linear regression fit. Right: Enlarged scatter plot for the maximally correlated DCNN layer (same data as in the top scatter plot
in middle panel), with images of face pairs presented on top of individual dots. b, c Same as panel a, only for sets 2 and 3, respectively. Faces used in set 3
(and shown here in panel c) were taken from the face database by Minear and Park56 . Note that each set consisted of a different (yet partially overlapping)
group of face contacts given the group of patients who participated in the corresponding task version. d Weighted averages of the correlation coefficients
observed across the three sets. Sets were weighted by the number of face contacts they included. Error bars denote the weighted s.e.m. across the sets.
Note the consistent correlation of the iEEG recordings to mid-level DCNN layers. All p values were derived from an image permutation test (1000
permutations). Reported p values are FDR corrected, except for set 3 in which significance did not survive FDR correction
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and left eye highlighted in the examples of panels a and b,
respectively (red arrows). Nevertheless, there was a difference
between the two methods, with the activation maximization
revealing changes involving larger expanses of the units’ receptive
fields.

Match of neural to DCNN face-space in distinct ROIs. Two
prominent clusters of face contacts could be discerned anatomi-
cally in the left hemisphere (Fig. 1b, Supplementary Fig. 1)—an
occipital cluster in the inferior occipital gyrus, likely corre-
sponding to the occipital face area (OFA) and a temporal cluster
in the fusiform gyrus, likely corresponding to the fusiform face
area (FFA, composed of a posterior and an anterior patch in itself
—pFus-faces/FFA-1 and mFus-faces/FFA-23). Given the ongoing
debate concerning the functional distinction between the two face

patches, we separately examined their match to the DCNN layers.
We defined the two clusters of face contacts based on the inferior
occipital gyrus and the fusiform gyrus as anatomical regions of
interest, and computed the neural to DCNN correlation for each
cluster separately. This was performed only for set 1 and set 2,
since set 3 did not include a sufficient number of contacts to
conduct such an ROI analysis. As presented in Fig. 5,we found
that for both sets, both clusters independently replicated the same
correlation profile that we initially observed for the complete
ensemble, with no significant difference in layer-selectivity arising
when comparing the two clusters directly (contacts’ labels per-
mutation test on correlation difference between the two clusters,
all uncorrected p values for five intermediate layers >0.46).

Finally, we tested whether the observed DCNN to neural match
was confined to the HFA signal or whether it could be revealed
also in the LFP evoked responses. To this end, we recomputed the
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Fig. 4 Receptive field reconstructions of two example model units. Two out of the seven model units that were found to significantly predict responses of
single face contacts in a leave-one out search (see Supplementary Fig. 12 for the full set). Model units were defined as units which were best correlated
with a single iEEG contact responses to all N−1 exemplar sets and significantly predicted the held out responses based on a linear fit. aModel unit found in
layer pool5 for set 1. Top left scatter plot depicts the responses of the model unit versus the mean HFA responses (50–500ms) of the face contact. Red
dots correspond to the three exemplars for which receptive field visualizations are presented (see below). Red line is the least-squares linear fit. Top right
plot depicts the mean categorical responses of the face-selective contact to which the model unit matched. Bar inset presents the categorical selectivity of
the model unit, which responded solely to faces and not to places or patterns. All error bars denote s.e.m. across exemplars. Bottom gallery presents
visualizations of the model unit’s receptive field for three example face exemplars: left column shows the original images in a descending order of the
model unit’s response; middle column shows the reconstructed receptive field using deconvolution; right column shows the delta between the altered
image following activation maximization and the original image, reflecting the added image that maximally amplified the model unit’s response. For
visualization purpose, the contrast of each receptive field image was normalized by stretching the active range of RGB values. b Same as panel a, depicting
a different model unit detected in layer pool5 for set 1 and its matching face contact. Note the view point selectivity and consistency of the face fragments
that are highlighted by the two visualization procedures, and the large expanse of image changes following activation maximization. Copy rights holders:
Woodie Allen photo—Colin Swan, license link https://creativecommons.org/licenses/by-sa/2.0/; Christopher Falkenberg photo—Christopher Falkenberg;
Gila Gamliel photo—https://en.wikipedia.org/wiki/Gila_Gamliel#/media/File:Gila_Gamliel.jpg, license link https://creativecommons.org/licenses/by-sa/
3.0/deed.en; Barack Obama photo—Pete Souza, license link https://creativecommons.org/licenses/by/3.0/deed.en
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neural match to DCNN layers, this time extracting the mean
evoked response from the raw (common referenced) iEEG signal.
The analysis failed to reveal a significant correlation to any of the
DCNN layers, in any of the three sets. Similarly, trial by trial
extraction of the instantaneous band limited power at 8–13 Hz
failed to reveal a significant correlation with the DCNN face-
space in any of the layers or sets.

Discussion
The present findings reveal a significant match between the face-
space geometry of human face-selective neuronal groups recorded
intracranially and a DCNN (VGG-Face) capable of human-level
face recognition performance. The match was absent for the same
network when untrained and assigned with random connection
weights. In addition, the match was significant in the same range
of mid-layers both when pooling all electrodes across patients and
when averaging individual matching profiles of patients with a
minimum of five face contacts (Supplementary Fig. 5). These
results point to an intriguing convergent evolution of face-space
geometry, as reflected in face-pair pattern similarities emerging
both in biological and in artificial networks20. This convergence
highlights the functional importance of activation pattern simi-
larity to face perception and thus extends earlier theoretical
proposals by Edelman and Grill-Spector25 of the fundamental

role of such similarities in object representations as well as more
recent ones in the domain of object categories22. The results are
also compatible with our previous study, showing significant
correlation between face exemplar activation distance measures
and their perceptual similarity37 (but see38).

A number of previous studies have employed ad-hoc models
and classifiers to successfully decode face exemplars from brain
data (for a recent example see e.g.39). However, these models,
applied to specific experimental data sets, have not been
demonstrated to perform at the level of realistic human recog-
nition capacity. The added value of DCNNs is that they are
trained independently of neural data and, critically, reach human-
level performance. As such, they offer novel opportunities to
highlight characteristics of the neural representations that are
essential to performing the recognition tasks. Thus, detecting
commonalities between representational principles found in high
performing models such as DCNNs and large-scale neural data
provides valuable pointers to features of the neural representa-
tions essential for reaching high levels of task performance.

It is important to emphasize that face perception is a multi-
faceted process that involves, on the one hand, a pictorial func-
tion, i.e. our essentially limitless ability to distinguish among
different images of faces and, on the other hand, a recognition
function, in which we can identify specific personal identities
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across a diverse set of different view-points and appearances.
At present, there is ample evidence pointing to the involvement
of face-selective areas in mid-high visual cortex in face
perception and recognition—including fMRI (e.g.40), clinical5

and stimulation7,8,10,41 data. However, given the complex hier-
archical nature of processing in the human ventral stream, it is
difficult to derive from stimulation and clinical data the precise
role of neuronal groups in the processing cascade and the inte-
gration leading to the overall human perceptual capabilities.

Three converging lines of results point to a pictorial function of
the human face selective neuronal groups in the present study.
First, the face-space geometry match was consistently restricted to
the mid-hierarchical layers of the DCNN, arguing both against
strictly low-level feature representations at the bottom end and
viewpoint invariant representations at the high end (Fig. 2). This
could not be attributed to a difference between the occipital and
temporal clusters since separately computing the neural to DCNN
match for the inferior occipital gyrus (OFA anatomical marker)
and fusiform gyrus (FFA anatomical marker) recording sites
failed to reveal a shift towards higher DCNN layers for the
temporal fusiform cluster (Fig. 5). Indeed, examining the view-
point sensitivity across the different layers of the VGG-Face
network (Supplementary Fig. 3) revealed that layers showing the
highest match to the brain responses were sensitive to view point
manipulations, further confirming their pictorial rather than
identity-preserving nature.

The neural to DCNN correlation was never restricted to a
specific layer and the significant correlations were slightly jittered
in hierarchical level across the three sets of images and face
contacts, ranging from layer pool4 to layer pool5. The source of
this variability is not clear at present. One possibility is that this
cross-layer blurring was due to the limited sampling density of
the iEEG contacts that necessitated pooling across face-selective
sub-regions in visual cortex3, which may be differentially corre-
lated to the DCNN layers.

The second line of evidence concerns image manipulations
targeting low-level features, such as removing all background
information, changing luminance or converting the face colors to
gray. Applying such manipulations to the DCNN input images
had no significant effect on the neural to DCNN match (Fig. 3,
Supplementary Fig. 9) or the DCNN representations in the brain-
matching layers (Supplementary Fig. 11). By contrast, higher level
manipulations of pictorial aspects of the faces which nevertheless
preserved their personal identity (Fig. 3) showed a significant
reduction in the neural to DCNN match and in the match
between the DCNN representations themselves (see Supplemen-
tary Fig. 11a), pointing to the dependency of the effect on some
high-level pictorial aspects rather than on view-invariant personal
identity. This result is compatible with previous studies that
demonstrated viewpoint selectivity in the activation patterns of
face-selective regions42–45. It should be emphasized, however,
that our results pertain to the level of invariance in the DCNN
layers alone, and that without collecting neural data following
image manipulations we cannot rule out the possibility that the
neural face-space may remain invariant to such high-level iden-
tity-preserving image manipulations.

Finally, visualizing the receptive fields of artificial units whose
selectivity profiles matched those of specific face contacts revealed
consistent viewpoint selective face fragments such as ears and
eyes. These fragment-like receptive fields are compatible with
previous reports of the selective activation of face areas to
informative fragments28. Interestingly, the two different approa-
ches we applied to reveal these receptive fields highlighted dif-
ferent levels of holistic representations, with a more a localized
receptive field revealed through the deconvolution method while
a more gestalt-like receptive field revealed through the activation

maximization approach (Fig. 4). This dependency of the receptive
field properties on their mapping method is reminiscent of the
finding of a more localized RF in primate infero-temporal cortex
when a reductive method is applied46 vs. more holistic RF
properties that were revealed when using face-template approa-
ches (e.g. refs. 12,47).

An interesting question is whether the match between brain
and DCNN face-spaces was specific to a network trained to
identify faces. We explored this question by comparing the cor-
relations found with the VGG-Face to those obtained for a net-
work having identical architecture, but trained on ImageNet for a
more general object-categorization task (VGG-16). Interestingly,
our results showed that a similar correlational pattern emerged
for both VGG-Face and VGG-16, suggesting that training on the
specific task of face identification is not a necessary prerequisite
for the match to emerge. This result points to the possibility that
the features underlying the match to the neural face-space in
VGG-16 are not face-specific, but rather generic object features
which can be recomposed to construct a representational space
with a similar geometry to the neural face-space.

A limitation to note is that a greater proportion of face contacts
in the present study were localized in the left hemisphere (44/58,
41/53 and 13/23 in set 1 to 3, respectively), with the ROI analysis
(Fig. 5) focused solely on left hemisphere face contacts. Given
previous evidence suggesting that face perception in humans is
dominated by the right hemisphere5,48 (but see e.g.6), this may
have biased our match towards more mid-levels DCNN layers.

Overall, our results suggest a functional role for human face-
selective neuronal groups in representing how face images look.
Our results are thus compatible with the notions that person
identity representations that show invariance to face appearance,
such as viewpoint changes, may be found in more downstream
medial temporal lobe structures49 or by the extended nodes of the
face network in anterior temporal and frontal cortices that we
failed to sample50,51,45. A cautionary note is in order here since
the present results were obtained when the patients performed a
1-back memory task and not an explicit recognition task, with
most faces being unfamiliar. At this point we cannot rule out the
possibility that under a person identification task the correlation
may shift to higher, more invariant, layers of the VGG-Face
network. This possibility will actually be an intriguing extension
of the functional importance of similarity distances in face per-
ception. On the other hand, it is important to note that previous
studies attempting to reveal increased invariance to familiar faces
in ventral stream face regions showed contradictory
evidence42,52,53. Furthermore, it should be noted that previous
studies showing representational similarities across categories
between DCNNs and non-human/human primates used passive
viewing19,20,22 or an oddball variant23,24 as the main task.

In summary, the revolutionary discovery that artificial deep
convolutional networks can achieve human-level recognition
performance offers, for the first time, a truly realistic model of
high order visual processing. Together with the large scale iEEG
recordings of visual neuronal groups in humans, they allowed
fresh insights into the functional role and mechanistic generation
of highorder human face representations. Employing the rapidly
evolving new DCNNs may help in the future to resolve out-
standing issues such as the functionalities of distinct cortical
patches in high order visual areas and the role of top down and
local recurrent processing in brain function54.

Methods
Participants. Sixty-one participants monitored for pre-surgical evaluation of epi-
leptic foci were included in the study, 33 of them had face selective contacts (11
females, mean age 35 years, SD= 11.6; see Supplementary Table 1 for individual
demographic, clinical, and experimental details). All participants gave fully
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informed consent, including consent to publish, according to NIH guidelines, as
monitored by the institutional review board at the Feinstein Institute for Medical
Research, in accordance with the Declaration of Helsinki.

Tasks and stimuli. Three versions of a 1-back visual task were included in this
study, each consisting a different set of 10 face images as well as a different set of
additional images from other categories (see Fig. 1a for a schematic illustration of
the three tasks). Each patient performed either one or two versions out of the three
(for individual specification see Supplementary Table 1). Face stimuli in task 1 (set
1) were natural face images of famous people collected in an internet search. This
task version consisted of a total of 60 stimuli: 10 faces, animals, tools, words,
patterns, and places. Images were presented for 250 ms and were followed by a
jittered inter stimulus interval ranging from 750 to 1050 ms. The task included 360
trials, 24 of which were 1-back repetitions. Each image exemplar was presented six
times throughout the task. Face stimuli in task 2 (set 2) were taken from a database
previously reported55. This task version consisted of a total of 56 stimuli, including
in addition to the 10 face stimuli also images of tools, patterns, houses, and body
parts. Images were presented for 250 ms at a fixed pace of 1 Hz. The task included
205 trials, 25 of which were 1-back repeats. Each image exemplar was presented
3–4 times throughout the task. Face stimuli for task 3 (set 3) were taken from an
open-source database56. This task version consisted of a total of 50 stimuli: 10
faces, tools, patterns, houses, and body parts. This was a block-design task, with
each block consisting 10 images from the same category, presented in pseudo-
random order (each exemplar presented once during each block, aside from the
case of 1-back repeats). Images were presented for 500 ms, followed by a jittered
inter stimulus interval ranging from 750 to 1500 ms. Blocks were separated by
either 4 or 8 s. The task included 260 trials (26 blocks), 18 of which were 1-back
repeats. Each image exemplar was presented 4–5 times throughout the task. In all
three versions, stimuli were squared and centrally presented, subtending a visual
angle of approximately 13° in task 1 and 11° in tasks 2 and 3. During the tasks,
participants were seated in bed in front of an LCD monitor. They were instructed
to maintain fixation throughout the task and to click the mouse button whenever a
consecutive repetition of the exact same image occurred. Five of the participants
(one in set 1, two in set 2, and two in set 3) were instructed to press on each trial,
not only on 1-back repeats, to indicate whether a 1-back repeat occurred or not.

Electrodes implant and data acquisition. Recordings were conducted at North
Shore University Hospital, Manhasset, NY, USA. Electrodes were either subdural
grids/strips placed directly on the cortical surface and/or depth electrodes (Ad-
Tech Medical Instrument, Racine, Wisconsin, and PMT Corporation, Chanhassen,
Minnesota). Subdural contacts were 3 mm in diameter and 1 cm spaced, whereas
depth contacts were 2 or 1 mm in diameter and 2.5 or 5 mm spaced, for Ad-Tech
and PMT, respectively. Maximal depth of depth electrodes was 70 mm, corre-
sponding to a maximum of 13 implanted contacts. The signals were referenced to a
vertex screw or a subdermal electrode, filtered electronically (analog bandpass filter
with half-power boundaries at 0.07 and 40% of sampling rate), sampled at a rate of
either 512 or 500 Hz and stored for offline analysis by XLTEK EMU128FS or
NeuroLink IP 256 systems (Natus Medical Inc., San Carlos, CA). Electrical pulses
were sent upon stimuli onsets and recorded along with the iEEG data for precise
alignment of task protocol to neural activity.

Anatomical localization of electrodes. Prior to electrodes implant, patients were
scanned with a T1-weighted 0.8 mm isometric anatomical MRI on a 3 Tesla Signa
HDx scanner (GE Healthcare, Chicago, Illinois). Following the implant, a com-
puted tomography (CT) and a T1-weighted anatomical MRI scan on a 1.5 Tesla
Signa Excite scanner (GE Healthcare) were collected to enable electrode localiza-
tion. The post-implant CT was first aligned with the post implant-MRI and then
with the pre-implant MRI using a rigid affine transformation as implemented by
FSL’s Flirt57. This allowed visualization of the post-implant CT scan on top of the
pre-implant MRI scan. Individual contacts were then identified manually by
inspection of the CT on top of the pre-implant MRI and were marked in each
patient’s pre-implant MRI native space, using BioImage Suite58.

Electrode projection onto the cortical surface was performed as previously
reported59 (see also60 for an open source tool box with a similar pipeline).
Individual patients’ cortical surface was segmented and reconstructed from the pre-
implant MRI using FreeSurfer 5.361, and each electrode was allocated to the nearest
vertex on the cortical surface. To project electrodes from all patients onto a single
template, the unfolded spherical mesh of each individual was resampled into a
standard unfolded spherical mesh using SUMA62. Colored labels on the cortical
surface as presented in Fig. 1b were derived from surface-based atlases as
implemented in FreeSurfer 5.3: functional atlas of retinotopic areas63 (intermediate
retinotopic areas); Destrieux anatomical atlas64 (Fusiform gyrus); and Juelich
histological atlas (V1 and V2 corresponding to Brodmann areas 17 and 18,
respectively).

iEEG signal preprocessing and HFA estimation. Signals that were initially
recorded at a sampling rate of 512 Hz were down sampled to 500 Hz for con-
sistency. Raw time-courses and power spectra of all channels were manually
inspected for noticeable abnormal signals and other contaminations, and channels

appearing as highly irregular were excluded from further analysis. Next, channels
were re-referenced by subtracting the common average signal from the intact
channels.

To estimate high-frequency amplitude (HFA) modulations, the signal was
divided into nine frequency sub-ranges of 10 Hz width, ranging from 48 to 154 Hz.
The sub-ranges did not include 59–61 and 117–121 Hz to discard line noise. The
signal was band-passed at each frequency sub-range and instantaneous amplitude
in each sub-range was estimated by taking the absolute value of the filtered signal’s
Hilbert transform65. Since the 1/f profile of the signal’s power spectrum results in
greater contribution of lower frequencies to the overall HFA estimation, we
normalized each sub-range by dividing it with its mean value, and averaged the
normalized values across all nine sub-ranges. All data preprocessing and analyses
were carried out using in house Matlab codes (R2017a). For filtering of frequency
sub-ranges, we used original EEGLAB’s Hamming windowed FIR filter
(pop_eegfiltnew function66).

Definition criteria of face selective contacts. Face selective contacts were defined
as visually responsive contacts with a significant response to faces compared to
places and compared to patterns: First, we tested whether the mean response of
each contact to all available stimuli from the versions the patient participated in
were significantly greater than baseline (paired t-test on mean exemplar responses
versus baseline, at 50–500 ms and −200 to 0 ms relative to image onset, respec-
tively). Although images were presented for different durations across the task
versions (250 ms in sets 1–2 and 500 ms in set 3), we pre-defined the response
window to be identical across the three sets. Hit, miss, and false alarm trials were
excluded from all analyses. FDR correction was then applied to the pooled p values
from all 61 patients. Contacts with pFDR < 0.05 and a considerable effect size
(Glass’ Δ) of larger than 1 were defined as visually responsive. Six hundred and
forty-two out of 8916 contacts were found to be visually responsive. Next, visual
contacts that were significantly more selective to faces when contrasted with places
and when contrasted with patterns were defined as face contacts (two Wilcoxon
rank sum tests per contact, p < 0.05, uncorrected). Finally, we applied anatomical
constraints whereby face contacts located within V1, V2, or in frontal regions, as
well as contacts localized further than 10 mm from the cortical surface, were
excluded. This resulted in the final set of 96 face contacts from 33 patients: 58, 53,
and 23 face contacts in set 1, 2, and 3, respectively. Thirty-four contacts (10
patients) overlapped between sets 1 and 2, and 4 contacts (2 patients) overlapped
between sets 1 and 3. The cortical distribution of face contacts is presented sepa-
rately for each set in Supplementary Fig. 1. None of the detected face contacts were
identified as located over the seizure onset zones by an epileptologist’s inspection.

Exemplar selectivity index of individual face contacts. To assess the level of
selectivity to different faces within each face-selective contact we defined a face
exemplar selectivity index as the d′ between the most- and least-preferred face
images:

face exemplar selectivity index ¼ μbest � μworstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 σ2best þ σ2worst
� �q ; ð1Þ

where μBest/Worst denotes the average of mean HFA responses at 50–500 ms
across all repetitions, and σ2best=worst denotes the variance across repetitions of the
relevant face exemplar. Selectivity indices presented in Fig. 1b were computed on
all task versions available to the specific face contact. If a face contact was included
in more than 1 task version (maximal versions per contacts are two), indices were
averaged across the versions. Selectivity indices presented in Supplementary Fig. 1
were computed on face images included in the specific set presented in each of the
three panels. Statistical significance in each face contact was assessed by a
permutation test, in which the same index was computed for 1,000 random shuffles
of single trials labels. P values were defined as the proportion of shuffle-derived
indices that exceeded the original index.

Decoding face exemplars from face contacts ensemble activity. To decode
specific face exemplars from the activation pattern of all face contacts we applied a
simple template matching decoding scheme in each of the three sets (see Supple-
mentary Fig. 2a for a schematic illustration of the decoding procedure): First, data
were ordered in a grand three-dimensional data matrix, G, of the form
Gface exemplars ´ face contacts ´ trials. Entry i,j,k in this matrix is the response to the ith
face exemplar in the jth face contact, in the kth repetition trial, smoothed with 50ms
running average window. Importantly, this response is a time series of 450ms, taken
at 50–500ms relative to image onset. Second, we randomly chose a single trial from
each face contact to each face exemplar and assigned it to a test pattern matrix, T, of
the form Tface exemplars ´ face contacts. The remaining trials in the grand three-
dimensional data matrix were averaged and assigned to a reference matrix, R, of the
form Rface contacts´ face exemplars. Thus, every decoding iteration began with a test and a
reference two-dimensional matrices (Tand R, respectively): row i in the test matrix
is the concatenated vector of randomly chosen single trial responses from all face
contacts to the ith face exemplar, whereas row i in the reference matrix is the
concatenated vector of averaged responses across the remaining trials from all face
contacts to the ith face exemplar. Third, we assigned 10 decoded labels based on the
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minimal Euclidean distance between each row in the test and reference matrices: on
every decoding step, the minimal distance between any row of the test matrix and
any row of the reference matrix was detected, and the label of the row in the
reference matrix (e.g. Face 1) was assigned to its minimally distant row in the test
matrix. The detected pair of test-reference rows was then excluded from the sub-
sequent decoding steps such that each reference row could only be assigned once in
every decoding iteration. One thousand decoding iterations were performed. The
mean percentage of accurately decoded face exemplars across the 1000 iterations
was defined as the decoding accuracy.

Pair-wise distances in the neural face-space. Pair-wise distances were computed
on the neural face representation matrix, which is the same grand data three-
dimensional matrix described in the previous section (and illustrated in Supple-
mentary Fig. 2a), after averaging across the trials dimension to receive a two-
dimensional matrix of the form face exemplars ´ face contacts. Pair-wise distance
between the neural responses to two exemplars was then computed as the Eucli-
dean distance between the two rows in the matrix that correspond to the pair of
exemplars. Forty-five distance values were extracted per set, following the equation
N � ðN � 1Þ=2, with N denoting the number of face exemplars (N= 10 in all
3 sets).

To test the contribution of the exact wave form during the 450ms HFA response
to the DCNN to brain match (Supplementary Fig. 7), we also averaged the mean
HFA response in each entry of the neural face representation matrix across time,
resulting in a single mean amplitude value instead of a 450ms response time series.
All subsequent analyses addressing the match to DCNNs were otherwise identical.

To investigate the specificity of the DCNN to brain match to the HFA signal, we
computed the neural pair-wise distances for two additional signals, focusing on low
frequencies of the iEEG signal: the conventional ERP and the instantaneous power
of low frequencies at 8–13 Hz. ERP responses were extracted by locking the
common-referenced raw signal to image onsets and averaging across repetitions of
the same exemplar. Low frequencies band limited power was computed by filtering
the common-referenced signal at 8–13 Hz and extracting the absolute value of the
Hilbert transformed signal. The response window for both ERP and low-frequency
instantaneous power was pre-defined at 125–250 ms relative to image onset.

DCNN models. We used the pre-trained VGG-Face feedforward architecture of
Parkhi et al.17. The network consists of five stacked blocks followed by three fully
connected (fc) layers. Each block consists of 2–3 consecutive convolutional layers
(13 convolutional layers in total) followed by max pooling. All 13 convolutional
layers and 3 fully connected layers are followed by a rectification linear unit
(ReLU), introducing non-linearity to the model. The network was trained on a
large scale data set with over two million face images for recognition of 2622
identities. This model reached nearly perfect performance, comparable to state of
the art models (e.g. DeepFace16). Importantly, none of the identities presented in
our three tasks were included in the set used to train the network. Preprocessing of
our raw stimulus images prior to passing them forward through the network
included resizing to match network input size of 224 × 224 pixels and mean RGB
channel value subtraction, as estimated from the network’s training set.

To compute DCNN pair-wise distances, we passed forward the face images
through the network and extracted the activations of all units at each layer. We
then computed the Euclidean distance between pairs of activation patterns
corresponding to image pairs, to generate a pair-wise distances vector at each layer.

We also tested a DCNN trained on object classification—VGG-1634. VGG-16
has an identical architecture to VGG-Face, yet it differs in that the network,
initialized at random weights, was trained on ImageNet to recognize 1000 possible
object classes.

Estimation of similarity between DCNN and neural face-spaces. The neural
pair-wise distances vector was correlated with the 22 DCNN pair-wise distances
vectors derived from each layer using Spearman’s correlation. To assess statistical
significance of the correlation to each layer, we shuffled image labels in the neural
data 1000 times and recomputed the neural distances vector while leaving the
DCNN distances vectors fixed. P value assigned to each layer was the proportion of
correlation values derived from shuffled data that exceeded the original correlation
value. An FDR correction was then applied on the resultant 22 p values to control
for a 5% false discovery rate across the layers.

To estimate the consistency in correlation patterns across the three sets
(Fig. 2d), we computed the weighted average of correlation coefficients with each
DCNN layer across the three sets. Following67, the weighted correlation (R̂z) and
standard error (SEz)in every layer was defined as

R̂z ¼
P

i R
i
z n

i

P
i n

i
; ð2Þ

SEz ¼
P

iðRi
z � R̂zÞ2niffiffiffiffi
N

p P
i n

i
; ð3Þ

where Ri
z is the fisher z transformed Spearman’s correlation in set i; ni is the

number of face contacts in set i; and N is the total number of sets. The resultant R̂z

and SEz were then back transformed. Computing the non-weighted means gave
highly similar results, with the range of significant layers unchanged.

Controlling for variations in low-level image parameters. To account for the
potential impact of pair-wise distances between low-level image parameters on the
DCNN to brain match, we computed the partial correlation between the neural and
DCNN pair-wise distances, partialing out the contibution of pair-wise distances in
luminance, RMS contrast, gradient, and saturation to the observed match. These
four parameters were computed as in a recent study68:

Luminance : <gray scale pixels>; ð4Þ

RMS contrast : stdðgray scale pixelsÞ; ð5Þ

Gradient :
X

gray scale pixels

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∇horizontal2 þ∇vertical2Þ

q
; ð6Þ

Saturation :
1

Npixels

X

pixels

max R;G:Bð Þ �minðR;G;BÞ
max R;G:Bð Þ ; ð7Þ

Where RGB to gray scale conversion follows the transformation:

Gray scale value ¼ 0:299R þ 0:587Gþ 0:114B: ð8Þ
Note that for set 2, which included only gray scale images, parameters were

computed on the original pixel values, without first converting them into gray scale.
In addition, the saturation parameter (Eq. (7)) is not applicable to gray scale images
and was therefore not extracted or analyzed for set 2.

Low- and high-level image manipulations. Background removal of face images
were carried out using Adobe Photoshop. Luminance matching was performed
independently per set, by computing the mean luminance of all exemplars in the
set (Eq. (4)), and adding to all pixels of each image the difference value between its
luminance and the average luminance across images. For colored sets (set 1 and set
3), this operation was carried on the value plane in the HSV format, followed by
conversion back into RGB format.

For high-level face manipulations, including different appearance and two-stage
view shifts we took advantage of the faces in set 1 depicting famous people and
searched for available images of the same identities taken from a half profile and a
full profile (Fig. 3, light blue and dark blue bars), and from a similar view but under
a different appearance (e.g., facial expression, haircut). All manipulated faces were
resized and aligned to optimally overlap with their original counterparts.

To assess statistical significance of the impact of the above mentioned six
manipulations on the DCNN to brain match and the DCNN to DCNN match, we
applied a permutation test per manipulation and layer. Neural distances were
recomputed following 1000 image permutations. P value assigned to each layer and
manipulation was the proportion of correlations deltas given shuffled labels that
exceeded the original change in correlation. In addition, the impact of
manipulations on the DCNN to brain match was also tested using a 95% image
bootstrap confidence interval around the original correlation value, resulting in the
same significance profile across manipulations.

Identity decoding from DCNN layers. To assess the DCNN capability in gen-
eralizing identity across high-level identity-preserving manipulations, we pooled
the images from the three high-level manipulations presented in Fig. 3a (different
appearance, ~45° rotation and ~90° rotation) and the original images to one data
set. We then randomly assigned one image of each identity to constitute a ten
images test set, and applied a Euclidean distance nearest neighbor classifier to
classify the identities in the test set. We repeated this procedure 1000 times per
layer, resulting in a mean classification accuracy for the two layers that matched the
neural face-space in set 1 and for the top layer in the network, fc8 (Supplementary
Fig. 10).

Detection of DCNN model units. We attempted to find single artificial units
(termed here model units) that can significantly predict the responses of single
face-selective contacts to different face exemplars. We deployed the following
search scheme per face contact in each of the three sets: first, the linear correlation
between the neural responses (HFA amplitude at 50–500 ms, averaged across
repetitions and time) and each of the layer’s units was computed for nine out of the
ten faces. Next, we took the unit that best correlated to the nine neural responses
and used a least-squares linear fit to predict the neural response to the held out
tenth face. We repeated this procedure ten times, holding out a different face
exemplar on every iteration. If the same unit was best correlated to the neural
responses in all leave-one out folds, and resulted in a significant linear prediction of
the 10 held out neural responses based on the linear fit (label permutation test, p <
0.05), the unit was defined as a model unit. Note that this search was carried out
only in the DCNN layers that significantly matched the neural face-space (two
layers in each set, see Fig. 2a–c). Finally, we applied a cluster correction to further
ensure the received model units could not be detected by chance: we repeated the
same search procedure 1000 times, each time shuffling image labels of the neural
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responses. This resulted in a distribution of 1000 model units counts detected given
shuffled data. Only if the original number of detected model units in a given layer
exceeded the 95th percentile of the count distribution derived from shuffled labels,
we qualified the model units found in the layer as significant. For set 1, we found
five and two model units in layer pool5 and layer conv5–3, respectively. For set 2,
we found a single model unit that did not survive cluster correction.

Receptive field visualization of model units. We used two techniques to visualize
the receptive field of detected model units. The first technique is commonly
referred to as deconvolution, established by Zeiler and Fergus19,36. Their method
allows to feedforward an input image through a network, and then propagate it
backwards to the image space given solely its representation in a unit of interest
(i.e. setting all other units in the layer of the target unit to zero). The resultant back-
propagated image thus unveils the receptive field of a defined target unit in the
network as casted on the original input image—an approximation of the weighted
fragment in the original image that elicited the target unit’s response. In practice,
we based our implementation of the deconvolution technique on a publicly
available TensorFlow implementation69.

The second technique that we used is commonly termed activation
maximization70. Here, we sought to iteratively alter the input image in a way that,
once fed into the network again, would maximally increase the response of a target
model unit. In our implementation, we applied the decovolution technique
iteratively (300 iterations): on each iteration we estimated the receptive field of the
target unit using decovolution and added the deconvolved image, multiplied by a
learning rate of 200, to the initial input image of that iteration. The resultant image
was then used as the input image for the subsequent iteration. The visualizations
presented in Fig. 4 and Supplementary Fig. 12 are the deltas between the RBG
channels of the deconvolved image at the last iteration and the original image.

Region of interest analysis. Two anatomical clusters in set 1 and in set 2 were
defined (set 3 did not include a sufficient amount of contacts to perform an region
of interest analysis). Face contacts assigned to the occipital and temporal clusters
were defined in the individual cortical surface reconstruction as contacts located up
to 3 mm from the left hemisphere inferior occipital gyrus and the left hemisphere
fusiform gyrus, respectively. The subsequent analysis of the match between
representational distances in the DCNN and in neural data (Fig. 5) was identical to
that performed on the entire set of face contacts (Fig. 2).

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
iEEG data and stimuli are available from the authors upon request. The VGG-Face
model is available online at [http://www.robots.ox.ac.uk/~vgg/software/vgg_face/]. The
source data underlying all main and supplementary figures are provided as Source
Data files.

Code availability
Matlab codes used for analyses and Python codes for receptive field visualization are
available from the authors upon request.
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