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Teaching robots social autonomy from in situ
human guidance
Emmanuel Senft1*, Séverin Lemaignan2, Paul E. Baxter3, Madeleine Bartlett1, Tony Belpaeme1,4

Striking the right balance between robot autonomy and human control is a core challenge in social robotics, in
both technical and ethical terms. On the one hand, extended robot autonomy offers the potential for increased
human productivity and for the off-loading of physical and cognitive tasks. On the other hand, making the most
of human technical and social expertise, as well as maintaining accountability, is highly desirable. This is partic-
ularly relevant in domains such as medical therapy and education, where social robots hold substantial promise,
but where there is a high cost to poorly performing autonomous systems, compounded by ethical concerns. We
present a field study in which we evaluate SPARC (supervised progressively autonomous robot competencies), an
innovative approach addressing this challenge whereby a robot progressively learns appropriate autonomous
behavior from in situ human demonstrations and guidance. Using online machine learning techniques, we dem-
onstrate that the robot could effectively acquire legible and congruent social policies in a high-dimensional
child-tutoring situation needing only a limited number of demonstrations while preserving human supervision
whenever desirable. By exploiting human expertise, our technique enables rapid learning of autonomous social
and domain-specific policies in complex and nondeterministic environments. Last, we underline the generic
properties of SPARC and discuss how this paradigm is relevant to a broad range of difficult human-robot in-
teraction scenarios.
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INTRODUCTION
In sensitive domains where social robots are expected to play a key role,
such as education and therapy, the question of empowering the human
user by allowing them to supervise and retain transparent control over
the robot has to be constantly balanced with the contradictory expec-
tation of an advanced level of robot autonomy. In addition, the growing
expectation is that robots should behave autonomously not only at a
technical, task-specific level but also in terms of social interactions.

Here, we look at one specific, yet difficult, instance of this problem:
how domain experts (hereafter called human teachers) can transfer
both technical and social skills to enable robots to successfully and au-
tonomously interact with children in an educational task. The expec-
tation is that a robot can gradually learn an adequate social behavior
by observing the human teacher and will become increasingly auto-
nomous in both task-level skills and social interactions. As the teacher
starts to trust the robot’s behavior, they will progressively shift their
workload to the robot. In such a scenario, the robot’s technical and
social policies are coconstructed by the teacher during the learning
phase, and the resulting (autonomous) robot behavior thus remains
essentially transparent, predictable, and trustworthy to the human
teacher (1). Educational social robotics is a prototypical application
in this regard: To be an effective educational support, the robot needs
to exhibit satisfactory technical (didactic, i.e., subject knowledge)
and social (pedagogic behavior) skills, all while preserving the ability
for a school teacher to oversee and, if needed, override the robot’s
behavior.

Learning autonomy instead of programming autonomy
Learning social policies for interactions with humans brings specific
requirements not usually considered in machine learning:
R1. The robot has to exhibit, at all times, acceptable (socially and
physically safe)—if not perfectly appropriate—social and task-related
behavior. This must start from the onset of the learning/interaction.

R2. The robot needs to learn quickly because gathering data
points from interactions with humans is a slow and costly process.

R3. To be effective in real-world scenarios, where the human ex-
perts teaching the robot are not roboticists, the learning processmust
be practical, integrate well with the natural human routines, and re-
quire limited technical expertise.

Traditionally, two main methods exist for teaching robots, rein-
forcement learning (RL) (2) and learning from demonstrations (3, 4).
One of the core mechanisms of RL is the combination of exploration
and learning from errors. By directly interacting with their environ-
ment and receiving feedback from it, RL agents learn online. To be
effective, this requires both exploration and error recovery to be fast
and cheap; thus, RL approaches typically rely on simulators to train
the agent. Simulation is, however, often not an option for human-
robot interaction (HRI) because simulators fail to reproduce, at
meaningful levels, the complexity and unpredictability of human be-
haviors. Thismeans that the robot should be trained in the real world
by interacting with humans. Exploring and recovering from errors in
the real world, however, are expensive and sometimes not possible.
Not being able to fully recover from errors in HRI is the norm rather
than the exception: HRIs almost always require a level of trust, so when
the human loses trust in the robot because of poor behavior, the inter-
action breaks down and often cannot be recovered (5). The risk of such
failures limits the general applicability of classical RL to HRI (because
these failures would violate R1). In addition, learningwithRL is often a
slow process, thus also violating R2.

To mitigate these limitations, robots can learn from humans,
which ensures that the robot’s policy is appropriate to the current
application during the learning process. Learning fromdemonstration
(3, 4) is one classical approach that enables humans to teach skills to
robots. However, it typically looks at kinesthetic demonstrations (6)
in deterministic environments [such as manufacturing, industrial
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robotics, or cobotics (3)], where the human teacher usually relin-
quishes control and supervision of the robot once the physical skill
is deemed to have been acquired by the robot. Beyondmanipulation,
learning from demonstration has been applied in a few instances to
the learning of scheduled tasks (7) and social, interactive behaviors.
Two main methods have explored how to learn social behavior from
humans: (i) by collecting data from human-human interactions and
applyingmachine learning to derive an autonomous behavior (8–11)
and (ii) by using theWizard-of-Oz (12) method to control a robot in
interactions to collect data, which are later used to create an auto-
nomous behavior (13–16). These approaches might lead to an auto-
nomous robot; however, in both cases, researchers approach the
learning problem as gathering a static dataset and applying offline
learning algorithms to create a static policy. These processes, by sep-
arating the demonstrations and the learning, are also rigid and would
require substantial technical efforts to update a policy with new data
points. In addition, even if the demonstrations are collected from do-
main experts, they are later analyzed by technical experts. This reliance
on technical experts to interpret demonstration data and to create
learning algorithms adapted to each environment limits the usability
of such approaches for naïve users.

An alternative way is to move away from optimizing a function on
a dataset to actively teaching the agent a policy. One such framework is
interactivemachine learning (IML) (17, 18). IML involves the end user
in the learning loop and has the agent learn an appropriate behavior
online through a series of small improvements. The end user becomes
a teacher and can, for example, provide rewards for the robot’s actions,
similarly to classic RL (19). The active involvement of the teacher im-
proves the learning (both in speed and quality) and at same time
allows them to create a mental model of the robot, increasing the
transparency of the robot behavior and the trust the user has in the
agent (20, 21). Teachers can also be given more control over the robot
by dynamically providing demonstrations, corrections, or additional
information to the algorithm to improve the learning even further
(22, 23). That way, teachers can even correct errors made by the algo-
rithm before they propagate to the real world. Although promis-
ing, there are very few demonstrations of IML applied to learning
for social interactions with humans (24, 25). IML, and interactive
RL in particular, have had limited success so far and mostly in
simple, low-dimensional and deterministic interaction domains
(20, 26).

Because no learning method so far addresses the three require-
ments stated previously, in (27), we introduced SPARC (Supervised
Progressively Autonomous Robot Competencies), an interactive
framework whereby a robot interacts directly with the environment
under the supervision of a human teacher who has complete control
over the robot’s behavior.With SPARC, initially, the robot’s controller
is a blank slate. The robot does not act on its own and is only teleo-
perated by the human teacher in aWizard-of-Oz fashion—the teacher
can select actions that the robot then executes (12). However, as soon
as the teacher starts selecting actions, the robot learns from these de-
monstrations and uses this evolving policy to suggest actions to the
teacher. The teacher can confirm or override the robot’s suggestions,
and this feedback is fed to the learning algorithm to progressively re-
fine the policy. To reduce the teacher’s workload, actions proposed by
the robot and not cancelled by the teacher are assumed to be acceptable
and are executed after a short delay. This mechanism aims to limit the
need for human intervention. The teacher only has to demonstrate
actions and prevent incorrect actions from being executed. Thus, as
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
the robot’s behavior improves, the robot proposes correct actionsmore
often, reducing the need for demonstrations and corrections and there-
by the amount of input required from the teacher to achieve an effec-
tive behavior, in a process bearing similarity to the ML processes
behind predictive texting (28). The novelty of SPARC lies in the in situ
component of the learning: The robot learns online and in the real
world, which was often not the case in prior work. When applied
to HRI, for example, in the context of education, this translates into
transforming a dyadic interaction (human teacher, learning child)
into a triadic interaction (human teacher, robot, child), where the
teacher teaches the robot how to support the child’s learning on the
go (Fig. 1).

SPARC was introduced in (27); however, it had never been tested
to teach robots to interact with people. Previous research only con-
sidered scenarios where the robot was interacting either in a simulated
environment (26) or with another robot simulating a human (27).
This paper aims to evaluate SPARC in a real HRI, taking as context
tutoring for children. The conceptual simplicity of the paradigm and
its agnosticism with regards to the actual learning algorithm make it
widely applicable to a range of social HRIs beyond the specific educa-
tional scenario that we used as support in this article.

Case study: Robots as tutors for children
Social robots have been explored as educational tools in the last decade.
Because of increases in the number of pupils in the classroom and
budget constraints (29), one-to-one interactions between teachers
and students, known to be highly beneficial, are limited. One solution
is to use a robot to supplement the teacher to offer additional individ-
ualized support to students. Recent studies have shown that social
robots are typically more effective than alternative, disembodied tech-
nologies, such as tutoring software presented on a tablet or computer.
The physical presence of the robot together with its social appearance
fosters interactions with the learner, including increased attention and
compliance, which are conducive to learning (30). However, their gen-
eral lack of appropriate integration to the classroom ecosystem and to
teacher’s practices leads to poor adoption rates by schools (31).Having a
robot that can be operated initially by the teacher but then gradually
takes over control would offer a tutoring experience that is better
tailored to the particular learner or context.
Teacher /
Supervisor

Teaching
Interaction

Application
Interaction

Robot 
learning

Control over action

Application
Target / Child

Fig. 1. Diagram of the application of SPARC to HRI. A human teacher super-
vises a robot learning to interact with another human (e.g., a child in the context
of education).
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RESULTS
Study introduction
We present a study evaluating SPARC in a high-dimensional social
taskwhere 8- to 10-year-old children learned about foodwebs through
playing an educational game (Fig. 2). In this game, 10 animals can be
moved around in a touchscreen-based game environment; animals
have energy and have to consume plants or other animals to stay alive.
Children have to keep the ecosystem viable as long as possible. The
role of the robot tutor was to guide the child through providing advice
(such as keeping track of the animals’ energy or indicating what
animals eat) and social prompts (e.g., encouraging the child). The
game logic and the tutoring interaction were jointly modeled as an
optimization problem with 210 continuous input values (last actions,
distances between animals, etc.) and 655 potential output actions
(motions, gestures, verbal encouragements, etc.).

The interaction consisted of four consecutive and independent game
rounds and knowledge tests before the first round, between the second
and the third, and after the fourth.

Our protocol included three conditions designed to assess the im-
pact of applying the proposed approach (SPARC) to this task. The
control condition (passive condition) used a passive robot that only
provided initial instructions and guidelines and did not offer support
during the learning game. The second, the supervised condition,
involved a robot that gradually learned, from human demonstration,
how to provide support during the game by using SPARC. In this
condition, the robot’s controller evolved with each interaction with
the participants (refining its suggestions to the teacher over time).
Nevertheless, the control provided to the teacher through SPARC
ensured that the robot’s behavior was consistent for all participants
and supported their inclusion as a single group for this condition.
The third, the autonomous condition, used an autonomous robot that
executed the policy learned in the supervised condition but without
ongoing supervision.

We ran the autonomous condition at the conclusion of the super-
vised condition, and the passive condition was run in parallel of the
two other conditions. This allowed the trained policy learned in the
supervised condition to be used in the autonomous condition. Con-
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019

tober 24, 2019
sequently, this study was set up as a between-subject design, with a
random selection of a child for each interaction.

In the supervised condition, a single person, naive about the
learning mechanism and the hypotheses tested in the study, acted
as a teacher for the robot in all the interactions. With 75 children in
total (n = 75; age: M = 9.4, SD = 0.71; 37 female), each of the three
conditions was allocated 25 children.

Hypotheses
Two hypotheses were explored:

H1. The autonomous robot learns a policy that produces behavior
similar to that of the teacher. We hypothesized that the policies of the
autonomous and supervised robots will present similarities in terms of
frequency and timings of actions and that both will have a positive
impact on the children compared with no behavior.

H1a. The autonomous robot will only use actions already demon-
strated by the teacher, and there will be no difference in the frequency
of use of each type of action between the supervised and autonomous
robots.

H1b. In the teacher’s policy, each type of action will have a unique
dynamics (i.e., when the action is triggered). The robot will learn such
dynamics, and there will be no difference in timing for each type of
action between the supervised and autonomous robots.

H1c. Both robots (supervised and autonomous) will have similar
and positive effects on the children: Interactions metrics and learning
gains will present no differences between the supervised and autono-
mous robots, and both the teacher and our learning algorithm will
produce robot behaviors that will lead to better results on thesemetrics
than no behavior (e.g., a passive robot).

H2. Using SPARC, the teacher’s workload decreases over time. The
amount of input required from the teacher will decrease over time, and
the robot’s suggestions will be deemed acceptable more often (increase
of accepted suggestions and decrease of the rejected suggestions).

In our protocol, the same teacher was responsible for the whole
training of the robot as it was interacting with 25 children, which en-
sured a consistent delivery style for all participants. It would be in-
sightful to try the same protocol with other teachers.

Example of a session
Table 1 presents an example of the first minute of a round, with sug-
gestions by the robot and actions from the teacher. For example, at t =
16.9 s, the teacher accepted the suggestion by the robot. Alternatively,
in some cases, such as the suggestion at t = 20.6 s, the teacher did not
accept the action suggested by the robot and selected another action.
In that case, the suggested action was not considered, and only the
selected action was executed and used for learning. Last, at t = 44.4 s,
the teacher selected the action to move the mouse closer to the wheat,
and after the robot moved the mouse, the child tried other animals and
then fed themousewith thewheat. This demonstrates how actions from
the robot could help the children to discover new connections between
animals. As shown by this table, the teacher was able to select actions
and react appropriately to the robot’s suggested actions.

Policy comparison
Figure 3A presents the number of actions of each type executed by the
supervised robot (in the supervised condition) and by the autonomous
robot (in the autonomous condition). The first observation is that the
autonomous robot based its actions on the teacher’s demonstrations:
The action “move away” (whereby the robot moves one animal away
Fig. 2. Setup used in the study. A child interacts with the robot tutor with a
large touchscreen sitting between them, displaying the learning activity; a human
teacher provides guidance to the robot through a tablet and monitors the robot’s
learning. Although the picture depicts an early laboratory pilot, the main study
was conducted on actual school premises.
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Table 1. Example of events during the first minute of the first round of the interaction with the 23rd child in the supervised condition. Events
beginning with “robot” represent suggestions from the robot; events beginning with “teacher” are the reactions from the teacher. “mvc” is the abbreviation of
the move close action, and times are provided in seconds. Words in italics refer to items on the screen and number (if applicable) of the specific item interacting.
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Time
 Event
4.1
 Childtouch frog
 32.5
 Childrelease dragonfly
4.3
 Failinteraction frog wheat-3
 34.4
 Childtouch wolf
4.9
 Animaleats frog fly
 34.7
 Robot proposes remind rules
5.8
 Childrelease frog
 35
 Animaleats wolf mouse
6.6
 Robot proposes congrats
 36
 Teacher selects wait
7.6
 Childtouch fly
 36
 Animaleats wolf mouse
7.6
 Teacher selects wait
 37.2
 Childrelease wolf
D
o
8
 Animaleats fly apple-4
 37.7
 Childtouch grasshopper
w

nlo
8.3
 Childrelease fly
 38.3
 Robot proposes congrats
a
ded
9.1
 Teacher selects congrats
 42.1
 Failinteraction grasshopper apple-1
 
from
9.1
 Childtouch frog
 42.7
 Childrelease grasshopper
htt
 

10.3
 Childrelease frog
 42.7
 Failinteraction grasshopper apple-1
p
://ro
10.8
 Childtouch frog
 44.4
 Teacher selects instead mvc mouse-wheat-1
b
oti
11.2
 Animaleats frog fly
 44.6
 Robottouch mouse
c
s.sc
12.4
 Failinteraction frog apple-2
 44.7
 Childtouch butterfly
i
enc
12.5
 Animaleats frog fly
 45.1
 Failinteraction butterfly wheat-2
e
m
a
13.2
 Childrelease frog
 45.6
 Childrelease wheat-1
g
.org
14.2
 Childtouch fly
 45.6
 Robotrelease mouse
/
 by
14.5
 Animaleats fly apple-2
 45.7
 Robottouch mouse
 g
ue
14.6
 Robot proposes encouragement
 48.9
 Robotrelease mouse
s
t on
15
 Childrelease fly
 49.3
 Childtouch butterfly
 O

ct
15.4
 Animaleats fly apple-3
 49.3
 Failinteraction butterfly wheat-1
o
ber
16.9
 Teacher confirms encouragement
 49.6
 Childrelease butterfly
 2
4, 2
18.2
 Childtouch snake
 50
 Childtouch mouse
019
18.4
 Failinteraction snake wheat-3
 50.3
 Animaleats mouse wheat-1
18.7
 Animaleats snake bird
 51
 Childrelease mouse
19.6
 Animaleats snake bird
 51.1
 Animaleats mouse wheat-2
20.5
 Childrelease snake
 51.4
 Robot proposes congrats
20.6
 Failinteraction snake wheat-4
 52.3
 Teacher confirms congrats
20.6
 Robot proposes congrats
 52.9
 Childtouch snake
20.9
 Childtouch eagle
 52.9
 Failinteraction snake wheat-3
21.1
 Animaleats eagle bird
 53.2
 Childrelease snake
22
 Animaleats eagle bird
 53.5
 Childtouch mouse
22.4
 Childrelease eagle
 53.6
 Animaleats mouse wheat-3
23.3
 Animaldead bird
 54.4
 Robot proposes congrats
continued on next page
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from a prey, typically to indicate the pair is unsuitable) was almost
never used, “move to”was never used (“move close”was used instead,
as to hint an animal-food pair to the child), and the supportive
feedback (“congratulation” and “encouragement”) was used more of-
ten than “remind rules” or “drawing attention.”This provides support
for H1a. However, the number of times each action was executed for
autonomous and supervised conditions was different (Bayesian t test:
congratulation,BF10 = 37.8; encouragement, BF10 = 5.1 × 10

4; drawing
attention, BF10 = 0.53; remind rules, BF10 = 1.6 × 103; and move close,
BF10 = 21.7), failing to provide full support for H1a. These differences
of action frequencies are probably linked to the type of machine
learning used; with instance-based learning, some data points will
be used in the action selection much more often than others, which
might explain these biases.

In addition, Fig. 3B shows the time between each action executed
by the robot and the last eating event (when the child fed an animal).
For both conditions, there were significant differences between the
times since the last eating event for each type of action [Bayesian
analysis of variance (ANOVA), supervised condition: F(4,1211) =
101, P < 0.001, B10 = 1.06 × 1071; post hoc analysis in table S1—only
encouragement and remind rules seem to present similarities—
autonomous condition: F(4,1385) = 81.0, P < 0.001, B10 = 1.53 ×
1058; post hoc analysis in table S2], providing initial support to H1b.
Furthermore, we found no differences when comparing the timing for
each type of action between conditions (Bayesian t test between
conditions: congratulation, BF10 = 0.20; encouragement, BF10 =
0.21; remind rules, BF10 = 0.13; drawing attention, BF10 = 0.21; and
move close, BF10 = 0.15), providing additional support for H1b.
This means that the autonomous robot managed to capture the
uniqueness of timing for each action and applied a policy using the
unique timing used by the teacher. Together, these results show that
the robot managed to learn social and technical policies, including
their associated dynamics, that are similar to the ones demonstrated
by the teacher.
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
Learning gains
A positive learning effect, as measured through normalized learning
gain (32), was apparent in both the passive condition [M = 0.12; 95%
confidence interval (CI), 0.07 to 0.18] and the supervised condition
(M = 0.11; 95% CI, 0.06 to 0.16), with the performance in the auto-
nomous condition slightly exceeding these (M= 0.14; 95%CI, 0.09 to
0.19). However, the robot’s behavior during the game did not have a
meaningful impact on the children’s learning gain [Bayesian
ANOVA: F(2,72) = 0.34, P = 0.72, B10 = 0.15], failing to provide ini-
tial support for H1c.

Game metrics
Multiple gamemetrics have been collected in the rounds of the game
played by the children, and they can inform us of the effect of the
robot’s behavior on the children during the game sessions. Figure 4A
and table S3 show the evolution of the total number of different
“learning units” (i.e., in our food-chain scenario, one new and correct
attempt to feed one animal with one type of food) encountered by the
children across the four game rounds. A Bayesian mixed ANOVA
showed an impact of the repetition (i.e., progress in the rounds of the
game) and the condition on the number of different eating interactions
produced by the children in the game [Bayesian mixed ANOVA: repe-
tition, F(3,216) = 6.75, P < .001, B10 = 77.7; condition, F(2,72) = 5.19,
P < 0.01, B10 = 5.76]. With additional rounds of the games, the children
successfully connected more animals together. Post hoc tests showed
no significant difference between the supervised and the autonomous
conditions (Bayesian repeated-measures ANOVA, B10 = 0.15), whereas
differences were observed between the supervised and the passive
conditions (B10 = 512) and between the autonomous and the passive
conditions (B10 = 246). This indicates that, compared with the pas-
sive robot, the supervised robot provided additional knowledge to
the children during the game, allowing them to create more useful
interactions between animals and their food, receivingmore information
from the game and thus potentially helping them to get knowledge about
Time
 Event
 Time
 Event
23.4
 Teacher selects instead mvc dragonfly - fly
 54.5
 Animaleats mouse wheat-4
23.6
 Robottouch dragonfly
 55
 Childrelease mouse
26.9
 Robotrelease dragonfly
 55.6
 Childtouch dragonfly
27.7
 Childtouch fly
 56.1
 Teacher selects wait
28
 Childrelease fly
 56.8
 Failinteraction dragonfly apple-1
28.4
 Childtouch dragonfly
 57.3
 Childrelease dragonfly
28.6
 Failinteraction dragonfly apple-1
 57.5
 Failinteraction dragonfly apple-1
29.1
 Childrelease dragonfly
 58.6
 Childtouch grasshopper
29.4
 Failinteraction dragonfly apple-1
 58.6
 Failinteraction grasshopper apple-1
30.3
 Childtouch dragonfly
 58.8
 Childrelease undefined
30.3
 Failinteraction dragonfly apple-1
 59.1
 Childtouch dragonfly
30.7
 Robot proposes encouragement
 59.1
 Failinteraction dragonfly apple-1
31
 Failinteraction dragonfly apple-1
 59.2
 Failinteraction grasshopper apple-1
31.8
 Teacher selects wait
 59.9
 Failinteraction dragonfly apple-1
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what animals eat. The autonomous robotmanaged to recreate this effect
without the presence of a human in the action selection loop.

Figure 4B and table S4 show the evolution of game duration across
the four game rounds. A BayesianmixedANOVA showed inconclusive
results on the impact of condition on game duration [Bayesian mixed
ANOVA: F(2,72) = 2.6, P = 0.08, B10 = 1.04]. Post hoc tests showed
no significant difference between the supervised and autonomous
conditions (Bayesian repeatedmeasure ANOVA: B10 = 0.29), whereas
differences were observed between the supervised and passive condi-
tions (B10 = 118) and a trend toward a difference between the auto-
nomous and passive conditions (B10 = 2.90). These results indicate that
children were better at the game in the supervised condition whereby
animals were alive longer than in the passive condition. The autono-
mous robot learned and applied a policy tending to replicate this effect
and without exhibiting differences with the supervised one.

However, the analysis showed no effect of the repetitions on game
duration [Bayesian mixed ANOVA with Huynh-Feldt correction:
F(2.4,174.9) = 0.31,P= 0.78,B10 = 0.022]; the children did notmanage
to keep the animals alive longerwithmore practice at the game.One of
the reasons was a partial ceiling effect at 2.25 min (see the red line on
Fig. 4B). When not fed, animals would run out of energy in 2.25 min,
so if children did not manage to feed at least seven of the animals at
least once before that time, then the game would stop. Because this
might prove difficult to identify and achieve, many children did not
manage to cross this limit. These gamemetrics suggest that the super-
vised robot managed to help the child in the game (compared with a
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
passive robot) from the onset, and the autonomous robot replicated
this effect; thus, these results support H1c.

Teaching the robot
Figure 5 presents the teacher’s reactions to the robot’s suggestions
across all the supervised interactions. Contrary to our expectations,
the number of accepted and refused suggestions, as well as teacher-
initiated actions, stayed roughly constant throughout the interactions
with the children. No curve could be significantly fitted using a linear
regression [accepted propositions: R2 = 0.02, F(1.0,23.0) = 0.54, P =
0.47; rejected propositions: R2 = 0.09, F(1.0,23.0) = 2.18, P=0.15; and
teacher-initiated actions: R2 = 0.001, F(1.0,23.0) = 0.01, P=0.91]. We
would have expected these results to be different: With the learning,
the number of accepted propositions should have increased, and both
numbers of refused propositions and teacher-initiated actions should
have decreased; thus, H2 is not supported. Note that, however, these
results are based on a single teacher and might not be replicated with
another teacher.

To provide insights on this result, we analyzed a diary that the teacher
completed during the study, noting how the children responded and
how she interacted with the robot. From this report and a posttraining
interview, the teacher reported that her workload decreased over time,
and she mentioned three phases in her teaching (session numbers are
indicative, the boundaries were not clear):

First phase (sessions 1 to 3). She was not paying much attention to
the suggestions, mostly focusing on having the robot execute a correct
10

A

B

Fig. 3. Comparison of policy between the supervised and autonomous robot. (A) Comparison of the number of actions of each type executed by the robot in the
autonomous and supervised conditions. Each point represents how often the robot executed an action with a child (n = 25 per condition). (B) Timing between each
action and the last eating event (due to their low or null number of execution, the actions “move to” and “move away” were not analyzed). Each point represents one
execution of an action.
6 of 13
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policy: She “found it difficult to knowhowbest to respond” (session 2);
“I’m dismissing robot’s suggestion more than I actually want to” (ses-
sion 3); “I’m skipping/cancelling all in order to avoid inappropriate
suggestions” (session 3).

Second phase (sessions 4 to 11). She was paying more attention
to the suggestions but without giving them much credit: “achieving
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
a better balance between my own actions and robot’s suggestions” but
“the robot is a bit overwhelming” (session 4); “allowed some robot
suggestions but not many as I wanted to slow game-play down” (ses-
sion 6); “allowing more robot suggestions” (session 7).

Third phase (sessions 12 to 25). She started to trust the robot more
but without ever trusting it totally: “Let the robot carry out a lot of its
Fig. 5. Summary of the action selection process in the supervised condition. Child number 1 corresponds to the beginning of the training; child number 25
corresponds to the end of the training. The “teacher-initiated actions” label represents each time the teacher manually selected an action not proposed by the robot.
A

B

Fig. 4. Comparison of children’s behavior between the three conditions. (A) Number of different eating interactions produced by the children (corresponding to
the exposure to learning units) for the four rounds of the game, for the three conditions. (B) Interaction time for the four rounds of the game for the three conditions. The
dashed red line represents 2.25 min, the time at which unfed animals died without intervention, leading to an end of the game if the child did not feed animals enough.
7 of 13
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suggested behaviours” (session 12); “will try to use more robot sug-
gestions as robot was often suggesting good things but I was auto-
skipping them” (session 13); “allowed the robot to carry outmore of its
suggestions” (session 17); “let the robot carry out a lot of suggestions”
(session 18).

It appears that the teacher reported a decrease of workload over
time (as supported by behaviors such as typing her observations on
a laptop, while gazing at the interface at the start of interactions).How-
ever, although controlling the robot became easier with practice, we
did not observe an increase of accepted actions. Similarly, after having
supervised the robot for multiple sessions, the teacher reported: “Con-
trolling the robot is really easy now, although I still tend not to let it
carry out its suggested actions even when they are valid.”
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DISCUSSION
This study has demonstrated that in a little over 3 hours and only
25 independent interactions, the robot successfully learned social and
pedagogical behavior to support children in an educational activity.
This learning happened online, using a teacher with no knowledge
of the algorithm implementation or intent of the study. Although
the autonomous robot used actions with a different frequency than
the teacher, it only used actions already demonstrated (partially
supporting H1a), it learned the unique dynamics (i.e., timing) asso-
ciated to each type of action (supporting H1b), and its behavior had
a positive impact on the children similar to the supervised robot (par-
tially supporting H1c—no effect was observed on learning gains).
However, SPARC did not allow the teacher’s workload to decrease
over time (invalidating H2).

In summary, this study demonstrates that the principles behind
SPARC allow for an efficient teaching of social autonomy that can be
achieved in the real world, on a human time scale, andwhilemaintain-
ing an appropriate robot behavior throughout the teaching and sub-
sequently when the robot interacts autonomously.

Our methodology has two main facets: It learns a social behavior,
and it learns in situ (both online and in the real world). We discuss
hereafter these three particularities.

Learning online
Learning online offers significant advantages compared with offline
learning. First, it allows a human (the teacher) to remain in the learn-
ing loop, giving them the opportunity to observe and to influence the
evolution of the robot’s behavior. By receiving feedback from the ro-
bot, the teacher can estimate the robot’s policy and knowledge level.
Involving the end users in the training of the system in this way facil-
itates an understanding of the resulting behaviors, thus increasing the
transparency of complex systems and easing the decision to deploy the
robot to interact autonomously.

In addition, learning online provides more flexibility to the learn-
ing system. Unlike offline learning (such as learning from demonstra-
tion), no engineering skills are required after collecting data to obtain
the autonomous behavior. Technical expertise is only required during
the design phase of the interaction. This key difference has two im-
pacts. First, it implies that even with a single world representation
and learning algorithm, different robot behaviors could bemanifested
on the basis of the specific knowledge, experience, and preference of
different teachers and the specific needs of the current situation. Sec-
ond, it empowers end users to design their own autonomous robotic
controller without requiring technical expertise. Together, these
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
features might reduce the need for engineers, thus making the process
of designing a policy easier andmore adaptive and the resulting policy
more suited to the user’s needs, potentially helping to democratize the
use of robots.

Learning in real-world and sensitive environments
Although the advantages of learning online potentially apply to any
IMLmethods, most of these approaches provide the teacher with only
limited control over the behavior executed by the robot. This lack of
control cannot ensure that the robot’s behavior will be appropriate
and safe for the interaction partners, the robot itself, or its environment,
thus reducing the applicability of such methods in sensitive environ-
ments (26). Because robots are expected to interact in the real world,
directly with humans, it is critical that the learning process uses data
from real interactions in the wild, in the environment where they are
supposed to take place.

For example, in this study, children displayed a number of un-
expected behaviors that the robot had to adapt to (such as intentional
waiting, hectic play style, etc.). The robot learned in this ecologically
valid (rich, under-specified, stochastic, real-world interaction) and
sensitive environment (involving children, a vulnerable population)
where incorrect robot behavior could have caused distress, annoyance,
and/or reduced learning outcomes. The robot’s task was complex,
with an input space of 210 dimensions and output action space of
655 actions. Thus, the learning situation considered in this study
was realistic and more challenging than many others where IML
has been evaluated [often deterministic environments, with limited
risks due to failures (19, 20)] or traditional adaptive scenarios for
educational HRI (24, 33).

Despite these challenges, SPARC was successful both in the teach-
ing phase (ensuring that the robot’s behavior was safe and useful from
the outset) and in the autonomous phase (by demonstrating a behav-
ior comparable to the teacher’s policy and which had similar impacts
on children). By ensuring that the teacher vets each of the robot’s
actions before its execution, SPARC increases applicability of IML
to sensitive real-world situations.

Learning to be social
Providing robots with social autonomy is still a challenge today. Typ-
ically, researchers either have to hard-code behaviors, or the system
learns offline from demonstrations. While presenting significant ad-
vantages compared with these methods, IML had not yet been con-
vincingly applied to social interaction.

In the specific case of education, we have demonstrated that the
robot autonomously reenacted the teacher’s way of supporting the
children and reached tutoring results on par with those of a human
controlling the robot. The robot learned not only the didactics of the
task (the actions relevant to the task) but also some elements of ped-
agogy, the latent dynamics of the interaction (when actions should be
executed). Together, these two facets of the autonomous robot’s policy
show that social autonomy can be taught to robots in situ and that
SPARC is a powerful method allowing humans to teach robots to in-
teract in social environments.

Outlook
Although our results demonstrated the opportunities provided by
SPARC, some limitations remain to motivate future work. This study
did not show a decrease of the teacher’s workload over time (as mea-
sured by the amount of input by the teacher). As shown in the teacher’s
8 of 13
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diary, the main reason for this constant workload was that the robot
proposed actions too often, overloading the teacher and sometimes
preventing her to take time to correctly evaluate each suggestion. Future
work should replicate this studywith other teachers and explore ways to
provide the teacher with more control not only on the overt robot be-
havior (the one displayed in the application) but also in the teaching
interaction (such as being able to control metaparameters of the
learning algorithm).

Although the learned behavior is better than having no behavior at
all, it is still possible that a hand-designed or random policy is also not
worse than teacher or learned behaviors. In other words, the learned
policy is better than no policy at all, but whether it is better than any
other policy is unclear. Last, SPARC should also be applied to other
domains and in combination with more learning algorithms to prop-
erly investigate its ability to generalize.
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CONCLUSION
This paper demonstrated the potential for SPARC to enable robots to
learn from humans. This capability is especially useful in HRI because
knowledge of the desired robot behavior typically comes from domain
experts, such as teachers or therapists, rather than roboticists. The
standard approach to designing robotic controllers requires multiple
conversations between the engineers coding the behavior and the do-
main experts. Robot learning from end users (e.g., by using SPARC)
would bypass these costly iterations, allowing end users to directly
teach an efficient controller adapted to their specific needs in a min-
imally intrusive way. Furthermore, because the process fundamentally
relies on having the human in the loop, it also holds considerable
potential for sensitive applications of social robots, such as in eHealth,
assistive robotics, or education.

The implications of this study are twofold: First, we have demon-
strated that, with an appropriatemethodology, IML can be successful-
ly applied to transfer human expertise to an autonomous robot in a
short period of time and in a high-dimensional and ecologically valid
task. Second, we have shown that not only domain-specific technical
expertise but also elements of social behaviors (such as timing between
events and actions) can be taught in this way.

These two results are important. The dynamic and stochastic na-
ture of social interactions makes learning appropriate and contingent
social behaviors a challenge for which classical machine learning
approaches are ill suited. We have shown here a path forward, and
our approach makes it possible for autonomous social behaviors to
be learned in an online manner, gradually taking over the social inter-
action from the human operator.
MATERIALS AND METHODS
Rational and objectives
The goal of the study is to evaluate whether SPARC can be used to
teach online a robot to interact in a complex, nondeterministic, and
real environment. In previous studies (27, 26), SPARCwas only eval-
uated in simple environments and not for creating social behaviors.
Consequently, this study investigated whether SPARC can be applied
toHRI to teach a robot to replicate a policy demonstrated by a human.
The goal was not to reach an optimal robot’s policy, but one replicating
the characteristics of the teacher’s, thus demonstrating the potential of
SPARC. In this study, a robot guided a child through a gamified tutoring
session where the child had to interact with animals on a touchscreen to
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
learn about foodwebs. This study compared three conditions where the
robot could be either passive (not providing any feedback or infor-
mation to the child during the game), supervised (an adult, the teacher,
was teaching the robot how to the support the child during the game),
or autonomous (the robot interacted without supervision and executed
autonomously the policy learned in the supervised condition).

Apparatus
This study was based on the sandtray paradigm (34): A child inter-
acts with a robot via a large touchscreen located between them. By
interacting with the touchscreen and the robot, the child is
expected to gain knowledge or improve some skills. Because of its
widespread application to HRI and child tutoring (30), we used the
NAO robot (35). In addition, a teacher can control and teach the
robot in the “supervised” condition using a tablet. This results in a
triadic interaction: A human, the teacher, knows how the robot
should behave, can control it to execute an efficient behavior, and
can teach it how to interact with another human in situ by using
SPARC (as shown in Fig. 2).

Participants
Children from five classrooms across two different primary schools
in Plymouth (United Kingdom)were recruited to take part in the study.
Because both schools had an identical Office for Standards in Education
evaluation (indicating that they provide similar educational environ-
ments), all the childrenwere combined into a single pool of participants.
Full permission to take part in the study and be recorded on video was
acquired for all the participants via informed consent from parents.
Children with special educational needs interacted with the robot but
were excluded from the data collections, as well as children used in pilot
versions and sessions where the protocol was breached (e.g., one child
dropped out from the passive condition, two from the supervised con-
dition, and zero in the autonomous condition). Tomanage the number
of children available in these classes, we decided to collect data until we
reached 25 children per condition. To give every child in the class the
opportunity to take part in the study, the remaining children did inter-
act with the robot but were excluded from the data collection. In total,
75 childrenwere included in the final analysis (n=75; age,M=9.4; SD=
0.72; 37 female). Because of our protocol, we had to first collect all the
participants for the supervised condition before running the autono-
mous condition; nevertheless, the selection of a child for each interac-
tion was random.

In the supervised condition, the robot’s teacher was a psychology
PhD student from the University of Plymouth, with limited knowl-
edge of machine learning but with an understanding of human cog-
nition. This teacher is now part of the authors, but at the time of the
study, the authorship was not considered, and she was not involved in
the study design. Consequently, although knowledgeable about the
protocol, she was unaware of the hypotheses tested, and the imple-
mentation and had no incentive to bias the results to fit them. The
teacher was instructed on how to control the robot using a graphical
user interface on the tablet and the effects of each button. She experi-
mented controlling the robot in two interactions (not included in the
results analysis) to get used to the interface and controlled the robot.
After these interactions, the algorithm was reset, and the teacher
started to supervise the robot for the supervised condition. No infor-
mation about the learning algorithm or the representation of the state
and no feedback about the optimal way of interacting or on her policy
were provided before or during the study. Hence, this study involved,
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as teacher, a naive user not expert in machine learning and more sim-
ilar to the general population of expected robot users than an expert in
computing.

Protocol
At the start of the interaction, the child was first introduced to the ro-
bot and told that they would play a game together about the food web
(cf. fig. S1A). They completed a quick demographic questionnaire and
a first pretest to evaluate their baseline knowledge (cf. fig. S1, B to E).
After this test and before starting the game, the child completed a
tutorial where they were introduced to the mechanics of the game:
Animals have energy and have to eat to survive, and the child can
move animals to consume other animals or plants to replenish their
energy (cf. fig. S1, F and G). The teacher was sitting with the child
through these steps to provide clarification if needed and was follow-
ing a script. After this short tutorial, the teacher sat away from the
child to supervise the robot if required. For ethical reasons, for all chil-
dren, the teacher and an additional experimenter were present in the
room but out of view of the children while maintaining an attitude of
disinterest. The child then completed two rounds of the game where
the robot could provide feedback and advice depending on the condi-
tion they were in (cf. fig. S1, H to K). Afterward, the child completed a
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
midtest before playing another two rounds of the game and complet-
ing a last posttest to conclude the study. Figure S1 shows examples of
the screen throughout the interaction.

Implementation
The robot was controlled using the architecture presented in Fig. 6
with all the nodes communicating together using the Robot Operating
System (36). The teacher interface ran on a separate tablet and was
used only for the supervised condition. All the other nodes ran on
the large touchscreen computer displaying the game interface that
was used to guide the child through the study and to present the game
rounds and the tests. The default robot behavior was simply reading
the instruction on the screen, following the child’s face, and swaying
lightly.

To support the children during the game rounds, the robot has
access to 655 actions consisting ofmoving animals in relation to others
on the screen (by pointing to an object and moving it on the screen),
asking the child to focus on some items of the game (by pointing to
them and uttering a predefined sentence), and providing social prompts
and feedback such as reminding them of the rules and providing en-
couragements or congratulations. The robot’s policy in the game con-
sisted of a mapping between these actions and a representation of the
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state defined in a 210-dimension vector with values ranging from 0 to
1 and corresponding features describing the state of the game (animal’s
energy and distance between items) and of the interaction (how long it
has been since the child or the robot touched items, when was the last
action executed by the robot, etc.).

In the supervised condition, the teacher used an interface running
on a tablet and replicating the graphics of the game (with the position
of the animals) but with additional buttons to select actions for the
robot to execute. Our algorithm, adapted from (23), used a variation
of nearest neighbors to map actions selected by the teacher to a sub-
state (s ' ∈ S', with S '⊂ S), a sliced version of the 210-dimension state
(n' dimensions of the state have a value, whereas the others, not rel-
evant to the current action, are left as “wild cards”). This slicing was
carried out by only keeping the dimensions relevant to a set of features
defined by the teacher (i.e., selected on the tablet). This allowed the
algorithm to consider only the dimensions of the state relevant to each
action when computing the distance between instances and the cur-
rent state. Consequently, this algorithm can profit from having access
to a large number of state dimensions without suffering from the
“curse of dimensionality” (37), thus potentially learning quickly
complex behaviors. In addition, each instance inmemory has a reward
value (r) that allows the algorithm to avoid undesired actions (the ones
with a negative reward). In summary, instances are defined as tuples:
action—substate—reward (a, s ', r).

This learning algorithm could propose actions to the teacher that
were executed after a short delay if the teacher did not cancel them.
Using the interface, the teacher could accept (rewarding positively
and executing) proposed actions or refuse them (preempting the ex-
ecution of an action and assigning it a negative reward). In addition,
they could select actions for the robot to execute. Figure 7 shows the
flowchart of the action selection process allowing mixed initiative
between the teacher and the robot.

The algorithm itself did not take time into account. However,
because dimensions of the state are time dependent (using exponential
decreases since events), temporal effects could be captured by the
learning algorithm (as shown in Fig. 3B).

In the autonomous condition, the interface used by the teacher
is simply replaced by a node automatically accepting propositions
after a short delay, thus applying the policy learned in the super-
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
vised condition. All sources are open and available online at https://
emmanuel-senft.github.io/experiment-learning-tutoring.html.

Metrics
To address the hypotheses, we collected multiple metrics on both
interactions (teacher-robot and robot-child). The goal of the study
being to evaluate whether the robot can replicate the teacher’s policy,
we first recorded metrics characterizing these policies: the actions
executed by the robot in the supervised and autonomous conditions
and the timing between these actions and game-related events. Sec-
ond, we collected two groups of metrics to evaluate the application
interaction: the learningmetrics (corresponding to the child’sperformance
during the tests) and the game metrics (corresponding to the child’s
behavior within the game rounds). These learning outcomes are not
critical for the study but serve to characterize the impact of the robot’s
policy on the children. And last, in the supervised condition, we re-
corded the origin of the actions executed by the robot (teacher versus
algorithm) and the outcome of the proposed actions (executed versus
refused).

During the game, the robot had access to 655 actions, which can be
divided into seven categories: drawing attention, moving close, moving
away,moving to, congratulation, encouragement, and remind rules. Be-
cause of this high number of actions, the breadth of the state space (210
dimensions), and the complex interdependence between actions and
states, precisely characterizing a whole policy was nontractable. Conse-
quently, we used the number of actions executed for each category per
child and the timing between a specific event (the child feeding an
animal) and the execution of actions to characterize the policy executed
by the robot in the active conditions (supervised and autonomous). Al-
though not perfectly representing the policy of each condition (e.g.,
complex interdependencies are missing), these metrics offer a proxy
to compare these policies.

The children’s knowledge about the foodwebwas evaluated through
a graphwhere children had to connect animals to their food. Therewere
25 correct connections and 95 incorrect ones. Because the child could
create as many connections as desired, the performance was defined as
the number of correct connections above chance (for the total number
of connection made during the test) divided by the maximum achieva-
ble performance. This resulted in a score bounded between −1 and 1.
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For example, if a child made five good connections and three
bad ones, their performance would be

P ¼ #good� ð#goodþ #badÞ⋅ totalgoodtotal

totalgood� totalgood⋅ totalgoodtotal

¼ 5� ð5þ 3Þ⋅ 25
25þ95

25� 25⋅ 25
25þ95

¼ 0:168 ð1Þ

The three tests (pre-, mid-, and post-interaction) resulted in three
performance measures. To account for initial differences in knowl-
edge and the progressive difficulty to gain additional knowledge, we
computed the learning gain as proposed in (32): g ¼ Pfinal�Pinitial

Pmax�Pinitial
. This

learning gain indicates howmuch of themissing knowledge the child
managed to gain from the game (values above 0 indicate learning).

In addition, game metrics were also gathered during the rounds
of the game to characterize the children’s behaviors:

1) Exposure to learning units, corresponding to the number of
unique eating interactions between two items explored by a child in
a round (range = [0,25]).

2) Interaction time, duration of game rounds, and how long a
round lasted until three animals ran out of energy (typical range,
0.5 to 3 min).

An important metric in education is the engagement with the
learning material, i.e., what proportion of the learning domain chil-
dren explore (38). In our case, children explored a food web with
25 correct and 95 incorrect connections. Because of the imbalance
between these numbers, more knowledge is acquired by discovering
one of the 25 correct connections rather than the 95 incorrect ones.
Hence, we defined our first game metric as the number of different
eating interactions children encountered during each game. An eat-
ing interaction happens when the child moves an animal to its food
(or to a predator), and the number of different eating interactions
represents how many different unique correct connections the child
has discovered during the game (multiple eating actions between the
same animals would count only once). A game with a high number
of different eating interactions represents a game where the child en-
gaged with the learning material, encountered more learning units,
and should perform better in the tests. For simplicity, we termed this
metric “exposure to learning units” because it encompasses howmuch
knowledge a child has been exposed to in one round of the game.

On the other hand, the interaction time reached in the game
provides information about the children’s performance in the task
(keeping the animals alive as long as possible) and their engage-
ment. A disengaged child would finish the game earlier. We expect
that an active robot would encourage and support the child and
allow them to reach better scores on these game metrics.

Statistical analysis
To demonstrate the presence or the absence of effects, we analyzed
the data using Bayesian statistics. We report the Bayes factor B10,
which represents howmuch of the variance of themetric is explained
by a parameter [if B10 < 1/3, then there is no impact; if B10 > 3, then
the impact is strong; and if 1/3 < B10 < 3, then the results are in-
conclusive (39, 40)]. We analyzed the results using the JASP software
(41). We used a Bayesian mixed ANOVA as an omnibus test to ex-
plore the impact of the condition and the repetition on the metrics.
Additional post hoc tests used a Bayesian repeated-measures ANOVA
or Bayesian-independent t test comparing the conditions one by one
and fixing the prior probability to 0.5 to correct for multiple testing.
Senft et al., Sci. Robot. 4, eaat1186 (2019) 23 October 2019
Results are presented with graphs using violin plots featuring the kernel
density estimation of the distribution, raw data points, and/or the mean
and the 95% CI.
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/35/eaat1186/DC1
Fig. S1. Steps of the study.
Table S1. Post hoc comparison of timing of actions for the supervised condition.
Table S2. Post hoc comparison of timing of actions for the autonomous condition.
Table S3. Exposure to learning units.
Table S4. Game duration.
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