
Bauer et al. Horticulture Research            (2019) 6:70 Horticulture Research
https://doi.org/10.1038/s41438-019-0151-5 www.nature.com/hortres

ART ICLE Open Ac ce s s

Combining computer vision and deep
learning to enable ultra-scale aerial
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Abstract
Aerial imagery is regularly used by crop researchers, growers and farmers to monitor crops during the growing season.
To extract meaningful information from large-scale aerial images collected from the field, high-throughput phenotypic
analysis solutions are required, which not only produce high-quality measures of key crop traits, but also support
professionals to make prompt and reliable crop management decisions. Here, we report AirSurf, an automated and
open-source analytic platform that combines modern computer vision, up-to-date machine learning, and modular
software engineering in order to measure yield-related phenotypes from ultra-large aerial imagery. To quantify millions
of in-field lettuces acquired by fixed-wing light aircrafts equipped with normalised difference vegetation index (NDVI)
sensors, we customised AirSurf by combining computer vision algorithms and a deep-learning classifier trained with
over 100,000 labelled lettuce signals. The tailored platform, AirSurf-Lettuce, is capable of scoring and categorising
iceberg lettuces with high accuracy (>98%). Furthermore, novel analysis functions have been developed to map
lettuce size distribution across the field, based on which associated global positioning system (GPS) tagged harvest
regions have been identified to enable growers and farmers to conduct precision agricultural practises in order to
improve the actual yield as well as crop marketability before the harvest.

Introduction
As an important source of vitamins, minerals, and trace

elements, leaf vegetables play crucial roles in human
nutrition1. Lettuce (Lactuca sativa L.), one of the most
popular staple vegetable foods, has a wide range of tastes
and textures cultivated for diverse customer needs2.
Recent research also indicates that lettuce consumption
has positive effects on the reduction of cardiovascular
disease and chronic conditions due to its rich nutrients

such as vitamin A, Beta-carotene, folate, and iron con-
tent3. While lettuce is an important and nutritional crop,
fluctuating environments can increase the fragility of its
production4. For example, the bad weather in Spain in
early 2017 led to retail prices of lettuce products nearly
tripled in UK supermarkets5. Severe weather not only
causes supply shortage, but also affects crop quality.
According to previous studies on lettuce growth and
development6,7, young plants at newly planted phase (i.e.,
from cotyledons unfolded to three true leaves stage)
require cool and damp weather after the transplantation
from the greenhouse to the field, whereas lettuce leaves
can rapidly become bitter and inedible if the growth is
accelerated by high ambient temperature at the head
maturity phase (i.e., the growth stage before flowering).
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Because of the dynamic nature of lettuce production, the
actual yield of lettuces in commercial operations is only
around 70–80% of the planted quantity8. Hence, to ensure
the consistency of supply and quality, it is important for
growers and farmers to closely monitor their crops during
key growth stages, so that prompt and reliable crop
management decisions can be made under changeable
agricultural conditions9.
Aerial field phenotyping has become a popular

approach for monitoring crops in recent years. Because it
can acquire a large number of crop imagery in field
experiments using visible, thermal, and multi-spectrum
sensors, it has been widely applied to breeding, farming
and crop research10. To ensure high-quality aerial image
acquisition, the flight route and altitude need to be pre-
determined together with the selection of appropriate
imaging sensors11. For example, for physiological traits
such as vegetative greenness and canopy structure, a high-
definition RGB camera is sufficient; however, many
vegetation indices rely on multi- and hyper-spectral
imaging sensors to assess important traits such as bio-
mass, stress level, and yield potential12. Recently, with the
development of image stitching algorithms and ortho-
mosaic generation methods, very detailed crop images can
be collected by unmanned aerial vehicles (UAVs) and
fixed-wing light aircrafts, which can enable high-quality
field phenotyping and high-throughput phenotypic
analysis13.
To extract meaningful phenotypic information from

large-scale image datasets, a variety of computer vision14,
machine learning (ML), and deep learning (DL) approa-
ches15 have been utilised. In recent years, much attention
has been paid to ML/DL techniques, based on which
computational algorithms and learning models were built
to accomplish tasks such as vision-based feature selection,
image object classification, and pattern prediction16–18.
With adequate training data, suitable learning algorithms,
and well-defined predictive outcomes, the integration of
computer vision, ML/DL, and newly emerged analytic
solutions (e.g., distributed computing) could lead to a step
change for plant phenomics research in the near future19.
In this article, we present a new analytic platform called

AirSurf developed for ultra-scale aerial phenotyping and
yield-related phenotypic analysis. The software platform is
open-source and combines tasks such as normalised dif-
ference vegetation index (NDVI) aerial imagery for data
collection, computer vision for image processing, deep
learning (i.e., convolutional neural networks, CNNs) for
crop counting, and supervised machine learning for crop
quality assessment. AirSurf was customised for commer-
cial lettuce production so that it could be used to analyse
millions of lettuces across the field. We call the tailored
software platform “AirSurf-Lettuce” (AirSurf-L), which
embeds a CNN model trained with over 100,000 labelled

lettuce signals to measure lettuce heads and their plan-
tation layouts based on ultra-large NDVI images. After
scoring lettuce, unsupervised ML algorithms were used to
classify lettuce heads into three size categories (i.e., small,
medium and large) for assessing lettuce quality. To con-
nect phenotypic analysis with marketability and crop
management decisions, a novel function has been devel-
oped in AirSurf-L to associate global positioning system
(GPS) coordinates in a given field with the in-field lettuce
size distribution, based on which efficient harvesting
strategies could be formed to increase marketable yield.

Materials and methods
NDVI aerial imaging and experimental fields
NDVI correlates well with leaf area index and biomass20

and hence was chosen for yield-related field phenotyping.
The imaging sensor used is an industrial standard camera,
as previously described21. The aerial imaging was carried
out by a ‘Sky Arrow’ light aircraft, the lightest weight class
(Very Light Aircraft, VLA) of any commercial aircraft,
which allowed the pilot to fly with very little fuel, less than
an average farm vehicle. Using VLA at 1000 feet (around
305m) in the sky, vast areas can be covered at a flight
speed of 180–200 km/h, during which the NDVI sensor
can gather ultra-scale crop imagery to cover four or five
fields in a single flight.
The ultra-large aerial NDVI imagery was acquired

routinely (i.e., four-five times per season) by G’s Growers,
the second largest vegetable grower in the UK. The flying
route and the imaging protocol were designed to facilitate
cross-site crop assessment and yield prediction (Fig. 1a).
In this study, we used a series of collected ultra-large
NDVI images (1.5–2 GB per image) at 3 cm ground
sample distance (GSD) spatial resolution, for iceberg let-
tuces at H1 and H2 stages (i.e., moderate compact and
crushable head), before lettuce leaves were largely over-
lapped. Experimental fields in the study were all located
near Ely, Cambridgeshire UK, ranging from 10 to 20
hectares, with between 800,000 and 1.6 million lettuce
heads in a single field. One field (Field A, Fig. 1b) planted
with around 1 million lettuce heads was used to explain
the analysis workflow and associated algorithms of
AirSurf-L in the following sections. A high-level manual
yield counting was conducted by G’s growers’ field spe-
cialists during the harvest, which was used to verify and
improve the platform. Lettuces in subsections randomly
selected from Field A were scored manually by laboratory
technicians at Norwich Research Park and then used as
training datasets for establishing the deep learning model.

Data construction for training and testing
To generate sound datasets for ML-based image ana-

lysis, we randomly selected 60 patches (i.e., subsections) of
the field of varying sizes, each containing between 300 and
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1000 lettuce heads. We then manually labelled each let-
tuce in the selected patches with a red dot (Supplemen-
tary Fig. 1). Each labelled lettuce, i.e., a red dot, is
identified by a 20 × 20 pixel bounding box that can
enclose a single lettuce head. We used these bounding
boxes, as well as images that did not correspond to lettuce
heads, to train a CNN classifier to recognise and separate
millions of lettuces in the plantation region. The pixels
contained within a bounding box were also used for
defining lettuce size. A training dataset with over 100,000
20 × 20 pixel labelled bounding boxes has been created,
amongst which 50% are lettuces and the remaining are
background signals such as soil, edges of the field, and
other non-lettuce objects. Following a standard CNN
segmentation approach22, we designed a non-overlapping
sliding window function to go through the whole field to
separate foreground and background signals (i.e., splitting
lettuce and non-lettuce objects). Training and testing
datasets are equally balanced. Validation sets are used
alongside training sets to verify the performance of the
model, which can prevent overfitting in model training
and allow us to fine-tune hyperparameters of different
learning layers23.

The analysis workflow of AirSurf-Lettuce
The analysis of yield-related phenotypes was based on

NDVI signals of iceberg lettuces across the field. Fig-
ure 2 shows a high-level analysis workflow of AirSurf-L,
which consists of five steps: data input, image

calibration and pre-processing, ML-based traits ana-
lyses, results visualisation, and quantifications of yield-
related phenotypes. Step 1 accepts raw NDVI images as
grey-level imagery datasets. As pixels with extremely
high NDVI signals usually have overflowed intensity
values (i.e., black pixels in Fig. 2a), a pre-processing step
(Step 2) is designed to calibrate raw NDVI images, so
that intensity distribution can be normalised to correct
overflowing pixels. At this step, an algorithm called
contrast limited adaptive histogram equalisation
(CLAHE)24 is applied to increase the contrast between
the foreground (i.e., lettuces) and background (e.g.,
soils) in a given NDVI image (Fig. 2b). Supplementary
File S1 provides pseudo code and explanations of the
image calibration and pre-processing step to ensure
high-quality inputs of the learning model.
Step 3 carries out ML-based traits analyses that quantify

lettuce number (Fig. 2c) and classify head size (Fig. 2d). It
includes six steps: removing noise signals, partitioning a
given image into sections (250 × 250 pixels) for local
analysis, producing a sliding window (20 × 20 pixels) to
traverse within a sectioned image, using non-max sup-
pression to detect lettuces, and classifying recognised
lettuces into three size categorises (i.e., small, medium
and large). The analysis result is visualised in Step 4,
where lettuce counting, size distribution map, and GPS-
tagged harvest regions are saved as a series of processed
images (Fig. 2e). At the final step (Step 5), statistics of
yield-related traits are exported to a comma-separated

Fig. 1 Ultra-scale NDVI aerial imaging accomplished routinely through a fixed-wing light aircraft operated by G’s Growers. a The flying
route and aerial imaging were designed to facilitate cross-site crop layout assessment and yield prediction. b A series of ultra-large NDVI images at
3 cm GSD spatial resolution were acquired to record 0.8–1.6 million lettuce heads per field, at H1 and H2 stages
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values (CSV) file, including lettuce counts per field, let-
tuce size distribution, lettuce number and size measures
within GPS grids, harvest regions, and associated GPS
coordinates (Supplementary File S2). To enable users to
carry out the above analysis workflow easily, a graphical
user interface (GUI) software application has been
developed.

AirSurf-Lettuce GUI
The GUI of AirSurf-L (Fig. 3) was developed using the

native python GUI package, Tkinter25, which allows the
software application to be executed on different operating
systems such as Windows and Mac OS (note: we only
provided a packaged.exe executable file on the GitHub,
see availability and requirements). Following the systems
design described previously26, the GUI uses an easy-to-
follow approach to implement the phenotypic analysis
workflow. The GUI window is divided into two parts:
input section and display section. In the input section
(dash rectangle coloured red in Fig. 3), a user needs to
firstly load an NDVI image, which will be displayed
instantaneously in the display section (dash rectangle
coloured green), in the original tab. Secondly, the user
needs to enter GPS coordinates of the field (i.e., the top
left corner of the input image, which can be retrieved

from the metadata or Google Maps). Thirdly, the user is
required to define the rotation value of the input image (in
degrees) in comparison with the north geographical
direction, so that GPS calculation can be standardised.
Then, the user can tell the software whether the input
image contains overflown NDVI signals; if so, an extra
calibration process will be triggered (Fig. 2, Step 2).
Finally, after entering a small number of input parameters,
the user can click the Start button to initiate the analysis
workflow.
The GUI software follows each step described in the

analysis workflow to accomplish automated phenotypic
analysis. When a step is finished, an associated pro-
cessed image will be displayed in the display section,
showing the intermediate result of the analysis. Four
processed images will be presented in the GUI window:
a pre-processed and calibrated image (Fig. 3a, in the
normalised tab), an image after lettuce scoring (Fig. 3b,
in the counts tab), an image after size categorisation
(Fig. 3c, in the size distribution tab), and a processed
image after identifying harvest regions and their asso-
ciated GPS coordinates (Fig. 3d, in the harvest regions
tab). All processed images are saved in a result folder,
along with a CSV file that contains analysis results
(Supplementary File S2).

Fig. 2 A high-level analysis workflow of AirSurf-Lettuce. a Step 1 accepts raw NDVI images as input imagery data (pixels with extremely high
NDVI signals are overflowed). b Step 2 pre-processes the raw NDVI images to calibrate intensity distribution and correct overflowing pixels. c, d Step 3
carries out ML-based traits analyses to quantify lettuce number and classify head size in a given NDVI image. e Steps 4&5 visualise and export statistics
of the traits analyses detection, including yield-related phenotypes such as lettuce counting, size distribution, and harvest regions, and associated
GPS coordinates
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Neural network architecture
Similar to AlexNet27, a CNN-based learning architecture

was established using the labelled training datasets. Fig-
ure 4a demonstrates the architecture of the CNN model,
including (1) a convolutional (Conv2D) layer with 32 filters
and a 3 × 3 kernel, with a rectified linear unit (ReLU) as the
activation function, and batch normalisation to accelerate
the learning process to enable higher learning rates28; (2)
the same block is then repeated together with a max
pooling layer to down-sample input using a 2 × 2 kernel
based on the assumption that useful input features could be
contained in sub-regions; (3) after that, a second convolu-
tional block is constructed, consisting of a Conv2D layer
with 64 filters, a 3 × 3 kernel, a ReLU activation, and batch
normalisation; (4) finally, this block is repeated, followed by
another max pooling layer (with a 2 × 2 kernel) to complete
the learning procedure. After the convolutional layers,
learning layers are connected to a fully connected layer of
size 512, which is followed by a dropout layer with a 50%
chance. To complete the learning architecture, a binary
output generates the probability of whether a given

bounding box (20 × 20 pixels) contains a lettuce signal. If
the probability equals or is close to 100%, it indicates that it
is highly likely that the bounding box contains a complete
lettuce head (Fig. 4b). The above architecture is commonly
applied to vision-based object detection problems29. The
training and validation accuracy and loss curves are
reported in Fig. 4c, showing that the model converges in
only 10 epochs. More importantly, to avoid overfitting, the
stopping criterion was designed to guarantee the validation
accuracy is higher than the training accuracy, ensuring the
generalisation of the learning model. To avoid the over-
fitting issue of our model, the labelled data was also divided
equally into train and validation sets when training the
model.
The architecture is shallower than AlexNet and other

modern deep learning architectures for a number of
reasons: (1) the size of our dataset is relatively small for
establishing very deep learning networks; (2) our target is
a binary classification problem (i.e., whether or not a given
bounding box contains a whole lettuce head), different
from ImageNet classification tasks; (3) larger and deeper

2
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4

Fig. 3 Two sections designed in the AirSurf-Lettuce GUI. a A processed image after pre-processing and calibration (in the normalised tab). b A
processed image after lettuce counting (in the counts tab). c A processed image after lettuce size categorisation (in the size distribution tab). d A
processed image after identifying harvest regions and GPS coordinates (in the harvest regions tab)
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neural networks require more time to train, which can be
slower to execute and not feasible for prompt crop
management decision required in precision agriculture.

Size categorisation algorithm
After AirSurf-L identifies bounding boxes containing

lettuce heads, we employed an unsupervised ML approach
to categorise lettuce into three sizes: small, medium and
large. The algorithm can be easily changed to classify
more size categories, if required. Pixels in the bounding
box region are extracted and then NDVI values of all the
pixels are put into bins. The histogram included 10 bins
that spread across the NDVI value range (0–255). We
included two important aspects when categorising lettuce
sizes: (1) lower NDVI surrounding values do not deter-
mine the lettuce size; (2) higher NDVI values are more
important for the size categorisation. As such, a geometric
pattern of NDVI values for each bin was created, i.e., 64,
128, 160, 192, 208, 224, 232, 240, 244, 248, 250, 252, 253,
and 254. With these cut-off values, most of the back-
ground pixels were captured in the first two bins, along
with the increasing weight when values approach 255.
Having transformed the pixel regions into a series of

bins, we were able to compare different regions and
cluster them into three size groups using k-means clus-
tering with the k value set to three. Then, clustering
results are sorted through calculating the dot product
between the weight vector and the cluster count vector
(based on the number of bins). These sorted values
determine which clustering result corresponds to which

size, which are then applied to each lettuce detected in the
field. Three colours are used to indicate size categories:
blue for small, green for medium, and red for large
(Fig. 3c).

Results
Counting lettuces with a CNN classifier
After a CNN classifier was trained and the phenotypic

analysis algorithms were implemented in the AirSurf-L,
we used the software to recognise and classify lettuces in a
series of ultra-large NDVI images. Initially, a broad range
of sizes and orientations of lettuces with varying inten-
sities were captured; however, the software failed to
recognise lettuces in very bright regions and overly count
lettuces in very dark regions (Fig. 5a), e.g., around 50,000
lettuces were wrongly detected in a one-million-head field
(5% counting error). We found that this problem was
caused by the trained CNN classifier, because a lettuce
head is extremely tiny in an orthomosaic image (e.g.,
11330 × 6600 pixels for a 7-hectare field when GSD is
3 cm, which contains over half million lettuces) under
varied lighting conditions. To resolve this issue, we have
designed a two-step solution: (1) sectioning the whole
image into many 250 × 250 pixels sub-images, and (2)
using a fix-sized bounding box (20 × 20 pixels) as a sliding
window (with a stepping parameter of 5 pixels to reduce
the computational complexity) to prune the detected
lettuce objects in each 250 × 250 sub-image.
Another reason that caused the misdetection is due to

overlapped lettuces as they could be detected repeatedly

1

0

Input layer
(20x20)

Conv(32)+RELU 
+Batch Norm

Conv(64)+RELU 
+Batch Norm

Fully Connected (FC, 
512)

Output layer 
(2)

Conv(32)+RELU+ 
Batch Norm+Max

Pooling

Conv(64)+RELU+ 
Batch Norm+Max

Pooling

A

B

100%

Yes, a le�uce 
(100%)

Not a le�uce 
(0%)

Input

Output

C

Fig. 4 A CNN-based learning architecture established for lettuce counting. a The architecture of the trained CNN model, which generates a
binary output representing the probability of whether a yellow bounding box contains a lettuce signal. b If the probability is close to 100%, it
indicates that it is highly likely that the bounding box encloses a whole lettuce. c The training and validation accuracy and loss curves of the model
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by the CNN classifier in a sub-image. Hence, we employed
a non-maximum suppression (NMS) algorithm30 to rec-
tify the detection. NMS uses probabilities to order the
detected lettuce objects. After the 20 × 20 sliding window
is performed and many small patches have been identi-
fied, the NMS algorithm computes an overlap coefficient
to determine how to retain these patches. As lettuces are
relatively well-spaced in the field, patches (i.e., bounding
boxes) enclosing a complete lettuce signal are retained,
whereas partially covered signals will be removed. To
select the best overlap parameter computed by the NMS,
a gradient descent method is formulated and explained in
Supplementary File S3.

Improved CNN classifier and the size categorisation
Besides the improved vision-based object detection, we

also enhanced the training datasets by manually labelling
an additional 500 lettuce signals within very bright or very
dark regions. Then, newly labelled data was inserted into
the training datasets to retrain the model through the
online-learning approach31. The improved CNN model
(see GitHub repository and Supplementary File S4) was
tested on different experimental fields again and has
dramatically enhanced the accuracy of lettuce detection
(Fig. 5b).

Identified lettuces are individually analysed to deter-
mine their associated size category. The size classification
is based on intensity and contrast values enclosed by the
20 × 20 bounding boxes, which is computed using the dot
product of the histogram of pixel intensities and a
weighted vector towards more pixel-based contrast
values. The assumption of this design is that higher NDVI
signals likely correlate with higher vegetation indices and
hence bigger lettuce heads. The categorisation result of all
lettuce heads is clustered into three size groups. Each
lettuce is then coloured with a predefined colour code
(Fig. 5c).

A GPS-tagged harvest map
The final phase of the phenotypic analysis is to define

harvest regions based on different sizes of lettuces. Using the
size distribution map (Fig. 6a), the field is firstly segmented
into many small grids based on the optimal GPS resolution
determined by the altitude of the aerial imagery (3 cm GSD,
in our case), as well as the size of the harvester machinery
used by the grower. After dividing the field into thousands of
grids (Fig. 6b), GPS coordinates of each grid are computed
and each grid is then coloured with the most representative
size category. By combining all coloured grids, a GPS-tagged
harvest map is produced, representing harvest regions of the

Fig. 5 The improved results of the CNN model and the size classification of lettuce heads. a Wrongly detected lettuces in very bright regions
and overly counted lettuces in very dark regions, in a one-million-head field. b Enhanced training datasets to retrain the model using the online-
learning approach, which led to much better detection results. c A predefined colour code (small is coloured blue, medium is coloured green, and
large is coloured red) is assigned to each recognised lettuce head across the field
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whole field (Fig. 6c). The harvest map can be used for
designing harvesting strategies such as guiding a harvester to
collect desired sized lettuces or arranging logistics based on
the lettuce number and associated size counting. To facilitate
precision agricultural practices, a result file (Supplementary
File S2) is also generated by AirSurf-L at the end of the
analysis workflow, containing information of each harvest
grid, the associated GPS coordinates, lettuce size and number
counting in each grid. To satisfy different needs for dissimilar
requirements, the size of GPS-based harvest grids can be
modified manually in the software.

3D visualisation for the harvesting strategy
Figure 7 uses Python-based 3D Matplotlib library32 to

show the GPS-tagged harvest map. When AirSurf-L

reads an NDVI image, it computes the number of let-
tuce heads and associated size categories on the image
(Fig. 7a). Then, by combining GPS-based field grids
with the representative lettuce size in these grids
(Fig. 7b), we produced a dynamic 3D bar chart script
(Supplementary File S5) to present the lettuce number
using the z axis, infield harvest regions (both columns
and rows) using both x and y axes, and the repre-
sentative lettuce size using the predefined colours
(Fig. 7c). Through the 3D plot, users can zoom into any
sub-region of the field to check lettuce number and
representative size so that a precise harvesting strategy
can be planned accordingly. The overall lettuce number
and size counting of the experiment field can also be
calculated.

Fig. 6 A GPS-based harvest map based on lettuce size classification. a A colour-coded lettuce size distribution map (small is coloured blue,
medium is coloured green, and large is coloured red). b The field is segmented into thousands of grids based on the optimal GPS resolution. c Grids
are coloured with the most representative lettuce size category across the image, representing harvest regions of the whole field

Fig. 7 3D visualisation of lettuce harvest regions. a AirSurf-L reads an NDVI image and exports a lettuce size distribution map, where small lettuce
is coloured blue, medium size is coloured green, and large lettuce is coloured red. b 3D visualising GPS-based field grids to present representative
size categories. c A dynamic 3D bar chart is generated to present the relationship between lettuce number, infield layout, and the representative
lettuce size, along with over lettuce number and size quantification
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Validation of AirSurf-Lettuce
To verify AirSurf-L and the soundness the algorithm,

we have applied the platform to count and classify lettuce
heads in three unseen experimental fields in Cambridge-
shire, UK (Fig. 8a–c). These fields contain between
700,000 and 1,500,000 lettuces and are located in different
sites around the county. Traits such as the number of
lettuces per field quantified by the platform (Fig. 8d) were
compared with industrial estimates, showing a low error
in lettuce counting (<5% difference). Besides the field-
level comparison, we also randomly selected different
sizes of subsections in an experiment field to evaluate
AirSurf-L. We split these subsections into three sets (i.e.,
36 small regions, 21 large regions, and 57 mixed regions),
where the small regions have less than 400 lettuces, the
large ones contain greater than 900 lettuces heads, and
mixed regions contain a variety of lettuce heads. After
that, laboratory technicians manually counted lettuce
heads within these regions. The correlation between the
manual and automated lettuce counting shows that, for
the small regions, the correlation between the human and
automatic counting is approximately 2% (R2= 0.978); for
the large regions, the value is around 0.8% (R2= 0.988);
and for mixed regions, the R2 correlation is over 0.9997.
Supplementary Fig. 2 and Supplementary File S6 show the
correlations between human and automatic counting for
all three region groups.

Discussion
Traditionally, measuring in-field crops on a large scale is

very time-consuming and labour-intensive. It often
requires destructive techniques, potentially error-prone
manual counting, or estimates of traits that are key to
yield production or crop quality33. Recent advances in
ML/DL and CV techniques have led to an explosion of
plant phenomics, which has rapidly improved our abilities
in mining phenotypic information from large and com-
plicated phenotyping datasets34. New data-driven analytic
approaches are also changing plant phenomics – col-
lecting big data (i.e., phenotyping) is no longer the bot-
tleneck, instead how to extract biologically relevant
information (i.e., phenotypic analysis) from big data has
become the current challenge35. Hence, along with the
development of aerial imaging and remote sensing tech-
nologies, it has become increasingly noticeable that the
integration of scalable data collection, high-throughput
phenotypic analysis, and yield predictive modelling is key
to future crop research and precision agriculture36.
AirSurf-L introduced here has addressed a specific

challenge in ultra-scale aerial phenotyping and precision
agricultural management through combining aerial NDVI
imagery, CV, ML/DL, and software engineering, with
commercial lettuce production. The platform automates
the quantification of millions of lettuces across the field,
which allows us to connect research-based phenotypic

Fig. 8 Applying AirSurf-Lettuce to count and classify millions of lettuce heads in three plantation fields across the Cambridgeshire, UK. a–c
AirSurf-Lettuce is applied to count and classify millions of lettuce heads (small is coloured blue, medium is coloured green, and large is coloured red),
in three plantation fields in the Cambridgeshire, UK. d The overall quantification of Lettuce heads and size categories in three fields
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analysis with real-world agriculture problems. As a cross-
disciplinary project, we have chosen an agile R&D
method, because technologies and requirements were
constantly changing during the project. The results gen-
erated by AirSurf-L show a strong correlation between
automatic counting and specialist scoring (R2= 0.98).
Hence, we are confident that AirSurf-L is capable of
assisting fresh vegetable growers and farmers with their
large-scale field phenotyping needs as well as yield-related
trait analysis.

Commercial impacts
Commercially, lettuce production offers an attractive

economic profitability in comparison to many other Agri-
Food businesses37. To date, lettuce businesses are worth
billions of dollars and employ hundreds of thousands of
permanent and seasonal workers globally. European
vegetable growers alone produced 2.95 million tonnes of
lettuce (and chicory) in 2016, a total annual value of €2.5
billion38. Further down the fresh produce supply chain,
the planning and efficiency of many essential crop pro-
duction activities are largely dependent on crop maturity
date and the marketability of crops (i.e., the crop qual-
ity)39. Marketing activities such as logistics, trading, and
product marketing need to be organised several weeks
before the harvest; moreover, the booking and reservation
of crop distribution, agricultural equipment, and asso-
ciated commercial plans with retails also need to be
determined beforehand40. By doing so, crop can be har-
vested at the right time, with maximised yield41. Our work
contributes directly to lettuce production through
improving the actual yield of lettuces and providing reli-
able quantification of crop quality (e.g., lettuce size), both
of which are key factors for crop production, marketing,
and supply chain management.

Machine learning and computer vision in plant phenomics
Another aim of this work is to further ML- and CV-

based software solutions in plant phenomics research.
High-throughput plant phenotyping is a fast-growing
research domain, covering many disciplines, from plant
breeding, cultivation, remote sensing, to computing sci-
ences42. The modular software development allows us to
test and embed different open-source learning archi-
tectures43 (e.g., through the TensorFlow frameworks) and
CV algorithms44 (e.g., Scikit-Image libraries) in AirSurf-L.
Notably, it is worth pointing out that we have learned a
number of lessons when applying ML/DL and CV in
phenotypic analysis: (1) learning algorithms could per-
form badly if training datasets are not well-labelled and
insufficient; (2) although ML/DL algorithms specialised in
segmentation and classification if target objects are well-
defined, there is still a big gap between object recognition
and traits measurement; (3) meaningful phenotypic

analysis not only requires sufficient biological under-
standing to define target traits in a logical manner, but
also needs bespoke algorithms to engineer features so that
traits can be quantitatively described. Hence, in plant
phenomics research, biological questions, analytical
solutions, and software implimentation need to be con-
sidered collectively in order to address approaching
challenges.

Limitations and further development of the platform
Besides the promising phenotypic analysis results pre-

sented in this article, there are still limitations of the
platform need to be considered: (1) AirSurf-L has been
tested with top-view iceberg lettuces mainly at H1 and
H2 stages, which means that analysis error could increase
if there are too many overlaps between lettuce heads, e.g.,
from H3 stage onwards. (2) As AirSurf-L has only been
tested with NDVI imagery, it is important to add new
functions to the platform to incorporate other vegetation
indices acquired by multi- and hyper-spectrum imaging
sensors. (3) As precision agriculture management deci-
sions are normally based on imagery, soil and climate
conditions, AirSurf’s results will be more reliable, if we
could include soil information for each harvest region and
field-level climate conditions. So, results can be compared
between sites in multiple years. A potential approach is to
incorporate ground-based phenotyping systems such as
CropSight45 to feed environment data to the analysis. (4)
The method was tested and validated in lettuce fields in a
number of geographic locations following a standard
aerial imaging procedure, data collected from different
sites via varied aerial imaging strategies (e.g., different
angles, altitudes and GSD) could improve the soundness
and compatibility of the platform. (5) Key features were
constructed by learning algorithms instead of engineered,
which make learning models vulnerable when facing up to
totally undefined datasets. Hence, ML/DL based pheno-
typic analysis algorithms need to update with new labelled
training data for new crop species. (6) For a field of
approximately one million lettuces, it takes about 4 h to
analyse a field on a decent computer (2.5 GHz Intel Core
i7, 8GB memory). Most of the computational time is
occupied by the learning model to identify individual
lettuces, which can be improved by parallel computing or
GPU (graphic processing unit) processing to speed up the
analysis.

Prospects for crop research and precision agriculture
Together with recent advances in multi-scale remote

sensing and phenotyping data management45–47, the
platform could be relatively easily expanded to incorpo-
rate other crop species such as wheat and rice by
retraining the learning model with additional datasets. By
doing so, AirSurf could be developed into a more
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comprehensive analytic platform that will bring great
significance to crop production and marketable yield for
the Agri-Food sector. For example, the plant density of
wheat and rice is closely related to the yield due to its
influences on the allocation of water, light and fertilisers,
which cannot be quantified using ground-based RGB
imagery48. Hence, utilising the ultra-scale NDVI aerial
imagery and related object recognition methods embed-
ded in AirSurf-L, the platform is likely to benefit the
assessment of sowing performance, emergence rate, and
plant distribution. Then, through a multi-scale pheno-
typing approach (i.e. integrating ground-based work-
stations), breeders and crop researchers could make early
predictions of the grain yield of crop genotypes in field
experiments.
From a precision agriculture perspective, monitoring

individual plant such as a lettuce head can enable
accurate monitoring of crops during key growth stages
across a plantation site. It can provide growers with the
real number of crops in the field, based on which yield
for harvest availability can be quantified instead of
estimated. The calculation of crops can also lead to
accurate agricultural inputs, facilitating automated
variable-rate application of fertiliser, weed control, and
pesticides through tractor software system with a more
precise crop distribution map49. Furthermore, the close
monitoring of key yield-related traits can be used to
guide farmers and growers to reduce variability of
agrichemical applications and irrigation in different
fields, increasing harvest yield and better operating
profit margin50. Finally, new analytic platforms such as
the AirSurf-L platform shall largely embed in routine
agricultural activities, so that no major extra costs are
required, making new Agri-Tech solutions more adop-
tive by the Agri-Food sector.

Conclusions
AirSurf-Lettuce automatically measures in-field iceberg

lettuces using ultra-scale NDVI aerial images, with a focus
on yield-related traits such as lettuce number, size cate-
gories, field size distribution, and GPS-tagged harvest
regions. The analysis results are close to the manual
counting and can be used to improve the actual yield. By
monitoring millions of lettuces in the field, we demon-
strate the significant value of AirSurf-L in ultra-scale field
phenotyping, precise harvest strategies, and crop mar-
ketability before the harvest. We believe that our algo-
rithm design, software implementation, the application of
ML/DL and CV algorithms, and cross-disciplinary R&D
activities will be highly valuable for future plant phe-
nomics research that are destined to be more challenging.
With continuous R&D work, we are confident that the
platform has great potential to support the Agri-Food
sector with a smart and precise crop surveillance

approach of vegetable crops and therefore lead to better
crop management decisions.

Availability and requirements
Project name: AirSurf-Lettuce with G’s Growers
Project home page: https://github.com/Crop-Phenomics-

Group/Airsurf-Lettuce
Source code: https://github.com/Crop-Phenomics-Group/

AirSurf-Lettuce/
GUI software: https://github.com/Crop-Phenomics-Group/

AirSurf-Lettuce/releases
Operating system(s): platform independent
Programming language: Python 3.6
Requirements: Keras, TensorFlow, Skimage, and Numpy.
License: BSD-3-Clause available at https://opensource.

org/licenses/BSD-3-Clause

Availability of supporting data
The datasets supporting the results presented here is

available at https://github.com/Crop-Phenomics-Group/
Airsurf-Lettuce/releases. Source code and other support-
ing data are also openly available in the GitHub repository.
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