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Abstract

We prove that Θ̃(kd2/ε2) samples are necessary and sufficient for learning a
mixture of k Gaussians in Rd, up to error ε in total variation distance. This improves
both the known upper bounds and lower bounds for this problem. For mixtures
of axis-aligned Gaussians, we show that Õ(kd/ε2) samples suffice, matching a
known lower bound.
The upper bound is based on a novel technique for distribution learning based on a
notion of sample compression. Any class of distributions that allows such a sample
compression scheme can also be learned with few samples. Moreover, if a class of
distributions has such a compression scheme, then so do the classes of products
and mixtures of those distributions. The core of our main result is showing that the
class of Gaussians in Rd has an efficient sample compression.

1 Introduction

Estimating distributions from observed data is a fundamental task in statistics that has been studied
for over a century. This task frequently arises in applied machine learning and it is common to
assume that the distribution can be modeled using a mixture of Gaussians. Popular software packages
have implemented heuristics, such as the EM algorithm, for learning a mixture of Gaussians. The
theoretical machine learning community also has a rich literature on distribution learning; the recent
survey [9] considers learning of structured distributions, and the survey [13] focuses on mixtures of
Gaussians.

∗For the full version of this paper see [2].
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This paper develops a general technique for distribution learning, then employs this technique in the
important setting of mixtures of Gaussians. The theoretical model we adopt is density estimation:
given i.i.d. samples from an unknown target distribution, find a distribution that is close to the target
distribution in total variation (TV) distance. Our focus is on sample complexity bounds: using as
few samples as possible to obtain a good estimate of the target distribution. For background on this
model see, e.g., [7, Chapter 5] and [9].

Our new technique for proving upper bounds on the sample complexity involves a form of sample
compression. If it is possible to “encode” members of a class of distributions using a carefully chosen
subset of the samples, then this yields an upper bound on the sample complexity of distribution
learning for that class. In particular, by constructing compression schemes for mixtures of axis-
aligned Gaussians and general Gaussians, we obtain new upper bounds on the sample complexity of
learning with respect to these classes, which we prove to be optimal up to logarithmic factors.

1.1 Main results

In this section, all learning results refer to the problem of producing a distribution within total
variation distance ε from the target distribution. Our first main result is an upper bound for learning
mixtures of multivariate Gaussians. This bound is tight up to logarithmic factors.

Theorem 1.1 The class of k-mixtures of d-dimensional Gaussians can be learned using Õ(kd2/ε2)
samples.

We emphasize that the Õ(·) notation hides a factor polylog(kd/ε), but has no dependence whatsoever
on the condition number or scaling of the distribution. Previously, the best known upper bounds on
the sample complexity of this problem were Õ(kd2/ε4), due to [3], and O(k4d4/ε2), based on a
VC-dimension bound that we discuss below. For the case of a single Gaussian (i.e., k = 1), a sample
complexity bound of O(d2/ε2) is well known, again using a VC-dimension bound discussed below.

Our second main result is a minimax lower bound matching Theorem 1.1 up to logarithmic factors.

Theorem 1.2 Any method for learning the class of k-mixtures of d-dimensional Gaussians has
sample complexity Ω(kd2/ε2 log3(1/ε)) = Ω̃(kd2/ε2).

Here and below Ω̃ (and Õ) allow for poly-logarithmic factors. Previously, the best known lower
bound on the sample complexity was Ω̃(kd/ε2) [20]. Even for a single Gaussian (i.e., k = 1), an
Ω̃(d2/ε2) lower bound was not known prior to this work.

Our third main result is an upper bound for learning mixtures of axis-aligned Gaussians, i.e.,
Gaussians with diagonal covariance matrices. This bound is tight up to logarithmic factors.

Theorem 1.3 The class of k-mixtures of axis-aligned d-dimensional Gaussians can be learned using
Õ(kd/ε2) samples.

A matching lower bound of Ω̃(kd/ε2) was proved in [20]. Previously, the best known upper bounds
were Õ(kd/ε4), due to [3], and O((k4d2 + k3d3)/ε2), based on a VC-dimension bound that we
discuss below.

Computational efficiency. Although our approach for proving sample complexity upper bounds
is algorithmic, our focus is not on computational efficiency. The resulting algorithms are efficient
in terms of number of needed samples, but their running times are exponential in the dimension d
and the number of mixture components k. More precisely, the running time is 2kd

2 polylog(d,k,1/ε) for
mixtures of general Gaussians, and 2kd polylog(d,k,1/ε) for mixtures of axis-aligned Gaussians. The
existence of a polynomial time algorithm for density estimation is unknown even for the class of
mixtures of axis-aligned Gaussians, see [10, Question 1.1].

Even for the case of a single Gaussian, the published proofs of the O(d2/ε2) bound (of which we
are aware) are not algorithmically efficient. Using ideas from our proof of Theorem 1.1, we can
show that an algorithmically efficient proof for single Gaussians can be obtained by computing the
empirical mean and a careful modification of the sample covariance matrix of O(d2/ε2) samples.
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1.2 Related work

Distribution learning is a vast topic and many approaches have been considered in the literature; here
we only review approaches that are most relevant to our problem.

For parametric families of distributions, a common approach is to use the samples to estimate
the parameters of the distribution, possibly in a maximum likelihood sense, or possibly aiming to
approximate the true parameters. For the specific case of mixtures of Gaussians, there is a substantial
theoretical literature on algorithms that approximate the mixing weights, means and covariances;
see [13] for a recent survey of this literature. The strictness of this objective cuts both ways. On the
one hand, a successful learner uncovers substantial structure of the target distribution. On the other
hand, this objective is clearly impossible when the means and covariances are extremely close. Thus,
algorithms for parameter estimation of mixtures necessarily require some “separability” assumptions
on the target parameters.

Density estimation has a long history in the statistics literature, where the focus is on the sample
complexity question; see [6, 7, 19] for general background. It was first studied in the computational
learning theory community under the name PAC learning of distributions by [14], whose focus is on
the computational complexity of the learning problem.

For density estimation there are various possible measures of distance between distributions, the most
popular ones being the TV distance and the Kullback-Leibler (KL) divergence. Here we focus on the
TV distance since it has several appealing properties, such as being a metric and having a natural
probabilistic interpretation. In contrast, KL divergence is not even symmetric and can be unbounded
even for intuitively close distributions. For a detailed discussion on why TV is a natural choice, see
[7, Chapter 5].

A popular method for distribution learning in practice is kernel density estimation (see, e.g., [7,
Chapter 9]). The few rigorously proven sample complexity bounds for this method require either
smoothness assumptions (e.g., [7, Theorem 9.5]) or boundedness assumptions (e.g., [12, Theo-
rem 2.2]) on the class of densities. The class of Gaussians is not universally Lipschitz or universally
bounded, so those results do not apply to the problems we consider.

Another elementary method for density estimation is using histogram estimators (see, e.g., [7,
Section 10.3]). Straightforward calculations show that histogram estimators for mixtures of Gaussians
result in a sample complexity that is exponential in the dimension. The same is true for estimators
based on piecewise polynomials.

The minimum distance estimate [7, Section 6.8] is another approach for deriving sample complexity
upper bounds for distribution learning. This approach is based on uniform convergence theory.
In particular, an upper bound for any class of distributions can be achieved by bounding the VC-
dimension of an associated set system, called the Yatracos class (see [7, page 58] for the definition).
For example, [11] used this approach to bound the sample complexity of learning high-dimensional
log-concave distributions. For the class of single Gaussians in d dimensions, this approach leads to
the optimal sample complexity upper bound of O(d2/ε2). However, for mixtures of Gaussians and
axis-aligned Gaussians in Rd, the best known VC-dimension bounds [1, Theorem 8.14] result in
loose upper bounds of O(k4d4/ε2) and O((k4d2 + k3d3)/ε2), respectively.

Another approach is to first approximate the mixture class using a more manageable class such
as piecewise polynomials, and then study the associated Yatracos class, see, e.g., [5]. However,
piecewise polynomials do a poor job in approximating d-dimensional Gaussians, resulting in an
exponential dependence on d.

For density estimation of mixtures of Gaussians, the current best sample complexity upper bounds
(in terms of k and d) are Õ(kd2/ε4) for general Gaussians and Õ(kd/ε4) for axis-aligned Gaussians,
both due to [3]. For the general Gaussian case, their method takes an i.i.d. sample of size Õ(kd2/ε2)

and partitions this sample in every possible way into k subsets. Based on those partitions, kÕ(kd2/ε2)

“candidate distributions” are generated. The problem is then reduced to learning with respect to
that finite class of candidates. Their sample complexity has a suboptimal factor of 1/ε4, of which
1/ε2 arises in their approach for choosing the best candidate, and another factor 1/ε2 is due to the
exponent in the number of candidates.
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Our approach via compression schemes also ultimately reduces the problem to learning with respect
to finite classes. However, our compression technique leads to a more refined bound. In the case
of mixtures of Gaussians, one factor of 1/ε2 is again incurred due to learning with respect to finite
classes. The key is that the number of compressed samples has no additional factor of 1/ε2, so the
overall sample complexity bound has only a Õ(1/ε2) dependence on ε.

As for lower bounds on the sample complexity, much fewer results are known for learning mixtures
of Gaussians. The only lower bound of which we are aware is due to [20], which shows a bound of
Ω̃(kd/ε2) for learning mixtures of spherical Gaussians (and hence for general Gaussians as well).
This bound is tight for the axis-aligned case, as we show in Theorem 1.3, but loose in the general
case, as we show in Theorem 1.2.

1.2.1 Comparison to parameter estimation

In this section we observe that neither our upper bound (Theorem 1.1) nor our lower bound (Theo-
rem 1.2) can directly follow from bounds on parameter estimation for Gaussian distributions. Recall
that our sample complexity upper bound in Theorem 1.1 has no dependence on the condition number
of the distribution. We now show that, if a learning algorithm with entrywise approximation guarantee
is used to learn the distribution in KL divergence or TV distance, then the approximation parameter
must depend on the condition number. Let κ(Σ) be the condition number of the covariance matrix
Σ, i.e., the ratio of the maximum and minimum eigenvalues; refer to Section 2 for other relevant
definitions.

Proposition 1.4 Set ε = 2
κ(Σ)+1 . There exist two covariance matrices Σ and Σ̂ that are good

entrywise approximations:

|Σi,j − Σ̂i,j | ≤ ε and Σ̂i,j ∈ [1, 1 + 2ε] · Σi,j ∀i, j,

but the corresponding distributions are as far as they can get, i.e.,

KL
(
N (0,Σ) ‖ N (0, Σ̂)

)
=∞ and TV

(
N (0,Σ),N (0, Σ̂)

)
= 1.

Thus, given a black-box algorithm that provides an entrywise approximation to the true covariance
matrix Σ, if ε ≥ 2

κ(Σ)+1 , it might output Σ̂, which does not approximate Σ in KL divergence or total
variation distance.

One might imagine that lower bounds on the sample complexity of parameter estimation readily
imply lower bounds on distribution learning. The following proposition shows this is not the case.

Proposition 1.5 For any ε ∈ (0, 1/2] there exist two covariance matrices Σ and Σ̂ such that

TV
(
N (0,Σ),N (0, Σ̂)

)
≤ ε, but there exist i, j such that, for any c ≥ 1, Σ̂i,j 6∈ [1/c, c] · Σi,j .

1.3 Our techniques

We introduce a novel method for learning distributions via a form of sample compression. Given a
class of distributions, suppose there is a method for “compressing” the samples generated by any
distribution in the class. Further, suppose there exists a fixed decoder for the class, such that given the
compressed set of samples and a sequence of bits, it approximately recovers the original distribution.
In this case, if the size of the compressed set and the number of bits is guaranteed to be small, we
show that the sample complexity of learning that class is small as well.

More precisely, we say a class of distributions admits (τ, t,m) compression if there exists a decoder
function such that upon generating m i.i.d. samples from any distribution in the class, we are
guaranteed, with reasonable probability, to have a subset of size at most τ of that sample, and a
sequence of at most t bits, on which the decoder outputs an approximation to the original distribution.
Note that τ, t, and m can be functions of ε, the accuracy parameter.

We prove that compression implies learning. In particular, if a class admits (τ, t,m) compression,
then the sample complexity of learning with respect to this class is bounded by Õ(m+ (τ + t)/ε2)
(Theorem 3.5).
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An attractive property of compression is that it enjoys two closure properties. Specifically, if a base
class admits compression, then the class of mixtures of that base class, as well as the class of products
of the base class, are compressible (Lemmas 3.6 and 3.7).

Consequently, it suffices to provide a compression scheme for the class of single Gaussian distributions
in order to obtain a compression scheme for classes of mixtures of Gaussians (and therefore, to
be able to bound their sample complexity). We prove that the class of d-dimensional Gaussian
distributions admits (Õ(d), Õ(d2), Õ(d)) compression (Lemma 4.1). The high level idea is that by
generating Õ(d) samples from a Gaussian, one can get some rough sketch of the geometry of the
Gaussian. In particular, the convex hull of the points drawn from the Gaussian enclose an ellipsoid
centered at the mean and whose principal axes are the eigenvectors of the covariance matrix. Using
ideas from convex geometry and random matrix theory, we show one can in fact encode the center of
the ellipsoid and the principal axes using a linear combination of these samples. Then we discretize
the coefficients and obtain an approximate encoding.

The above results together imply tight (up to logarithmic factors) upper bounds of Õ(kd2/ε2) for
mixtures of k Gaussians, and Õ(kd/ε2) for mixtures of k axis-aligned Gaussians over Rd. The
compression framework we introduce is quite flexible, and can be used to prove sample complexity
upper bounds for other distribution classes as well. This is left for future work.

In this paper we assume the target belongs to the known class of distributions (this is called the
realizable setting in the learning theory literature). In the full version of this paper [2] we relax this
requirement and give similar sample complexity bounds for the setting where the target is close (in
TV distance) to some distribution in the class (known as agnostic learning).

Lower bound. For proving our lower bound for mixtures of Gaussians, we first prove a lower
bound of Ω̃(d2/ε2) for learning a single Gaussian. Although the approach is quite intuitive, the
details are intricate and much care is required to make a formal proof. The main step is to construct a
large family (of size 2Ω(d2)) of covariance matrices such that the associated Gaussian distributions
are well-separated in terms of their TV distance while simultaneously ensuring that their relative KL
divergences are small. Once this is established, we can then apply a generalized version of Fano’s
inequality to complete the proof.

To construct this family of covariance matrices, we sample 2Ω(d2) matrices from the following
probabilistic process: start with an identity covariance matrix; then choose a random subspace of
dimension d/9 and slightly increase the eigenvalues corresponding to this eigenspace. It is easy to
bound the KL divergences between the constructed Gaussians. To lower bound the total variation,
we show that for every pair of these distributions, there is some subspace for which a vector drawn
from one Gaussian will have slightly larger projection than a vector drawn from the other Gaussian.
Quantifying this gap will then give us the desired lower bound on the total variation distance.

Paper outline. We set up our formal framework and notations in Section 2. In Section 3, we define
compression schemes for distributions, prove their closure properties, and show their connection with
density estimation. Theorem 1.1 and Theorem 1.3 are proved in Section 4. The proof of Theorem 1.2
as well as all other omitted proofs can be found in the full version [2].

2 Preliminaries

A distribution learning method or density estimation method is an algorithm that takes as input a
sequence of i.i.d. samples generated from a distribution g, and outputs (a description of) a distribution
ĝ as an estimation for g. We work with continuous distributions in this paper, and so we identify
a probability distribution by its probability density function. Let f1 and f2 be two probability
distributions defined over Rd. Their total variation (TV) distance is defined by

TV (f1, f2) := sup
B⊆Rd

∫
B

(f1(x)− f2(x))dx =
1

2
‖f1 − f2‖1 ,
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where ‖f‖1 :=
∫
Rd |f(x)|dx is the L1 norm of f . The Kullback-Leibler (KL) divergence between f1

and f2 is defined by

KL (f1 ‖ f2) :=

∫
Rd

f1(x) log
f1(x)

f2(x)
dx.

In the following definitions, F is a class of probability distributions, and g is a distribution (not
necessarily in F).

Definition 2.1 (ε-approximation) A distribution ĝ is an ε-approximation for g if ‖ĝ − g‖1 ≤ ε.

Definition 2.2 (PAC-learning distributions) A distribution learning method is called a (realizable)
PAC-learner for F with sample complexity mF (ε, δ) if, for all distributions g ∈ F and all ε, δ ∈
(0, 1), given ε, δ, and an i.i.d. sample of size mF (ε, δ) from g, with probability at least 1− δ (over
the samples) the method outputs an ε-approximation of g.

Let ∆n := { (w1, . . . , wn) : wi ≥ 0,
∑
wi = 1 } denote the n-dimensional simplex.

Definition 2.3 (k-mix(F)) Let F be a class of probability distributions. Then the class of k-mixtures
of F , written k-mix(F), is defined as

k-mix(F) :=
{∑k

i=1wifi : (w1, . . . , wk) ∈ ∆k, f1, . . . , fk ∈ F
}
.

Let d denote the dimension. A Gaussian distribution with mean µ ∈ Rd and covariance matrix
Σ ∈ Rd×d is denoted by N (µ,Σ). If Σ is a diagonal matrix, then N (µ,Σ) is called an axis-aligned
Gaussian. For a distribution g, we write X ∼ g to mean X is a random variable with distribution g,
and we write S ∼ gm to mean that S is an i.i.d. sample of size m generated from g.

Definition 2.4 Let A,B be symmetric, positive definite matrices of the same size. The log-det
divergence of A and B is defined as LD (A,B) := Tr(B−1A− I)− log det(B−1A).

We will use ‖v‖ or ‖v‖2 to denote the Euclidean norm of a vector v, ‖A‖ or ‖A‖2 to denote the
operator norm of a matrix A, and ‖A‖F :=

√
Tr(ATA) to denote the Frobenius norm of a matrix A.

For x ∈ R, we will write (x)+ := max{0, x}. All logarithms are in the natural base.

3 Compression schemes and their connection with learning

Let F be a class of distributions over a domain Z.

Definition 3.1 (distribution decoder) A distribution decoder for F is a deterministic function J :⋃∞
n=0 Z

n ×
⋃∞
n=0{0, 1}n → F , which takes a finite sequence of elements of Z and a finite sequence

of bits, and outputs a member of F .

Definition 3.2 (distribution compression schemes) Let τ, t,m : (0, 1) → Z≥0 be functions. We
say F admits (τ, t,m) compression if there exists a decoder J for F such that for any distribution
g ∈ F , the following holds:

For any ε ∈ (0, 1), if a sample S is drawn from gm(ε), then with probability at least 2/3, there
exists a sequence L of at most τ(ε) elements of S, and a sequence B of at most t(ε) bits, such that
‖J (L,B)− g‖1 ≤ ε.

Note that S and L are sequences rather than sets; in particular, they can contain repetitions. Also note
that in this definition, m(ε) is a lower bound on the number of samples needed, whereas τ(ε), t(ε)
are upper bounds on the size of compression and the number of bits.

Essentially, the definition asserts that with reasonable probability, there is a (short) sequence consisting
of elements S and some (small number of) additional bits, from which g can be approximately
reconstructed. We say that the distribution g is “encoded” with L and B, and in general we would
like to have a compression scheme of a small size.

Remark 3.3 In the definition above we required the probability of existence of L and B to be at
least 2/3, but one can boost this probability to 1− δ by generating a sample of size m(ε) log(1/δ).
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Next we show that if a class of distributions can be compressed, then it can be learned; thus we build
the connection between compression and learning. We will need the following useful result about
PAC-learning of finite classes of distributions, which immediately follows from [7, Theorem 6.3] and
a standard Chernoff bound. It states that a finite class of sizeM can be learned usingO(log(M/δ)/ε2)
samples. Denote by [M ] the set {1, 2, ...,M}. Throughout the paper, a/bc always means a/(bc).

Theorem 3.4 ([7]) There exists a deterministic algorithm that, given candidate distributions
f1, . . . , fM , a parameter ε > 0, and log(3M2/δ)/2ε2 i.i.d. samples from an unknown distribu-
tion g, outputs an index j ∈ [M ] such that

‖fj − g‖1 ≤ 3 min
i∈[M ]

‖fi − g‖1 + 4ε,

with probability at least 1− δ/3.

The proof of the following theorem appears in the full version [2].

Theorem 3.5 (compressibility implies learnability) Suppose F admits (τ, t,m) compression. Let
τ ′(ε) := τ(ε/6) + t(ε/6). Then F can be learned using

O

(
m
(ε

6

)
log
(1

δ

)
+
τ ′(ε) log(m( ε6 ) log(1/δ)) + log(1/δ)

ε2

)
= Õ

(
m
(ε

6

)
+
τ ′(ε)

ε2

)
samples.

We next prove two closure properties of compression schemes. First, Lemma 3.6 below states that if
a class F of distributions can be compressed, then the class of distributions that are formed by taking
products of members of F can also be compressed. If p1, . . . , pd are distributions over domains
Z1, . . . , Zd, then

∏d
i=1 pi denotes the standard product distribution over

∏d
i=1 Zi. For a class F of

distributions, define Fd :=
{∏d

i=1 pi : p1, . . . , pd ∈ F
}
.

Lemma 3.6 (compressing product distributions) If F admits (τ(ε), t(ε),m(ε)) compression,
then Fd admits (dτ(ε/d), dt(ε/d),m(ε/d) log(3d)) compression.

Our next lemma states that if a class F of distributions can be compressed, then the class of
distributions that are formed by taking mixtures of members of F can also be compressed.

Lemma 3.7 (compressing mixtures) If F admits (τ(ε), t(ε),m(ε)) compression, then k-mix(F)
admits (kτ(ε/3), kt(ε/3) + k log2(4k/ε)), 48m(ε/3)k log(6k)/ε) compression.

4 Upper bound: learning mixtures of Gaussians by compression schemes

In this section we prove an upper bound of Õ(kd2/ε2) for the sample complexity of learning mixtures
of k Gaussians in d dimensions, and an upper bound of Õ(kd/ε2) for the sample complexity of
learning mixtures of k axis-aligned Gaussians. The heart of the proof is to show that Gaussians have
compression schemes in any dimension.

Lemma 4.1 For any positive integer d, the class of d-dimensional Gaussians admits an(
O(d log(2d)), O(d2 log(2d) log(d/ε)), O(d log(2d))

)
compression scheme.

Remark 4.2 In the special case d = 1, there also exists a (2, 0, O(1/ε)) (i.e. constant size) com-
pression scheme: if we draw C/ε samples from N (µ, σ2), for a sufficiently large constant C, with
probability at least 2/3 there exist two points in the sample such that one of them is within distance
σε/2 of µ − σ and the other one is within distance σε/2 of µ + σ. Given these two points, the
decoder can estimate µ and σ up to additive precision εσ/2, which results in an ε-approximation
of N (µ, σ2) by Lemma ??. Remarkably, this compression scheme has constant size, as the value of
τ + t is independent of ε (unlike Lemma 4.1). This scheme could be used instead of Lemma 4.1 in the
proof of Theorem 1.3, although it would not improve the sample complexity bound asymptotically.

Proof of Theorem 1.1. Combining Lemma 4.1 and Lemma 3.7 implies that the class of k-mixtures
of d-dimensional Gaussians admits a(

O(kd log(2d)), O(kd2 log(2d) log(d/ε) + k log(k/ε)), O(dk log k log(2d)/ε)
)

7



compression scheme. Applying Theorem 3.5 with m(ε) = Õ(dk/ε) and τ ′(ε) = Õ(d2k) shows that
the sample complexity of learning this class is Õ(kd2/ε2). This proves Theorem 1.1. �

Proof of Theorem 1.3. Let G denote the class of 1-dimensional Gaussian distribu-
tions. By Lemma 4.1, G admits an (O(1), O(log(1/ε)), O(1)) compression scheme. Com-
bining Lemma 3.6 and Lemma 3.7 gives the class k-mix(Gd) admits (O(kd), O(kd log(d/ε) +
k log(k/ε)), O(k log(k) log(3d)/ε)) compression. Applying Theorem 3.5 implies that the class of
k-mixtures of axis-aligned Gaussians in Rd can be learned using Õ(kd/ε2) samples. �

4.1 Proof of Lemma 4.1

Let N (µ,Σ) denote the target distribution, which we are to encode.

Remark 4.3 The case of rank-deficient Σ can easily be reduced to the case of full-rank Σ. If the
rank of Σ is r < d, then any X ∼ N (µ,Σ) lies in some affine subspace S of dimension r. With high
probability, the first d samples from N (µ,Σ) uniquely identify S . We encode S using these samples,
and for the rest of the process we work in this affine subspace. Hence, we may assume Σ has full rank
d.

To prove Lemma 4.1, we will need the following result from the random matrix theory literature [cf.
16, Corollary 4.1]. Let Sd−1 :=

{
y ∈ Rd : ‖y‖ = 1

}
and Bd2 :=

{
y ∈ Rd : ‖y‖ ≤ 1

}
. We use

the notation 1
20B

d
2 to denote the set of d-dimensional vectors with Euclidean norm at most 1/20. The

convex hull of a set T is denoted by conv(T ).

Lemma 4.4 Let q1, . . . , qm be i.i.d. samples from N (0, Id), and let T := { ±qi : ‖qi‖ ≤ 4
√
d }.

Then for a large enough constant C > 0, if m ≥ Cd(1 + log d) then

Pr

[
1

20
Bd2 6⊆ conv(T )

]
≤ 1/6.

Note that the lemma can be improved to require only m ≥ Cd samples [see 16, Corollary 4.1], but
this would not improve our final bound.

The remainder of the proof amounts to showing that with only a small number of additional bits, we
can approximate the mean and each eigenvector of the covariance matrix as a linear combination of a
subset of the drawn samples.

Suppose Σ =
∑d
i=1 viv

T
i , where the vi vectors are orthogonal. Let Ψ :=

∑d
i=1 viv

T
i /‖vi‖. Note

that both Σ and Ψ are positive definite, and that Σ = Ψ2. Moreover, it is easy to see that Σ−1 =∑d
i=1 viv

T
i /‖vi‖4 and Ψ−1 =

∑d
i=1 viv

T
i /‖vi‖3.

Lemma 4.5 Let C > 0 be a sufficiently large constant. Given m = 2Cd(1 + log d) samples S from
N (µ,Σ), with probability at least 2/3, one can encode vectors v̂1, . . . , v̂d, µ̂ ∈ Rd satisfying

‖Ψ−1(v̂j − vj)‖ ≤ ε/24d2 ∀j ∈ [d],

and ‖Ψ−1(µ̂− µ)‖ ≤ ε/2, using O(d2 log(2d) log(d/ε)) bits and the points in S.

Lemma 4.1 now follows immediately from the following lemma

Lemma 4.6 Suppose Σ = Ψ2 =
∑
i∈[d] viv

T
i , where the vi are orthogonal and Σ is full rank, and

that ‖Ψ−1(µ̂− µ)‖ ≤ ζ, and that ‖Ψ−1(v̂j − vj)‖ ≤ ρ ≤ 1 holds for all j ∈ [d]. Then,

TV

N
µ,∑

i∈[d]

viv
T
i

 ,N

µ̂,∑
i∈[d]

v̂iv̂
T
i

 ≤
√

9d3ρ2 + ζ2/2.

5 Discussion

A central open problem in distribution learning and density estimation is characterizing the sample
complexity of learning a distribution class. An insight from supervised learning theory is that
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the sample complexity of learning a class (of concepts, functions, or distributions) is typically
proportional to (some notion of) intrinsic dimension of the class divided by ε2, where ε is the error
tolerance. For the case of agnostic binary classification, the intrinsic dimension is captured by the
VC-dimension of the concept class (see [21, 4]). For the case of distribution learning with respect
to ‘natural’ parametric classes, we expect this dimension to be equal to the number of parameters.
This is indeed true for the class of Gaussians (which have d2 parameters) and axis-aligned Gaussians
(which have d parameters), and we showed in this paper that it holds for their mixtures as well (which
have kd2 and kd parameters, respectively).

In binary classification, the combinatorial notion of Littlestone-Warmuth compression has been
shown to be sufficient [15] and necessary [18] for learning. In this work, we showed that the new
but related notion of distribution compression is sufficient for distribution learning. Whether the
existence of compression schemes is necessary for learning an arbitrary class of distributions remains
an intriguing open problem.

It is worth mentioning that while it may first seem that the VC-dimension of the Yatracos set
associated with a class of distributions can characterize its sample complexity, it is not hard to come
up with examples where this VC-dimension is infinite while the class can be learned with finite
samples. Covering numbers do not characterize the sample complexity either: for instance the class
of Gaussians does not have a finite covering number in the TV metric, nevertheless it is learnable
with finitely many samples.

A concept related to compression is that of core-sets. In a sense, core-sets can be viewed as a special
case of compression, where the decoder is required to be the empirical error minimizer. See [17] for
using core-sets in maximum likelihood estimation.
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Addendum

The lower bound of Theorem 1.2 was recently improved in a subsequent work [8] from
Ω(kd2/ε2 log3(1/ε)) to Ω(kd2/ε2 log(1/ε)) using a different construction.
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