Content Tags

There are no tags.

Efficient Decompositional Rule Extraction for Deep Neural Networks

Authors
Mateo Espinosa Zarlenga, Zohreh Shams, Mateja Jamnik

In recent years, there has been significant work on increasing both interpretability and debuggability of a Deep Neural Network (DNN) by extracting a rule-based model that approximates its decision boundary. Nevertheless, current DNN rule extraction methods that consider a DNN's latent space when extracting rules, known as decompositional algorithms, are either restricted to single-layer DNNs or intractable as the size of the DNN or data grows. In this paper, we address these limitations by introducing ECLAIRE, a novel polynomial-time rule extraction algorithm capable of scaling to both large DNN architectures and large training datasets. We evaluate ECLAIRE on a wide variety of tasks, ranging from breast cancer prognosis to particle detection, and show that it consistently extracts more accurate and comprehensible rule sets than the current state-of-the-art methods while using orders of magnitude less computational resources. We make all of our methods available, including a rule set visualisation interface, through the open-source REMIX library (this https URL).

Stay in the loop.

Subscribe to our newsletter for a weekly update on the latest podcast, news, events, and jobs postings.