Search
Satellite-based rapid sweeping screening of localized PM2.5 hotspots at fine-scale local neighborhood levels is highly desirable. This motivated us to develop a random forest–convolutional neural network–local contrast normalization (RF–CNN–LCN) pipeline that detects local PM2.5 hotspots at a 300 m...
The fabrication of nanomaterials involves self-ordering processes of functional molecules on inorganic surfaces. To obtain specific molecular arrangements, a common strategy is to equip molecules with functional groups. However, focusing on the functional groups alone does not provide a...
What AI’s attempted chat-up lines tell us about computer-generated language
Researchers propose a method for finding and fixing weaknesses in automated programming tools.
Lift the curse of dimensionality by mastering the application of three important techniques that will help you reduce the dimensionality of your data, even if it is not linearly separable.
This paper proposes a non-parallel cross-lingual voice conversion (CLVC) model that can mimic voice while continuously controlling speaker individuality on the basis of the variational autoencoder (VAE) and star generative adversarial network (StarGAN). Most studies on CLVC only focused on mimicking...
The versatility of organic molecules generates a rich design space for organic semiconductors (OSCs) considered for electronics applications. Offering unparalleled promise for materials discovery, the vastness of this design space also dictates efficient search strategies. Here, we present an active...
NASA NeMO-Net, The Neural Multimodal Observation and Training Network for global coral reef assessment, is a convolutional neural network (CNN) that generates benthic habitat maps of coral reefs and other shallow marine ecosystems. To segment and classify imagery accurately, CNNs require curated...
When flooding occurs, Synthetic Aperture Radar (SAR) imagery is often used to identify flood extent and the affected buildings for two reasons: (i) for early disaster response, such as rescue operations, and (ii) for flood risk analysis. Furthermore, the application of machine learning has been...
If you are looking to easily generate visualizations of neural network architectures, PlotNeuralNet is a project you should check out.
Itch is a common clinical symptom and major driver of disease-related morbidity across a wide range of medical conditions. A substantial unmet need is for objective, accurate measurements of itch. In this article, we present a noninvasive technology to objectively quantify scratching behavior via a...
Deep Learning (DL) methods are powerful analytical tools for microscopy and can outperform conventional image processing pipelines. Despite the enthusiasm and innovations fuelled by DL technology, the need to access powerful and compatible resources to train DL networks leads to an accessibility...
Common aquatic remote sensing algorithms estimate the trophic state (TS) of inland and nearshore waters through the inversion of remote sensing reflectance (Rrs ()) into chlorophyll-a (chla) concentration. In this study we present a novel method that directly inverts Rrs () into TS without prior...
With just 50 lines of code, the program spots and fixes likely errors.
This article is an overview of how to get started with 5 popular Python NLP libraries, from those for linguistic data visualization, to data preprocessing, to multi-task functionality, to state of the art language modeling, and beyond.
Recent works have demonstrated reasonable success of representation learning in hypercomplex space. Specifically, “fully-connected layers with quaternions” (quaternions are 4D hypercomplex numbers), which replace real-valued matrix multiplications in fully-connected layers with Hamilton products of...
Mesh-based simulations are central to modeling complex physical systems in many disciplines across science and engineering. Mesh representations support powerful numerical integration methods and their resolution can be adapted to strike favorable trade-offs between accuracy and efficiency. However...
We present a novel view on principal components analysis as a competitive game in which each approximate eigenvector is controlled by a player whose goal is to maximize their own utility function. We analyze the properties of this PCA game and the behavior of its gradient based updates. The...
Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions (), disjunctions () and...
Algorithm enables robot teams to complete missions, such as mapping or search-and-rescue, with minimal wasted effort.
Stay in the loop
Subscribe to our newsletter for a weekly update on the latest podcast, news, events, and jobs postings.