Search
Understanding how artificial intelligence algorithms solve problems like the Rubik’s Cube makes AI more useful.
Whole-body imaging of mice is a key source of information for research. Organ segmentation is a prerequisite for quantitative analysis but is a tedious and error-prone task if done manually. Here, we present a deep learning solution called AIMOS that automatically segments major organs (brain, lungs...
Characterizing genome-wide binding profiles of transcription factors (TFs) is essential for understanding biological processes. Although techniques have been developed to assess binding profiles within a population of cells, determining them at a single-cell level remains elusive. Here, we report...
Most animal species on Earth are insects, and recent reports suggest that their abundance is in drastic decline. Although these reports come from a wide range of insect taxa and regions, the evidence to assess the extent of the phenomenon is sparse. Insect populations are challenging to study, and...
Humans quickly and accurately learn new visual concepts from sparse data, sometimes just a single example. The impressive performance of artificial neural networks which hierarchically pool afferents across scales and positions suggests that the hierarchical organization of the human visual system...
A new system devises hardware architectures to hasten robots’ response time.
Data that is updated in real-time requires additional handling and special care to prepare it for machine learning models. The important Python library, Pandas, can be used for most of this work, and this tutorial guides you through this process for analyzing time-series data.
Importance Diverse models have been developed to predict psychosis in patients with clinical high-risk (CHR) states. Whether prediction can be improved by efficiently combining clinical and biological models and by broadening the risk spectrum to young patients with depressive syndromes remains...
Behavior modeling is an essential cognitive ability that underlies many aspects of human and animal social behavior (Watson in Psychol Rev 20:158, 1913), and an ability we would like to endow robots. Most studies of machine behavior modelling, however, rely on symbolic or selected parametric sensory...
In this study, our goal is to track internal ice layers on the Snow Radar data collected by NASA Operation IceBridge. We examine the application of deep learning methods on radar data gathered from polar regions. Artificial intelligence techniques have displayed impressive success in many practical...
When your data includes geographical information, rich map visualizations can offer significant value for you to understand your data and for the end user when interpreting analytical results.
Artificial intelligence requires machines, processing power and energy consumption, among other things. Often, we’re unaware of the presence of this infrastructure around us.
The new type of neural network could aid decision making in autonomous driving and medical diagnosis.
Recent critical commentaries unfavorably compare deep learning (DL) with standard machine learning (SML) approaches for brain imaging data analysis. However, their conclusions are often based on pre-engineered features depriving DL of its main advantage — representation learning. We conduct a large...
Satellites allow large‐scale surveys to be conducted in short time periods with repeat surveys possible at intervals of <24 h. Very‐high‐resolution satellite imagery has been successfully used to detect and count a number of wildlife species in open, homogeneous landscapes and seascapes where target animals have a strong contrast with their environment. However, no research to date has detected animals in complex heterogeneous environments or detected elephants from space using very‐high‐resolution satellite imagery and deep learning. In this study, we apply a Convolution Neural Network (CNN) model to automatically detect and count African elephants in a woodland savanna ecosystem in South Africa. We use WorldView‐3 and 4 satellite data –the highest resolution satellite imagery commercially available. We train and test the model on 11 images from 2014 to 2019. We compare the performance accuracy of the CNN against human accuracy. Additionally, we apply the model on a coarser resolution satellite image (GeoEye‐1) captured in Kenya, without any additional training data, to test if the algorithm can generalize to an elephant population outside of the training area. Our results show that the CNN performs with high accuracy, comparable to human detection capabilities. The detection accuracy (i.e., F2 score) of the CNN models was 0.78 in heterogeneous areas and 0.73 in homogenous areas. This compares with the detection accuracy of the human labels with an averaged F2 score 0.77 in heterogeneous areas and 0.80 in homogenous areas. The CNN model can generalize to detect elephants in a different geographical location and from a lower resolution satellite. Our study demonstrates the feasibility of applying state‐of‐the‐art satellite remote sensing and deep learning technologies for detecting and counting African elephants in heterogeneous landscapes. The study showcases the feasibility of using high resolution satellite imagery as a promising new wildlife surveying technique. Through creation of a customized training dataset and application of a Convolutional Neural Network, we have automated the detection of elephants in satellite imagery with accuracy as high as human detection capabilities. The success of the model to detect elephants outside of the training data site demonstrates the generalizability of the technique.
In this paper, we introduce a novel conditional generative adversarial network that creates dense 3D point clouds, with color, for assorted classes of objects in an unsupervised manner. To overcome the difficulty of capturing intricate details at high resolutions, we propose a point transformer that...
Predicting the properties of a material from the arrangement of its atoms is a fundamental goal in materials science. While machine learning has emerged in recent years as a new paradigm to provide rapid predictions of materials properties, their practical utility is limited by the scarcity of high...
Detecting and handling missing values in the correct way is important, as they can impact the results of the analysis, and there are algorithms that can’t handle them. So what is the correct way?
Researchers created a risk-assessment algorithm that shows consistent performance across datasets from US, Europe, and Asia.
Understanding the genetic regulatory code governing gene expression is an important challenge in molecular biology. However, how individual coding and non-coding regions of the gene regulatory structure interact and contribute to mRNA expression levels remains unclear. Here we apply deep learning on...
Stay in the loop
Subscribe to our newsletter for a weekly update on the latest podcast, news, events, and jobs postings.