Search
Atom-probe tomography (APT) facilitates nano- and atomic-scale characterization and analysis of microstructural features. Specifically, APT is well suited to study the interfacial properties of granular or heterophase systems. Traditionally, the identification of the interface between, for...
The unusual correlated state that emerges in URu2Si2 below THO = 17.5 K is known as “hidden order” because even basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are “hidden.” We use resonant ultrasound spectroscopy to measure the...
Mastitis in dairy cattle is extremely costly both in economic and welfare terms and is one of the most significant drivers of antimicrobial usage in dairy cattle. A critical step in the prevention of mastitis is the diagnosis of the predominant route of transmission of pathogens into either...
Machine learning information is becoming pervasive in the media as well as a core skill in new, important job sectors. Getting started in the field can require learning complex concepts, and this article outlines an approach on how to begin learning about these exciting topics based on high school...
New technique allows for more precise measurements of deformation characteristics using nanoindentation tools.
By observing humans, robots learn to perform complex tasks, such as setting a table.
The ongoing stream of human consciousness relies on two distinct cortical systems, the default mode network and the dorsal attention network, which alternate their activity in an anticorrelated manner. We examined how the two systems are regulated in the conscious brain and how they are disrupted...
Artificial intelligence (AI) has the potential to revolutionise the way states and international organisations seek to manage international migration. AI is gradually going to be used to perform tasks, including identity checks, border security and control, and analysis of data about visa and asylum...
We report the use of a deep learning model to design de novo proteins, based on the interplay of elementary building blocks via hierarchical patterns. The deep neural network model is based on translating protein sequences and structural information into a musical score that features different...
The study of complex networks is a significant development in modern science, and has enriched the social sciences, biology, physics, and computer science. Models and algorithms for such networks are pervasive in our society, and impact human behavior via social networks, search engines, and...
Sorting through millions of possibilities, a search for battery materials delivered results in five weeks instead of 50 years.
With help from artificial intelligence, researchers identify hidden power of vitamin A and ordinary chewing gum glaze.
For the international women's day, we feature resources to help more women enter and succeed in AI, Big Data, Data Science, and Machine Learning fields.
Real-time feedback control based on machine learning algorithms (MLA) was successfully developed and tested on DIII-D plasmas to avoid tearing modes and disruptions while maximizing the plasma performance, which is measured by normalized plasma beta. The control uses MLAs that were trained with...
Deep Learning (DL) algorithms are the central focus of modern machine learning systems. As data volumes keep growing, it has become customary to train large neural networks with hundreds of millions of parameters to maintain enough capacity to memorize these volumes and obtain state-of-the-art...
The availability of large datasets has boosted the application of machine learning in many fields and is now starting to shape active-matter research as well. Machine learning techniques have already been successfully applied to active-matter data—for example, deep neural networks to analyse images...
We’ve seen many predictions for what new advances are expected in the field of AI and machine learning. Here, we review a “data set” based on what researchers were apparently studying at the turn of the decade to take a fresh glimpse into what might come to pass in 2020.
Chemical design of SiO2-based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic...
Introduction: Deep learning neural networks are especially potent at dealing with structured data, such as images and volumes. Both modified LiviaNET and HyperDense-Net performed well at a prior competition segmenting 6-month-old infant magnetic resonance images, but neonatal cerebral tissue type...
Objective To systematically examine the design, reporting standards, risk of bias, and claims of studies comparing the performance of diagnostic deep learning algorithms for medical imaging with that of expert clinicians.
Design Systematic review.
Data sources Medline, Embase, Cochrane Central...
Stay in the loop
Subscribe to our newsletter for a weekly update on the latest podcast, news, events, and jobs postings.