
ar
X

iv
:1

80
2.

07
43

9v
1

 [
cs

.D
S]

 2
1

Fe
b

20
18

Constant Factor Approximation Algorithm for Weighted Flow

Time on a Single Machine in Pseudo-polynomial time

Jatin Batra Naveen Garg Amit Kumar

Department of Computer Science and Engineering
IIT Delhi

Abstract

In the weighted flow-time problem on a single machine, we are given a set of n jobs, where
each job has a processing requirement pj , release date rj and weight wj . The goal is to find a
preemptive schedule which minimizes the sum of weighted flow-time of jobs, where the flow-time
of a job is the difference between its completion time and its released date. We give the first
pseudo-polynomial time constant approximation algorithm for this problem. The running time
of our algorithm is polynomial in n, the number of jobs, and P , which is the ratio of the largest
to the smallest processing requirement of a job. Our algorithm relies on a novel reduction of this
problem to a generalization of the multi-cut problem on trees, which we call Demand Multi-cut

problem. Even though we do not give a constant factor approximation algorithm for the Demand
Multi-cut problem on trees, we show that the specific instances of Demand Multi-cut obtained
by reduction from weighted flow-time problem instances have more structure in them, and we
are able to employ techniques based on dynamic programming. Our dynamic programming
algorithm relies on showing that there are near optimal solutions which have nice smoothness
properties, and we exploit these properties to reduce the size of DP table.

http://arxiv.org/abs/1802.07439v1

1 Introduction

Scheduling jobs to minimize the average waiting time is one of the most fundamental problems
in scheduling theory with numerous applications. We consider setting where jobs arrive over time
(i.e., have release dates), and need to be processed such that the average flow-time is minimized.
The flow-time, Fj of a job j, is defined as the difference between its completion time, Cj , and
release date, rj . It is well known that for the case of single machine, the SRPT policy (Shortest
Remaining Processing Time) gives an optimal algorithm for this objective.

In the weighted version of this problem, jobs have weights and we would like to minimize
the weighted sum of flow-time of jobs. However, the problem of minimizing weighted flow-time
(WtdFlowTime) turns out to be NP-hard and it has been widely conjectured that there should a
constant factor approximation algorithm (or even PTAS) for it. In this paper, we make substantial
progress towards this problem by giving the first constant factor approximation algorithm for this
problem in pseudo-polynomial time. We show that the problem can be reduced to a generalization
of the multi-cut problem on trees, which we call Demand Multi-cut. The Demand Multi-cut

problem is a natural generalization of the multi-cut problem where edges have sizes and costs, and
input paths (between terminal pairs) have demands. We would like to select a minimum cost subset
of edges such that for every path in the input, the total size of edges in the path is at least the
demand of the path. When all demands and sizes are 1, this is the usual multi-cut problem. The
natural integer program for this problem has the property that all non-zero entries in any column
of the constrain matrix are the same. Such integer programs, called column restricted integer
programs, were studied by Chakrabarty et al. [3]. They showed that one can get a constant factor
approximation algorithm for Demand Multi-cut provided one could prove that the integrality gap
of the natural LP relaxations for the following two special cases is constant – (i) the version where
the constraint matrix has 0-1 entries only, and (ii) the priority version, where paths and edges in
the tree have priorities (instead of sizes and demands respectively), and we want to pick minimum
cost subset of edges such that for each path, we pick at least one edge in it of priority which is at
least the priority of this path. Although the first problem turns out to be easy, we do not know how
to round the LP relaxation of the priority version. This is similar to the situation faced by Bansal
and Pruhs [2], where they need to round the priority version of a geometric set cover problem. They
appeal to the notion of union complexity [4] to get O(log logP)-approximation for this problem.
It turns out the union complexity of the priority version of Demand Multi-cut is also unbounded
(depends on the number of distinct priorities) [4], and so it is unlikely that this approach will yield
a constant factor approximation.

However, it turns out that the specific instances of Demand Multi-cut incurred by our reduction
have more structure, namely each node has at most 2 children, each path goes from an ancestor to
a descendant, and the tree has O(log(nP)) depth if we shortcut all degree 2 vertices. We show that
one can effectively use dynamic programming techniques for such instances. We show that there is
a near optimal solution which has nice “smoothness” properties so that the dynamic programming
table can manage with storing small amount of information.

1.1 Related Work

There has been a lot of work on the WtdFlowTime problem on a single machine, though polynomial
time constant factor approximation algorithm has remained elusive. Bansal and Dhamdhere [1]
gave O(logW) approximation algorithm for this problem, where W is the ratio of the maximum
to the minimum weight of a job. Chekuri et al. [6] gave an O(log2 P)-approximation algorithm,

1

where P is the ratio of the largest to the smallest processing time of a job. Recently, Bansal and
Pruhs [2] made significant progress towards this problem by giving an O(log logP)-approximation
algorithm. In fact, their result applies to a more general setting where the objective function is∑

j fj(Cj), where fj(Cj) is any monotone function of the completion time Cj of job j. Chekuri and

Khanna [5] gave a quasi-PTAS for this problem, where the running time was O(nOǫ(logW logP)).
The multi-cut problem on trees is known to be NP-hard, and a 2-approximation algorithm was

given by Garg et al. [7].

2 Preliminaries

An instance of the weighted flow-time problem is specified by a set of n jobs. Each job has
a processing requirement pj, weight wj and release date rj . We assume wlog that all of these
quantities are integers, and let P denote the largest processing requirement of a job. We divide the
time line into unit length slots– we shall often refer to the time slot [t, t + 1] as slot t. A feasible
schedule needs to process a job j for pj units after its release date. Note that we allow a job to
be preempted. The weighted flow-time of a job is defined as wj · (Cj − rj), where Cj is the slot in
which the job j finishes processing. The objective is to find a schedule which minimizes the sum
over all jobs of their weighted flow-time.

Note that any schedule would occupy exactly T =
∑

j pj slots. We say that a schedule is busy if
it does not leave any slot vacant even though there are jobs waiting to be finished. We can assume
that the optimal schedule is a busy schedule (otherwise, we can always shift some processing back
and improve the objective function). We also assume that any busy schedule fills the slots in [0, T]
(otherwise, we can break it into independent instances satisfying this property).

We shall also consider a generalization of the multi-cut problem on trees, which we call the
Demand Multi-cut problem. Here, edges have cost and size, and demands are specified by ancestor-
descendant paths. Each such path has a demand, and the goal is to select a minimum cost subset
of edges such that for each path, the total size of selected edges in the path is at least the demand
of this path.

In Section 2.1, we describe a well-known integer program for WtdFlowTime. This IP has variables
xj,t for every job j, and time t ≥ rj , and it is supposed to be 1 if j completes processing after time
t. The constraints in the IP consist of several covering constraints. However, there is an additional
complicating factor that xj,t ≤ xj,t−1 must hold for all t ≥ rj. To get around this problem, we
propose a different IP in Section 3. In this IP, we define variables of the form y(j, S), where S
are exponentially increasing intervals starting from the release date of j. This variable indicates
whether j is alive during the entire duration of S. The idea is that if the flow-time of j lies between
2i and 2i+1, we can count 2i+1 for it, and say that j is alive during the entire period [rj+2i, rj+2i+1].
Conversely, if the variable y(j, S) is 1 for an interval of the form [rj + 2i, rj +2i+1], we can assume
that it is also alive for previous intervals (because their total length would be at most 2i). This
allows us to decouple the y(j, S) variables for different S. By an addition trick, we can ensure that
these intervals are laminar for different jobs. From here, the reduction to the Demand Multi-cut

problem is immediate (see Section 4 for details). In Section 5, we show that the specific instances
of Demand Multi-cut obtained by such reductions have additional properties. We use the property
that the tree obtained from shortcutting all degree two vertices is binary and has O(log(nP)) depth.
We shall use the term segment to define a maximal degree 2 (ancestor-descendant) path in the tree.
So the property can be restated as – any root to leaf path has at most O(log(nP)) segments. Any

2

vertex in the tree needs to maintain the “state” of segments above it, where the state could mean
the edges selected by the algorithm. This would require too much book-keeping. We use two ideas
to reduce the size of this state – (i) We first show that the optimum can be assumed to have certain
smoothness properties, which cuts down on the number of possible configurations. The smoothness
property essentially says that the cost spent by the optimum on a segment does not vary by more
than a constant factor as we go to neighbouring segments, (ii) If we could guess how much cost
the optimal solution spends on a segment, and if it is possible to spend a similar amount on this
segment and select edges of high capacity, then we could ignore the edges selected by the algorithm
in higher segments (with respect to a vertex v and paths passing through it). If we are not able to
do this, it should already give us some information about the edges selected by the optimum.

2.1 An integer program

We describe an integer program for the WtdFlowTime problem. This is well known (see e.g. [2]), but
we give details for sake of completeness. We will have binary variables xj,t for every job j and time
t, where rj ≤ t ≤ T . This variable is meant to be 1 iff j is alive at time t, i.e., its completion time
is at least t. Clearly, the objective function is

∑
j

∑
t∈[rj ,T]wjxj,t. We now specify the constraints

of the integer program. Consider a time interval I = [s, t], where 0 ≤ s ≤ t ≤ T , and s and t are
integers. Let l(I) denote the length of this time interval, i.e., t− s. Let J(I) denote the set of jobs
released during I, i.e., {j : rj ∈ I}, and p(J(I)) denote the total processing time of jobs in J(I).
Clearly, the total volume occupied by jobs in J(I) beyond I must be at least p(J(I))− l(I). Thus,
we get the following integer program: (IP1)

min
∑

j

∑

t∈[rj ,T]

wjxj,t (1)

∑

j∈J(I)

xj,tpj ≥ p(J(I))− l(I) for all intervals I = [s, t], 0 ≤ s ≤ t ≤ T (2)

xj,t ≤ xj,t−1 for all jobs j, and time t, rj < t ≤ T (3)

xj,t ∈ {0, 1} for all j, t

It is easy to see that this is a relaxation – given any schedule, the corresponding xj,t variables will
satisfy the constraints mentioned above, and the objective function captures the total weighted flow-
time of this schedule. The converse is also true – given any solution to the above integer program,
there is a corresponding schedule of the same cost. We give the proof for sake of completeness. We
first observe a simple property of a feasible solution to the integer program.

Claim 2.1. Consider an interval I = [s, t], 0 ≤ s ≤ t ≤ T . Let J ′ be a subset of J(I) such that
p(J ′) > l(I). If x is a feasible solution to (IP1), then there must exist a job j ∈ J ′ such that
xj,t = 1.

Proof. Suppose not. Then the LHS of constraint (2) for I would be at most p(J(I) \ J ′), whereas
the RHS would be p(J ′) + p(J(I) \ J ′)− l(I) > p(J(I) \ J ′), a contradiction.

Theorem 2.2. Suppose xj,t is a feasible solution to (IP1). Then, there is a schedule for which the
total weighted flow-time is equal to the cost of the solution xj,t.

Proof. We show how to build such a schedule. The integral solution x gives us deadlines for each
job. For a job j, define dj as one plus the last time t such that xj,t = 1. Note that xj,t = 1 for

3

every t ∈ [rj , dj). We would like to find a schedule which completes each job by time dj : if such a
schedule exists, then the weighted flow-time of a job j will be at most

∑
t≥rj

wjxj,t, which is what
we want.

It is natural to use the Earliest Deadline First rule. We build the schedule from time t = 0
onwards. At any time t, we say that a job j is alive if rj ≤ t, and j has not been completely
processed by time t. Starting from time t = 0, we process the alive job with earliest deadline dj
during [t, t + 1]. We need to show that every job will complete before its deadline. Suppose not.
Let j be the job with the earliest deadline which is not able to finish by dj . Let t be first time
before dj such that the algorithm processes a job whose deadline is more than dj during [t−1, t], or
it is idle during this time slot (if there is no such time slot, it must have busy from time 0 onwards,
and so set t to 0). The algorithm processes jobs whose deadline is at most dj during [t, dj] – call
these jobs J ′. We also claim that jobs in J ′ were released after t – indeed if such a job was released
before time t, it would have been alive at time t− 1 (since it gets processed after time t). Further
its deadline is at most dj , and so, the algorithm should not be processing a job whose deadline is
more than dj during [t − 1, t] (or being idle). But now, consider the interval I = [t, dj]. Observe
that l(I) < p(J ′) – indeed, j ∈ J ′ and it is not completely processed during I, but the algorithm
processes jobs from J ′ only during I. Claim 2.1 now implies that there must be a job j′ in J ′ for
which xj′,dj = 1 – but then the deadline of j′ is more than dj , a contradiction.

3 A Different Integer Program

We now write a weaker integer program, but it has more structure in it. We first assume that T is a
power of 2 – if not, we can pad the instance with a job of zero weight (this will increase the ratio P
by at most a factor n only). Let T be 2ℓ. We now divide the time line into nested dyadic segments.
A dyadic segment is an interval of the form [i · 2s, (i+ 1) · 2s] for some non-negative integers i and
s (we shall use segments to denote such intervals to avoid any confusion with intervals used in the
integer program). For s = 0, . . . , ℓ, we define Ss as the set of dyadic segments of length 2s starting
from 0, i.e., {[0, 2s], [2s, 2 · 2s], . . . , [i · 2s, (i + 1) · 2s], . . . , [T − 2s, T]}. Clearly, any segment of Ss
is contained inside a unique segment of Ss+1. Now, for every job j we shall define a sequence of
dyadic segments Seg(j). The sequence of segments in Seg(j) partition the interval [rj , T]. The
construction of Seg(j) is described in Figure 1 (also see the example in Figure 2). It is easy to show
by induction on s that the parameter t at the beginning of iteration s in Step 2 of the algorithm is a
multiple of 2s. Therefore, the segments added during the iteration for s belong to Ss. Although we
do not specify for how long we run the for loop in Step 2, we stop when t reaches T (this will always
happen because t takes values from the set of end-points in the segments in ∪sSs). Therefore the
set of segments in Seg(j) are disjoint and cover [rj , T].

For a job j and segment S ∈ Seg(j), we shall refer to the tuple (j, S) as a job-segment. For a
time t, we say that t ∈ (j, S) (or (j, S) contains t) if [t, t+ 1] ⊆ S. We now show a crucial nesting
property of these segments.

Lemma 3.1. Suppose (j, S) and (j′, S′) are two job-segments such that there is a time t for which
t ∈ (j, S) and t ∈ (j′, S′). Suppose rj ≤ rj′, and S ∈ Ss, S ∈ Ss′ . Then s ≥ s′.

Proof. We prove this by induction on t. When t = rj′ , this is trivially true because s′ would be 0.
Suppose it is true for some t ≥ rj′ . Let (j, S) and (j′, S′) be the job segments containing t. Suppose
S ∈ Ss, S

′ ∈ Ss′ . By induction hypothesis, we know that s ≥ s′. Let (j′, S̃′) be the job-segment
containing t + 1, and let S̃′ ∈ Ss̃′ (S

′ could be same as S̃′). We know that s̃′ ≤ s′ + 1. Therefore,

4

Algorithm FormSegments(j)
1. Initialize t← rj.
2. For s = 0, 1, 2, . . . ,

(i) If t is a multiple of 2s+1,
add the segments (from the set Ss) [t, t+ 2s], [t+ 2s, t+ 2s+1] to Seg(j)
update t← t+ 2s+1.

(ii) Else add the segment (from the set Ss) [t, , t+ 2s] to Seg(j).
update t← t+ 2s.

Figure 1: Forming Seg(j).

rj2

S4

S2

S3

j1

j2

S1

rj1

Figure 2: The dyadic segments S1, . . . ,S4 and the corresponding Seg(j1), Seg(j2) for two jobs j1, j2

the only interesting case is s = s′ and s̃′ = s′ + 1. Since s = s′, the two segments S and S′ must
be same (because all segments in Ss are mutually disjoint). Since t ∈ S, t + 1 /∈ S, it must be
that S = [l, t + 1] for some l. The algorithm for constructing Seg(j′) adds a segment from Ss′+1

after adding S′ to Seg(j′). Therefore t+ 1 must be a multiple of 2s
′+1. What does the algorithm

for constructing Seg(j) do after adding S to Seg(j)? If it adds a segment from Ss+1, then we are
done again. Suppose it adds a segment from Ss. The right end-point of this segment would be
(t+1)+2s. After adding this segment, the algorithm would add a segment from Ss+1 (as it cannot
add more than 2 segments from Ss to Seg(j)). But this can only happen if (t+1)+2s is a multiple
of 2s+1 – this is not true because (t+ 1) is a multiple of 2s+1. Thus we get a contradiction, and so
the next segment (after S) in Seg(j) must come from Ss+1 as well.

We now write a new IP. The idea is that if a job j is alive at some time t, then we will keep
it alive during the entire duration of the segment in Seg(j) containing t. Since the segments in
Seg(j) have lengths in exponentially increasing order (except for two consecutive segments), this
will not increase the weighted flow-time by more than a constant factor. For each job segment
(j, S) we have a binary variable y(j, S), which is meant to be 1 iff the job j is alive during the
entire duration S. For each job segment (j, S), define its weight w(j, S) as wj · l(S) – this is the
contribution towards weighted flow-time of j if j remains alive during the entire segment S. We

5

get the following integer program (IP2):

min
∑

j

∑

s

w(j, S)y(j, S) (4)

∑

(j,S):j∈J(I),t∈(j,S)

y(j, S)pj ≥ p(J(I)) − l(I) for all intervals I = [s, t], 0 ≤ s ≤ t ≤ T (5)

y(j, S) ∈ {0, 1} for all job segments (j, S)

Observe that for any interval I, the constraint (5) for I has precisely one job segment for
every job which gets released in I. Another interesting feature of this IP is that we do not have
constraints corresponding to (3), and so it is possible that y(j, S) = 1 and y(j, S′) = 0 for two
job segments (j, S) and (j, S′) even though S′ appears before S in Seg(j). We now relate the two
integer programs.

Lemma 3.2. Given a solution x for (IP1), we can construct a solution for (IP2) of cost at most 8
times the cost of x. Similarly, given a solution y for (IP2), we can construct a solution for (IP1)
of cost at most 4 times the cost of y.

Proof. Suppose we are given a solution x for (IP1). For every job j, let dj be the highest t for
which xjt = 1. Let the segments in Seg(j) (in the order they were added) be S1, S2, Let Sij

be the segment in Seg(j) which contains dj . Then we set y(j, Si) to 1 for all i ≤ ij , and y(j, Si) to
0 for all i > ij . This defines the solution y. First we observe that y is feasible for (IP2). Indeed,
consider an interval I = [s, t]. If xjt = 1 and j ∈ J(I), then we do have y(j, S) = 1 for the job
segment (j, S) containing t. Therefore, the LHS of constraints (2) and (5) for I are same. Also,
observe that

∑

S∈Seg(j)

y(j, S)w(j, S) =

ij∑

i=1

wj · l(Si) ≤ wj4l(Sij),

where the last inequality follows from the fact that there are at most two segments from any
particular set Ss in Seg(j), and so, the length of every alternate segments in Seg(j) increase

exponentially. So,
∑ij

i=1 l(si) ≤ 2
(
l(Sij) + l(Sij−2) + l(Sij−4) + · · ·

)
≤ 4 · l(Sij). Finally observe

that l(Sij) ≤ 2(dj − rj). Indeed, the length of Sij−1 is at least half of that of Sij . So,

l(Sij) ≤ 2l(Sij−1) ≤ 2(dj − rj).

Thus, the total contribution to the cost of y from job segments corresponding to j is at most
8wj(dj − rj) = 8wj

∑
t≥rj

xj,t. This proves the first statement in the lemma.

Now we prove the second statement. Let y be a solution to (IP2). For each job j, let Sij be the
last job segment in Seg(j) = {S1, S2, . . .} for which y(j, S) is 1. We set xj,t to 1 for every t ≤ dj ,
where dj is the right end-point of Sij , and 0 for t > dj . It is again easy to check that x is a feasible
solution to (IP1). For a job j the contribution of j towards the cost of x is

wj(dj − rj) = wj ·

ij∑

i=1

l(Si) ≤ 4wj · l(Sij) ≤ 4 ·
∑

(j,S)∈Seg(j)

w(j, S)y(j, S).

6

The above lemma states that it is sufficient to find a solution for (IP2). Note that (IP2) is a
covering problem. It is also worth noting that the constraints (5) need to be written only when
a job segment starts or ends, and therefore (IP2) can be turned into a polynomial size integer
program.

4 Reduction to Demand Multi-cut on Trees

We now show that (IP2) can be viewed as a covering problem on trees. We first put a tree structure
on the set of job segments. This is possible because of the property stated in Lemma 3.1. Order
the jobs according to release dates (breaking ties arbitrarily) – let ≺J be this total ordering (so,
j ≺J j′ implies that rj ≤ rj′).

Construct a directed graph T = (V,E) as follows. The vertex set V is the set of all job segments
(j, S). Every vertex (j, S) will have indegree 1 (except for the ones corresponding to the first job
in the ordering ≺J). For such a vertex (j, S), let j′ be the job immediately preceding j in the total
order ≺J . Since the job segments in Seg(j′) partition [rj′ , T], and rj′ ≤ rj , there is a pair (j′, S′) in
Seg(j′) such that S′ intersects S, and so contains S, by Lemma 3.1. We add an edge from (j′, S′)
to (j, S). Notice that T does not have any cycles because ((j′, S′), (j, S)) is an arc only if j′ ≺J j.
Since every vertex has indegree at most 1, it follows that each connected component of T (in the
undirected sense) is a rooted tree, with edges pointing aways from the root. We will think of the
graph as a forest where each component is an undirected rooted tree (since the edges are directed
away from the root, we need not maintain this information).

Fix an interval I = [s, t] and consider the constraint (5) corresponding to it. Let P be the
vertices in T corresponding to the job segments appearing in the LHS of this constraint.

Lemma 4.1. The vertices in P form a path in T from an ancestor to a descendant.

Proof. Let j1, . . . , jk be the jobs which are released in I arranged according to ≺J . Note that
these will form a consecutive subsequence of the sequence obtained by arranging jobs according
to ≺J . Each of these jobs will have exactly one job segment (ji, Si) appearing on the LHS of this
constraint (because for any such job ji, the segments in Seg(ji) partition [rji , T]). All these job
segments contain t, and so, these segment intersect. Now, by construction of T , it follows that the
parent of (ji, Si) in the tree T would be (ji−1, Si−1). This proves the claim.

Thus, the problem considered by (IP2) can be equivalently stated as follows. We are given a
rooted tree T = (V,E) 1. For every vertex v, we have a cost cv and size pv. We are also given a set
of ancestor-descendant paths P in T . For every path P ∈ P, we are given a demand d(P). Our goal
is to pick a minimum cost subset of vertices V ′ such that for every path P ∈ P, the set of vertices in
V ′∩P have total size at least d(P). Note that this is equivalent to the problem considered by (IP2)
because a vertex corresponding to the job segment (j, S) has cost w(j, S) and size pj. Similarly a
path P corresponding to the constraint (5) for an interval I has demand p(J(I))− l(I). Note that
in the reduction above, size of V in T is at most O(n log P), where n is the number of jobs, and so
this is a polynomial time reduction.

We modify the tree covering problem slightly as follows. we will assume that edges, instead of
vertices, have size and cost. This is wlog because we can transform an instance of the problem as

1Earlier every component of T was a rooted tree. But we can treat each component as an independent problem.

7

follows. For each non-root vertex v, let e be the parent edge of v in T . We define cost ce and size
pe of e as cv and pv respectively (note that now v does not have any size or profit). For the root,
we add a new edge above it, and define its pe, ce values to be those of the root vertex. Similarly,
if P was a path from v to w (v being the ancestor of w) in P, then we replace it by a path which
starts from the parent of v and ends at w (note that this argument requires that all paths in P are
ancestor-descendant paths). We call this problem Demand Multi-cut problem.

5 Approximation Algorithm for the Demand Multi-cut problem

In this section we give a constant factor approximation algorithm for the special class of Demand
Multi-cut problems which arise in the reduction from WtdFlowTime. We first consider the special
case when T is a line in Section 5.1. Subsequently we consider the general case in Section 5.2.

5.1 Special Case of Line Graph

Assume that T = (V,E) is a line graph with edges e1, . . . , em as we go from left to right. The
following integer program (IP3) captures the Demand Multi-cut problem for such instances:

min
∑

v∈E

cexe (6)

∑

e∈P

pexe ≥ d(P) for all paths P ∈ P (7)

xe ∈ {0, 1} for all e ∈ E (8)

Such an IP comes under the class of Column Restricted Covering IP as described in [3].
Chakrabarty et al. [3] show that one can obtain a constant factor approximation algorithm for
this problem provided one can prove that the integrality gaps of the LP relaxations for the follow-
ing two special class of problems are constant: (i) 0-1 instances where the pe values are either 0 or 1,
(ii) priority versions where paths in P and edges have priorities (which can be thought of as positive
integers), and the selected edges satisfy the property that for each path P ∈ P, we have selected at
least one edge of priority at least that of P (it is easy to check that this is a special case of Demand
Multi-cut problem by assigning exponentially increasing demands to paths of increasing priority,
and similarly for edges).

Consider the class of 0-1 instances first. We need to consider only those edges for which pe is 1
(contract the one for which pe is 0). Now observe that the constraint matrix on the LHS in (IP3)
has consecutive ones property (order the paths in P in increasing order of left end-point and write
the constraints in this order). Therefore, the relaxed LP has integrality gap of 1.
Rounding the Priority Version We now consider the priority version of this problem. For each
edge e ∈ E, we now have an associated priority pe (instead of size), and each path in P also has
a priority demand p(P), instead of its demand. We shall use the notion of shallow cell complexity
used in [4]. We need to argue about the following LP relaxation:

8

min
∑

e∈E

cexe (9)

∑

e∈P :pe≥p(P)

xe ≥ 1 for all paths P ∈ P (10)

xe ≥ 0 for all e ∈ E (11)

Let A be the constraint matrix on the LHS above. We first notice the following property of A.

Claim 5.1. Let A⋆ be a subset of columns of A obtained by selecting a subset of n columns. For a
parameter k, 0 ≤ k ≤ n, there are at most k2n distinct rows in A⋆ with k or fewer 1’s (two rows of
A⋆ are distinct if they are not same as row vectors).

Proof. Columns of A correspond to edges. Contract all edges which are not in A⋆. Let E⋆ be the
edges in the resulting graph. Each path in P now maps to a new path obtained by contracting
these edges. Let P⋆ denote the set of resulting paths. For a path P ∈ P⋆, let E(P) be the edges
in P whose priority is at least that of P . In the constraint matrix A⋆, the constraint for a path P
has 1’s in exactly the edges in E(P). We can assume that the set E(P) is distinct for every path
P ∈ P⋆ (because we are interested in counting the number of paths with distinct sets E(P)).

Let P⋆(k) be the paths in P⋆ for which |E(P)| ≤ k. We need to count the cardinality of this
set. Fix an edge e ∈ E⋆, let E⋆(e) be the edges in E⋆ of priority at least that of e. Let P be a path
in P⋆(k) which has e as the least priority edge in E(P) (breaking ties arbitrarily). Let el and er
be the leftmost and the rightmost edges in E(P) respectively. Note that E(P) is exactly the edges
in E⋆(e) which lie between el and er. Since there are at most k choices for el and er (look at the k
edges to the left and to the right of e in the set E⋆(e)), it follows that there are at most k2 paths
P in P⋆(k) which have e as the least priority edge in E(P). For every path in P⋆(k), there are at
most |E⋆| = n choices for the least priority edge. Therefore the size of P⋆(k) is at most nk2.

It now follows from Theorem 1.1 in [4] that the integrality gap of the LP relaxation of (IP3) is
O(1).

5.2 The Dynamic Programming Algorithm

We now describe the dynamic program (DP) for Demand Multi-cut on trees. We first show that
the input instances obtained by reduction from WtdFlowTime have more structure in them. Sub-
sequently, we show that an optimal solution can be modified to have more structure in it (at the
expense of constant loss in cost). Finally, we show that the DP table needs to maintain small
amount of information at each of its table entries, and so, these entries can be computed in pseudo-
polynomial time.

5.2.1 Structure of Input Instances

We shall use the following properties of an instance of Demand Multi-cut on trees.

Lemma 5.2. Let I be an instance of Demand Multi-cut obtained by reduction from an instance
I ′ of WtdFlowTime. Let T = (V,E) be the tree in I. Then we can assume wlog that T satisfies the
following properties (at the expense of constant loss in the cost of the optimal solution):

9

• (Binary Tree) Every non-leaf node in T has either 1 or 2 children.

• (Low Depth) Let T ′ be the tree obtained from T by shortcutting all degree 2 nodes. Then T ′

has height O(log(nP)).

Proof. Recall that each vertex v in T corresponds to a dyadic interval Sv, and if w is a child of v
then Sw is contained in Sv. Now, consider a vertex v with Sv of size 2s and suppose it has more
than 2 children. Since the dyadic intervals for the children are mutually disjoint and contained in
Sv, each of these will be of size at most 2s−1. Let S1

v and S2
v be the two dyadic intervals of length

2s−1 contained in Sv. Consider S
1
v . Let w1, . . . , wk be the children of v for which the corresponding

interval is contained in S1
v . If k > 1, we create a new node w below v (with corresponding interval

being S1
v) and make w1, . . . , wk children of v. The cost and size of the edge (v,w) is 0. We proceed

similarly for S2
v . Thus, each node will now have at most 2 children. Note that we will blow up the

number of vertices by a factor 2 only.
Let pmax and pmin denote the maximum and the minimum size of a job in the instance I ′. In

the instance I, we will include all edges for which the corresponding job intervals have length at
most pmin. For a job j, the total cost of such job intervals would be at most 4wjpj (as in the proof
of Lemma 3.2). Note that the cost of any optimal solution for I ′ is at least

∑
j wjpj, and so we

are incurring an extra cost of at most 4 times the cost of the optimal solution. Now, we can show
the second property. Consider a root to leaf path in T ′, and let v1, . . . , vk be the vertices in this
path. Since each vi has two children in T , the dyadic interval corresponding to vi+1 will have length
at most half of that for vi. Since the length of the dyadic interval corresponding to the root has
length at most T ≤ npmax, and that for the leaf has length at least pmin, it follows that k has to be
O(log(nP)).

For rest of the discussion, we fix an instance I of Demand Multi-cut satisfying the above two
properties. We shall use T = (V,E) to denote the tree in I and P to denote the ancestor-descendant
paths in I. Each path P in P has a demand d(P), and edges e in E have cost ce and size se. The
density of an edge e is the ratio ce/se. We shall use T ′ to denote the tree obtained from T by
shortcutting all degree 2 nodes. Each edge in T ′ corresponds to a a path in T between two nodes
in the vertex set V (T ′) of T ′ such that all internal nodes have degree 2. We shall denote such paths
in T as segments.

We shall also assume the following properties of I, which result in at most constant loss in cost
of the optimal solution:

(P1) The costs of edges are polynomially bounded: We can guess the maximum cost of an edge
selected by the optimal solution. If this cost is c, then we can select all edges of cost at most
ce/n

2, where n is the number of edges. This will increase the cost of an optimal solution by
(1 + 1/n) factor only.

(P2) Each edge has density which is an integral power of 16: we can round the costs up to the
nearest power of 16, this will affect the cost of our algorithm by a constant factor only. We
say that an edge e has density class ρ if its density is 16ρ. Note that density class of an edge
is an integer and lies in the range [∆min,∆max], where ∆max −∆min is O(log(nP)). This is
because property (P1) implies that costs are polynomially bounded, and sizes of edges lie in
the range [pmin, pmax].

2

2We added some edges of cost 0 in the proof of Lemma 5.2. We can assume that they are always selected, and so,
their density class will not matter.

10

(P3) Each path in P contains at least one vertex in V (T ′): For each segment s in T , let P(s) be the
paths which are confined within this segment. For each s, we have an independent instance of
line graph corresponding to P(s), and we can get a constant approximation for such instances
using the algorithm in Section 5.1. The total cost of edges selected by solving each of these
instances independently is at most a constant times the cost of the optimal solution for I.
We can now ignore these paths, and solve the remaining instance (at the expense of doubling
the cost of the algorithm).

Henceforth, we assume that the instance I satisfies the properties in Lemma 5.2 and (P1)-(P3).

5.2.2 Properties of a near-optimal solution

Let A be an optimal solution to I. We give some notations first. Let S(T) denote the set of
segments in T . We shall use the term cell to denote a pair (s, ρ) of segment and density class,
where s ∈ S(T), ρ ∈ [∆min,∆max]. For a cell (s, ρ), let E(s, ρ) be the edges of density class ρ in the
segment s. Let EA(s, ρ) denote the subset of E(s, ρ) which is selected by A. Let cA(s, ρ) denote
the total cost of the edges in EA(s, ρ). We first modify A to a solution Ā which incurs slightly
more cost that EA(s, ρ) on each cell (s, ρ), but has nice smoothness properties. The smoothness
properties essentially says that the quantity EĀ(s, ρ) will vary slowly as we change ρ or s (i.e.,
move away from s to a nearby segment).

For two segments s1 and s2 in S(T), define the distance between them to be the number of
vertices of V (T ′) which lie on the unique path in T joining these two segments (s1 need not be
ancestor or descendant of s2). For a segment s, let Ni(s) be the segments at distance i from it.
These are exactly the edges which are distance i away from the edge corresponding to s in the tree
T ′. Since T ′ is a binary tree (Lemma 5.2), it follows that |Ni(s)| ≤ 2i+1. We say that a segment s
is a parent (or ancestor) of segment s′ if the corresponding edges have this relation in the tree T ′.

Lemma 5.3. We can find values c̄(s, ρ) for each cell (s, ρ) ∈ S(T) such that the following properties
are satisfied: (i) for every cell (s, ρ), c̄(s, ρ) is a power of 2, and c̄(s, ρ) ≥ cA(s, ρ), (ii)

∑
(s,ρ)∈S(T) c̄(s, ρ) ≤

16 ·
∑

(s,ρ)∈S(T) c
A(s, ρ) and (iii) (smoothness) for every pair of segments s, s′, where s′ is the parent

of s, and density class ρ,

8c̄(s, ρ+ 1) ≥ c̄(s, ρ) ≥ c̄(s, ρ+ 1)/8, and 8c̄(s′, ρ) ≥ c̄(s, ρ) ≥ c̄(s′, ρ)/8.

Proof. We define

c̄(s, ρ) :=
∑

i≥0

∑

s′∈Ni(s)

∑

j

cA(s′, ρ+ i+ j)

4i+|j|
,

where i varies over non-negative integers, j varies over integers and the range of i, j are such that
ρ + i + j remains a valid density class. Note that c(s, ρ) is a not a power of 2 yet, but we will
round it up later. As of now, c(s, ρ) ≥ cA(s, ρ) because the term on RHS for i = 0, j = 0 is exactly
cA(s, ρ).

Let us check the total sum of these values. When we add c(s, ρ) for all the cells (s, ρ), let us
count the total contribution towards terms containing cA(s′, ρ′) on the RHS. For every segment
s ∈ Ni(s

′), and density class ρ′ + j, it will receive a contribution of 1
2i+|j| . Since |Ni(s

′)| ≤ 2i + 1,
this is at most ∑

i≥0

∑

j

2i+1

4i+|j|
≤

∑

i≥0

2i+2

4i
≤ 8.

11

Now consider the third condition. Consider the expressions for c̄(s, ρ) and c̄(s′, ρ) where s′ is the
parent of s. If a segment if at distance i from s, its distance from s′ is either i or i± 1. Therefore,
the coefficients of cA(s′′, ρ′′) in the expressions for c̄(s, ρ) and c̄(s′, ρ) will differ by a factor of at
most 4. The same observation holds for c̄(s, ρ) and c̄(s, ρ+ 1). It follows that

4c̄(s, ρ+ 1) ≥ c̄(s, ρ) ≥ c̄(s, ρ+ 1)/4, and 4c̄(s′, ρ) ≥ c̄(s, ρ) ≥ c̄(s′, ρ)/4.

Finally, we round all the c̄(s, ρ) values up to the nearest power of 2. We will lose an extra factor
of 2 in the statements (ii) and (iii) above.

Modifying A to Ā We now define a new algorithm Ā which is “allowed” a budget of c̄(s, ρ) as in
the statement of Lemma 5.3 for selecting edges from E(s, ρ). Note that it may not be able to spend
all this budget because (i) the total cost of edges in E(s, ρ) may be smaller than this budget, or
(ii) there are edges in E(s, ρ) which are more expensive than this budget. We also need to specify
which edges in E(s, ρ) are being selected by Ā. We claim that this can be done in a canonical way.
For each cell (s, ρ), we use the Algorithm B in Figure 3 to figure out the edges in E(s, ρ), which get
selected by Ā. We will denote these edges by EĀ(s, ρ). Essentially Ā starts from both end-points
of s and keeps on picking edges in E(s, ρ) till it exhausts (constant times) its budget. We now show
that Ā is indeed feasible and is not much more expensive than A.

Algorithm B :

Input: A cell (s, ρ) and budget c̄(s, ρ).
1. Initialize EĀ(s, ρ) to emptyset.
2. Let E′(s, ρ) be the edges in E(s, ρ) whose cost is at most c̄(s, ρ).
3. Starting from the top end-point of s, keep on selecting edges of E′(s, ρ) in the set EĀ(s, ρ)

till their total cost exceeds c̄(s, ρ).
4. Starting from the bottom end-point of s, keep on selecting edges of E′(s, ρ) in the set EĀ(s, ρ)

till their total cost exceeds c̄(s, ρ).
5. Output EĀ(s, ρ)

Figure 3: Algorithm B for selecting edges in E(s, ρ).

Lemma 5.4. The total cost of edges selected by Ā is at most 64 times that of A. Further Ā selects
a feasible set of edges.

Proof. For each cell (s, ρ), the algorithm in Figure 3 spends at most 2c̄(s, ρ) in each of the steps 3
and 4 (the last edge selected in each of these steps could have cost up to c̄(s, ρ)). The first statement
now follows from Lemma 5.3. To prove feasibility, consider a cell (s, ρ) and an input path P ∈ P
which contains at least one edge in EA(s, ρ). Using assumption (P3), P either contains the top
vertex or the bottom vertex of s – assume the former case. Let the edges of s from top to bottom
be e1, . . . , ek. The following fact is easy to prove by induction on i – the total size of edges from
{e1, . . . , ei}∩E(s, ρ) selected by Ā is at least that of A. For base case, if A picks e1 ∈ E(s, ρ), then
ce1 ≤ cA(s, ρ) ≤ c̄Ā(s, ρ) and so, A will also pick this edge (in Step 3 of Algorithm B). Suppose
the statement is true for {e1, . . . , ei}. If ei+1 /∈ E(s, ρ) or A does not pick ei+1, there is nothing
to prove. So assume A picks this edge and ei+1 ∈ E(s, ρ). Again, we are done if Ā also picks this
edge. If Ā does not pick this edge, it has already exhausted its budget before it reaches this edge.

12

Since all edges in E(s, ρ) have the same density and the budget of Ā is more than that of A for
any cell (s, ρ), it follows that the edges in {e1, . . . , ei} ∩ E(s, ρ) selected by Ā have more total size
than the total size of edges in E(s, ρ) selected by A. This proves the induction hypothesis. Since it
holds for all ρ, it follows that for all i, the total size of edges in {e1, . . . , ei} selected by Ā is at least
that by A. Since P contains e1, the edges of P in s are of the form e1, . . . , ei for some i. Therefore,
total size of edges in P ∩ s selected by Ā is at least that by A. Summing over all segments, we see
that Ā also satisfies the demand of P .

Modifying Ā to Ã
We now modify Ā to another algorithm Ã which spends even more amount on low density

edges. For a segment s, let BĀ(s) denote the maximum over all density classes ρ of cĀ(s, ρ). Note
that BĀ(s) is also a power of 2. For each segment s, Ã incurs an extra 4BĀ(s) amount of cost on
buying low density edges in s. The algorithm is described formally in Figure 4. It sorts the edges

in s according to density and picks them in this order. We shall use EÃ(s, ρ) be the edges in s
of density class ρ which are selected by Ã. We use Enew(s) to denote the new edges in s which
are selected by the algorithm Ã. Note that ρ⋆(s) denotes the highest density class of an edge in
Enew(s) if we do not exhaust the budget in Step 3, otherwise it is set to ∆max + 1, one plus the
highest density class. The algorithm ensures in Step 5 that the total cost of new edges of density
class ρ⋆(s) selected by the algorithm is at least BĀ(S) (or we select all such edges). This is done for
the following reason – given ρ∗(s), c̄(s, ρ⋆(s)) and BĀ(s), we can figure out which edges in E(s, ρ)
are selected by Ã.

Algorithm Ã :

Input: A segment s, edges in s selected by Ā, and budget BĀ(s).
1. Let E′(s) be the edges in s of cost at most BĀ(s) which are not selected by Ā
2. Let e1, . . . , ek be the edges in E′(s) arranged according to increasing density a

3. Select edges in this order till their cost exceeds BĀ(s) (or we select all)
4. Define ρ⋆(s) as the density class of the last edge ei picked in this manner

– it is set to ∆max + 1 if we select all edges in E′(s) and the budget is not exhausted.
5. Continue to pick edges ei+1, . . . as long as their density class remains ρ⋆(s) and

the total cost of selected edges in E′(s) of density class ρ⋆(s) is at most BĀ(S).

aEdges of same density class are ordered in an arbitrary but fixed manner.

Figure 4: Algorithm Ã for a segment s

Claim 5.5. The total cost of edges selected by Ã is at most a constant times that of A.

Proof. Since Ã spends an additional amount of at most 4BĀ(s) on each segment s, the result
follows from Lemma 5.4.

We now some interesting properties of Ã which will yield the DP algorithm. We give some
definitions. We say that a cell (s, ρ) dominates a cell (s′, ρ′) if s′ is an ancestor of s, and if s′ lies
i levels above s, then ρ′ ≥ ρ + i. One way to visualize this definition is in the form of a table
shown in Figure 5. For a segment s, let s0 = s, s1, . . . , sk be the segments as we traverse from s
to the root. For each si, we draw a column in the table with one entry for each cell (si, ρ), with ρ

13

s4s0 s1 s2 s3

(s0, 9)

(s0, 8)

(s0, 7)

(s0, 6)

(s0, 5)

(s0, 4)

(s0, 3)

(s0, 2)

(s1, 6)

(s1, 5)

(s2, 7)

Figure 5: Cells (si, ρ) arranged in a table with ∆min = 2,∆max = 8. The shaded region shows the
cells dominated by (s0, 5).

increasing as we go up. Further as we go right, we shift these columns one step down. So row τ
of this table will correspond to cells (s0, τ), (s1, τ + 1), (s2, τ + 2) and so on. With this picture, a
cell (s, ρ) dominates all cells which lie in the upper right quadrant with respect to the table entry
containing (s, ρ). For a segment s, let D(s) be the set of cells dominated by (s, ρ⋆s), and we use

EÃ(D(s)) to denote the edges selected by Ã lying in these cells, i.e., ∪(s′,ρ′)∈D(s)E
Ā(s,′ , ρ′). The

following lemma shows why this notion is useful.

Lemma 5.6. The total size of edges in Enew(s) is at least the total size of edges in EĀ(D(s)).

Proof. Let s0 = s, s1, . . . , sk be the segments as we traverse from s to the root. We begin with a
fact which follows from the smoothness property.

Claim 5.7. Then BĀ(si) ≤ 8iBĀ(s), for i = 1, . . . , k.

Proof. It is enough to show this for s1, the rest will follow by induction. SupposeBĀ(s1) = cĀ(s1, ρ)
for some density class ρ. Then BĀ(s) ≥ cĀ(s, ρ) ≥ cĀ(s1, ρ)/8 = BĀ(s1)/8, where we used the
smoothness property in Lemma 5.3.

For sake of brevity, let ρ denote ρ⋆(s), and B denote BĀ(s). We assume that ρ 6= ∆max + 1,
otherwise D(s) is empty. Since the total cost of edges in Enew(s) is at least B and each of these
has density at most 16ρ, the total size of these edges is at least 16−ρ ·B. Consider the segment si.
Then D(s) contains the cells (si, ρ

′), where ρ′ ≥ ρ+ i. The total size of edges selected by Ā in any
such cell is at most BĀ(si) · 16

−ρ′ ≤ 8i · 16−ρ′ ·B (using Claim 5.7). Therefore the total size of the
edges in ∪ρ′:ρ′≥ρ+iE

Ā(si, ρ
′) is at most

∑

ρ′≥ρ+i

8i · 16−ρ′ · B ≤ 2 · 16−ρ ·B/8i.

14

Summing over all i ≥ 1 yields the lemma.

We say that an edge e ∈ EÃ covers a demand path P if the total size of edges in P ∩EÃ which
lie below e is less than the demand of P . In other words, P is covered by the lowermost edges
selected by Ã. The following corollary follows directly from Lemma 5.6 and the feasibility of Ā.

Corollary 5.8. Let s be a segment with lower end-point being v ∈ V (T ′). Let P be a path containing

v. Then P is not covered by any edge in EÃ(D(s)).

The statement above says that as far as v is concerned it can ignore all the edges in EÃ(D(s′)),
where s′ is an ancestor of s (including s). We now show that such edges can be described in a
simple manner. Consider a vertex v ∈ V (T ′) and let s1, s2, . . . , sk be the segments encountered as

we go from v to the root. For sake of brevity, let ρ⋆i denote ρ
⋆
si
. We define a sequence of cells QÃ(v)

as follows: it starts with the cell (s1,∆max + 1), and goes down till (s1, ρ
⋆
1). After this it keeps

moving right (with respect to the interpretation as in Figure 5) till it reaches a segment si where
ρ⋆i is below the current cell occupied by the sequence and then moves down and so on. This is
described formally in Figure 6 (note that the sequence may contain a cell of the form (si,∆max+1),
and the last cell is (sk, ρ

⋆
k)). An example is given in Figure 7.

Construct Sequence QÃ(v) :

Input: A node v ∈ T ′ at depth k, integers ρ⋆1, . . . , ρ
⋆
k

1. Initialise QÃ(v) to empty sequence, and i← 1, ρ← ∆max + 1
2. While (i ≤ k)

(i) Add the cell (si, ρ) to QÃ(v).
(ii) If ρ > ρ⋆i , ρ← ρ− 1
(iii) Else i = i+ 1, ρ← ρ+ 1.

Figure 6: Construction of the path QÃ(v).

For a segment si, the density classes ρ for which (si, ρ) belong to QÃ(v) form an interval [ρl, ρr].

We say that cell (si, ρ) is above (or below) QÃ(v) if ρ > ρr (or ρ < ρl). The sequence QÃ(v) has
the following property.

Claim 5.9. If a cell (si, ρ) lies above QÃ(v) then it belongs to the set D(sj) for some segment sj

(which is an ancestor of v). If a cell (si, ρ) lies below QÃ(v), then ρ < ρ⋆i .

Proof. Suppose a cell (si, ρ) lies above this sequence. Let j be the first index before i such that

QÃ(v) contains the cell (sj, ρ
⋆
j) (j = 1 is always an option). It follows that we never reach Step 2(ii)

in Algorithm 6 after adding this cell to QÃ(v) and before reaching segment si. Therefore QÃ(v)
contains the cell (si, ρ

⋆
j + (i − j)). But then ρ > ρ⋆j + (i − j), and therefore, (si, ρ) is dominated

by (sj , ρ
⋆
j). This proves the first part. For the second part, suppose (si, ρ) is below QÃ(v) and let

(si, ρ
′) be the first cell in QÃ(v) which corresponds to segment si. Two cases can occur: (i) ρ′ ≤ ρ⋆i

in which case ρ < ρ⋆i as well, (ii) ρ′ > ρ⋆i , in which case we add (si, ρ
⋆
i) to the sequence as well, and

so, ρ < ρ⋆i .

15

s5s4s3s2s1

*

*

*

*

*

*

s0

Figure 7: Vertex v has segments s1, . . . , s5 as ancestors, and QÃ(v) is shown in solid lines (stars
denote the location of corresponding ρ⋆i values). The vertex v has a child w in T ′, and the dotted

lines show QÃ(w) till it merges with QÃ(v).

The claim above shows that given QÃ(v), we can easily figure out how paths through v are
getting covered. If a cell (si, ρ) lies above this sequence, we can ignore the edges E(si, ρ). If it lies

below QÃ(v), we know that Ã selects all the edges in E(si, ρ) of cost at most BĀ(si) (because Ã did
not stop at this density class while running the algorithm in Figure 4). How about cells (si, ρ) which

are on QÃ(v)? If ρ > ρ⋆i , then EÃ(si, ρ) is same as EĀ(si, ρ). If ρ = ρ⋆i , then EÃ(si, ρ)\E
Ā(si, ρ) is

obtained by selecting edges from E(si, ρ) as described in Figure 4 – consider edges of cost at most
BĀ(si) in E(si, ρ) \ E

Ā(si, ρ), and select them in order of increasing density till the total cost of
selected edges exceeds BĀ(si). We are now ready to state the algorithm.

5.3 The Dynamic Program

In this section, we describe the dynamic program. We assume that the cost of the edges are integers
and lie in the range [1, n2] (see property (P1)). We begin with some definitions. A sequence of
integers a1, a2, . . . is said to be smooth if each ai is a power of 2, and for all i ≥ 2, the ratio ai/ai−1

lies in the range [1/64, 64]. For example, the sequence BĀ(ρ), ρ ∈ [∆min,∆max], is smooth (by an
argument similar to Claim 5.7).

Let v be a vertex in V (T ′), and s1, . . . , sk be the segments encountered as we go from v to the
root. A sequence of cells Q(v) is said to be canonical if it starts with (s1,∆max+1), and follows the
following rules: (i) If (si, ρ) appears in Q(v), then the next cell is either (si, ρ− 1), or (si+1, ρ+1),
(ii) the last cell in the sequence is of the form (sk, ρ) for some density class ρ, and (iii) ρ lies in the

range [∆min,∆max + 1]. As an example, QÃ(v) constructed in the previous section is canonical.

16

Let v be a vertex in V (T ′) with s1, . . . , sk be the segments on the path from v to the root in T .
In the DP table D, we will have entries D[v,B1, . . . , Bk, Q(v), C(v), T (v)], where Q(v) = σ1, . . . , σℓ
is a canonical sequence of cells, B1,Bk and Cσ1 , . . . , Cσℓ

are smooth sequences, with B1, Cσ1

being in the range [1, n2], and T (v) is a boolean array indexed by Q(v).
To understand what this entry stores, we first describe an algorithm to select edges from

s1, . . . , sk – these will only be a subset of edges from s1,sk which will be selected by our
algorithm, but they will be only ones relevant for paths which go through v. This algorithm mim-

ics what Ã would do with the corresponding parameters BĀ
1 , . . . , B

Ā
k , Q

Ã(v), C(v) being the costs

c̄ for the cells in QÃ(v), and T (v) being the boolean array which tells whether a cell (si, ρ) in QÃ(v)
satisfies ρ = ρ⋆i or not. The edge selection algorithm is shown in Figure 8. Note that we can define

whether a cell (si, ρ) lies above or below Q(v) in exactly the same manner as for QÃ(v).

Select Edges :

Input: A node v ∈ T ′ at depth k,B1, . . . , Bk, Q(v), C(v), T (v) as in the DP table.
1. Initialize a set X to ∅.
2. For i = 1, . . . , k
For ρ = ∆min, . . . ,∆max

(i) If the cell (si, ρ) lies above Q(v), do nothing.
(ii) Else If the cell (si, ρ) lies below Q(v)

Add to X all edges in E(si, ρ) of cost at most Bi.
(iii) Else (i.e., the cell (si, ρ) belongs to Q(v))

(a) Add to X edges from E(si, ρ) by running Algorithm B in Figure 3
with budget C(v)(si,ρ) – call these edges E′(si, ρ).

(b) If T (v)(si,ρ) is true
-Let e1, . . . , er be the edges of cost at most Bi in E(si, ρ) \E

′(si, ρ)
a

-Keep adding to X these edges till their total cost exceeds Bi.
3. Return X.

aarranged in the same order as used in Algorithm Ã in Figure 4

Figure 8: Edge Selection Algorithm.

We can now explain what a table entry D[v,B1, . . . , Bk, Q(v), C(v), T (v)] stores. Let P(v) be
the paths which include v as an internal vertex. It stores the cost of a solution for the instance
defined by the subtree rooted at v for the paths in P(v) provided we also select edges from s1, . . . , sk
as given by the algorithm in Figure 8 (the cost of these edges is not added in the table entry). If
these parameters happen to be the ones used by Ã, then the this entry has value at most the cost
of edges selected by Ã in the subtree below v.

We need to specify one more sub-routine before we can describe the DP algorithm. Let w be a
child of v in T ′, and let s0 denote the segment joining w to v. We would like to understand how
to update Q(v) to Q(w). Note that Q(v) is a sequence which is supposed to be given by values
ρ⋆1, . . . , ρ

⋆
k (even though we do not explicitly mention these in the table index parameters). Then

to define Q(w), we just need one more parameter ρ⋆s0 , which we will denote by ρ⋆0. This routine
is given in Figure 9. The algorithm here takes as input the sequence Q(v), an integer ρ0 between
∆min and ∆max+1, and the boolean sequence T (v) (also see Figure 7 for a pictorial representation

17

of the algorithm). It starts building the sequence Q(w) from the cell (s0,∆max + 1), and decreases
the density class of the cell till it reaches (s0, ρ0). After this it moves right till it hits Q(v). It is

easy to see that this is exactly how QÃ(v) will get updated to QÃ(w). The boolean sequence T (w)
is false for all these new cells except for (s0, ρ0).

Extend Sequence :

Input: Node v ∈ T ′, Q(v), T (v) as in the DP table, a child w of v in T ′,
ρ0 ∈ [∆min,∆max + 1],

1. Let σ := (s0,∆max + 1) be the current cell. Set i to 0.
2. Initialize Q(w) to emptyset.
3. While i ≤ k and σ = (si, ρ) is not in Q(v)
(a) Add σ to Q(w).
(b) If i = 0 and ρ > ρ0

set T (w)σ to false, and update σ to (s0, ρ− 1).
(c) Else if i = 0 and ρ = ρ0

set T (w)σ to true, and update σ to (s1, ρ+ 1), i to 1.
(d) Else set T (w)σ to false, and update σ to (si+1, ρ+ 1), i to i+ 1.

4. Append to Q(w) and T (w) the subsequence of Q(v) and T (v) after σ
5. Return Q(w) and T (w).

Figure 9: Extending Q(v) to Q(w). Note that s0 denotes the segment joining v and w.

The complete details of how to fill a table entry is shown in Figure 10. These entries are filled
in a bottom up manner. We use M1 and M2 to keep the minimum value of solution corresponding
to the sub-instances for the two children. In Step 4(i), we guess the ρr0 and Br

0 values for the
segment joining v to the child wr. In Step 4(ii), we guess the cost spent on each density class in the
corresponding segment. In Step 4(ii) (a), we selects edges in the segment sr0 corresponding to this

cost vector. We do exactly what Ã would do – note that Ā just uses crρ to figure out which edges

to select (in Figure 3) and then Ã extends this using the knowledge of ρr0, B
r
0 only (in Figure 4). In

step 4(ii)(b), we check whether all paths ending in sr0 are satisfied. Then we call Algorithm Extend
Sequence to figure out Q(wr) and the associated boolean array T (wr). Finally we need to figure
out the costs assigned to each cell in Q(wr). For cells corresponding to sr0, we have already done
this in Step 4(ii). For the next part of Q(wr) till it meets Q(v) we guess these values in Step
4(ii)(g). Finally, we look at the corresponding entries in the tables for the two children.

We now analyze this algorithm.

5.3.1 Running Time Analysis

The running time analysis follows easily from counting the number of smooth sequences. Note that
the number of possible smooth sequences a1, . . . , ak of length k would be at most 2O(k). This is
so because a1 has O(log n) choices (as it is a power of 2, and lies in the range [1, n2]). Given ai,
smoothness property shows that ai+1 has to lie in the range [ai/64, 64ai]. Since ai+1 is also a power
of 2, there are only constant number of choices for ai+1. Notice that the sequences B1, . . . , Bk, and
C(v) are required to be smooth. Since k is O(log(nP)) (Lemma 5.2), it follows that the number of
possible choices for B1, . . . , Bk is (nP)O(1), and similarly for C(v).

18

Fill DP Table :

Input: A node v ∈ T ′ at depth k,B1, . . . , Bk, Q(v), C(v), T (v) as explained in the text.
0. If v is a leaf node return 0.
1. Let X be the edges selected by algorithm Select Edges in Figure 8

when given parameters v,B1, . . . , Bk, Q(v), C(v), T (v).
2. Let w1, w2 be the two children of v in T ′ and the corresponding segments be s10, s

2
0.

3. Initialize M1,M2 to ∞.
4. For r = 1, 2 (go to each of the two children and solve the subproblems)

(i) For each ρr0 ∈ {∆min, . . . ,∆max + 1}, Br
0 ∈ [1, n2] a do

(ii) For each smooth sequence (cr∆min
, cr∆min+1, . . . , c

r
∆max

) , with crρ ≤ Br
0 do

(a) Let Xr be the edges in sr0 which would get selected if

we run Ã (along with Ā) with parameters crρ, B
r
0

(b) If any path in P ending in the segment sr0 is not satisfied by the edges in X ∪Xr

exit this loop
(c) Let Q(wr), T (wr) be the sequences returned by Extend Sequence in Figure 9

when given parameters v,Q(v), T (v), wr , ρ
r
0.

(d) Let σ1, . . . , σℓ be the cells in Q(w) starting after (sr0, ρ
r
0) and

ending before we reach a cell in Q(v) (so, σi = (si, ρ
r
0 + i)).

(e) Let σℓ+1 be the next cell in Q(wr) and so, σℓ+1 ∈ Q(v).
(f) Let C ′(v) be the subsequence of C(v) after (and including) σℓ+1

(g) For all cσ1 , . . . , cσℓ
, where cσi

≤ Bi, such that
C(wr) := (cr∆max

, . . . , crρr0
, cσ1 , . . . , cσℓ

, C ′(v)) is smooth b,

Mr ← min(Mr, cost of X
r +D[wr, B

r
0 , B1 . . . , Bk, Q(wr), C(wr), T (wr)]).

5. D[v,B1, . . . , Bk, Q(v), C(v), T (v)] ←M1 +M2.

aBr
0 should be a power of 2, and Br

0 , B1, . . . , Bk should be a smooth sequence
bFirst entry of C(wr) should be 0 because the first cell in Q(wr) is (s

r
0,∆max + 1), this is assumed implicitly

Figure 10: Filling a table entry D[v,B1, . . . , Bk, Q(v), C(v), T (v)] in the dynamic program.

Claim 5.10. The length of any canonical sequence Q(v) for a vertex v ∈ T ′ is O(log(nP)), and
so, there are pseudo-polynomial many choices for Q(v), T (v).

Proof. Let s1, . . . , sk be segments defined as in the previous section. For a cell (si, ρ) define its
potential φ(si, ρ) as 2i − ρ. For the first cell in Q(v), its potential is 1 − ∆max, and for the final
cell, it is at most 2k−∆min. When we go from one cell to the next in Q(v), φ strictly increases by
at least 1 unit. Therefore its length is at most 2k+∆max−∆min. Since both k and (∆max−∆min)
are O(log(nP)), the first result follows. Since Q(v) is a sequence of length O(log(nP)), where
at each step there can be only two choices (decrease ρ or increase i), it follows that there only
pseudo-polynomially many choices for Q(v).

The claim above shows that there are pseudo-polynomial number of table entries. Now let us
see the time taken to fill a table entry (as in Figure 10). Again notice that we just cycle over
constant number of smooth sequences, each of O(log(nP)) length. Therefore, we conclude

Theorem 5.11. The Dynamic Programming Algorithm runs in pseudo-polynomial time.

19

5.3.2 Correctness and Approximation Ratio

We first argue that the table entries in the DP correspond to valid solutions. Fix a vertex v ∈ V (T ′),
and let s1, . . . , sk be the segments as we go from v to the root. Let P(v) be the paths in the input
which contain v as an internal vertex.

Lemma 5.12. For valid parameters B1, . . . , Bk, Q(v), C(v), T (v) in the DP table, let X be the set
of edges in segments s1, . . . , sk selected by the Algorithm Select Edges in Figure 8. Then the table
entry D[v,B1, . . . , Bk, Q(v), C(v), T (v)] denotes the cost of a subset Y of edges lying the sub-tree of
T rooted at v such that Y ∪X is a feasible solution for the demands in P(v).

Proof. We prove this by induction on the height of v. If v is a leaf, then P(v) is empty, and so the
result follows trivially. Suppose it is true for all nodes in T ′ at height h, and v be at height h+ 1
in T ′. We use the notation in Figure 10. Let w1, w2 be the two children of v. Let r denote either 1
or 2. Let the value of Mr used in Step 5 be equal to D[wr, B

r
0 , . . . , Bk, Q(wr), C(wr), T (wr)]. Also

let ρr0, c
r
∆min

,cr∆max
be the parameters found in Steps 4(i), (ii) respectively. Let X and Xr be as

in the steps 1 and 4(ii)(a) respectively. We ensure that X ∪Xr covers all paths in P(v) which end
before wr. The following claim is the key to the correctness of the algorithm.

Claim 5.13. Let X(wr) be the edges selected by the Algorithm Select Edges in Figure 8 when
called with parameters wr, B

r
0, B1, . . . , Bk, Q(wr), C(wr), T (wr). Then X(wr) is a subset of X ∪Xr.

Proof. First consider the segment sr0. The set X
r contains all edges in sr0 that get selected if we run

Ã (along with Ā) on this segment with parameters cr∆min
, . . . , cr∆max

, Br
0 , whereas X(wr) ∩ sr0 will

contain a subset of these edges corresponding to density classes ∆min,ρ
r
0. So, X(wr)∩ s

r
0 ⊆ Xr.

Let us now worry about segments si, i ≥ 1. Fix such a segment si.
We know that after segment s0, the sequence Q(w) lies below Q(v) till it meets Q(v) (because

Q(v) starts with (s1,∆max +1)). Now consider various cases in the Algorithm Select Edges. If a
cell (si, ρ) lies above Q(w), we do not pick any edges from E(si, ρ) in X(wr). So we need not worry
about such cells. If it lies below Q(w), it will also lie below Q(v), and so X and X(wr) will select
the same edges from E(si, ρ). Finally, consider the case when it lies on Q(w). Again, if it lies on
Q(v), both X and X(wr) will agree on this cell. So suppose it does not lie on Q(v), in which case,
it will lie below Q(v). In the set X, we will pick all the edges in E(si, ρ) of cost at most Bi, which
will clearly be a superset of what X(wr) picks (because this cell will be one of the cells of the form
σi as in Step 4(ii)(d), cσi

guessed in Step 4(ii)(g) is at most Bi, and T (wr)σi
is false). This proves

the claim.

By induction hypothesis, there is a subset of Y (wr) of edges in the subtree rooted at wr of cost
D[wr, B

r
0 , B1 . . . , Bk, Q(wr), C(wr), T (wr)] such that Y (wr)∪X(wr) covers all paths in P(wr). We

already know that X ∪ Xr covers all paths in P(v) which end in segment sr0. Since any path in
P(v) will either end in s10 or s20, or will belong to P(w1) ∪ P(w2), it follows that all paths in P(v)
are covered by ∪2r=1(Y (wr)∪X(wr)∪X

r)∪X. Now, the claim above shows that X(wr) ⊆ Xr ∪X.
So this set is same as Y (w1) ∪ Y (w2) ∪X1 ∪X2 ∪X (and these sets are mutually disjoint). Since
the DP table entry for v for these parameters is exactly the cost of Y (w1) ∪ Y (w2) ∪X

1 ∪X2, the
result follows.

We now relate the DP to the optimal solution A. Again consider a vertex v ∈ V (T ′), and let
s1, . . . , sk be the segments as we traverse from v to the root. We shall use BĀ

i to denote BĀ(si) and

ρ⋆i to denote ρ⋆(si). Let Q
Ã(v) be the canonical sequence corresponding to Ã at v. Let C̄(v) be the

20

vector such that for a cell σ ∈ QÃ(v), C̄(v)σ stores c̄(σ) (note that it is c̄ and not cÃ because we can
argue about the smoothness of c̄ only). Let T Ā(v) be the corresponding boolean sequence which
is 1 whenever the corresponding cell is of the form (si, ρ

⋆
si
). Using arguments similar to Claim 5.7

and Lemma 5.3, it is easy to check that the sequences BĀ
1 , . . . , B

Ā
k , and C̄(v) are smooth.

Lemma 5.14. The table entry D[v,BĀ
1 , . . . , B

Ā
k , QÃ(v), C̄(v), T Ã(v)] is at most the cost of edges

selected by Ã in the subtree rooted at v.

Proof. We prove by induction on height of v. It is trivial when v is a leaf. So, let v be a node in
V (T ′) and assume the statement is true for the children w1, w2 of v (in T ′). Consider the iteration
when we try ρ0 = ρ⋆0, c

r
ρ = c̄(sr0, ρ) for all density classes ρ (note that the sequence c̄(sr0, ρ) is a

smooth sequence by Lemma 5.3). In this iteration Q(wr) will be same as QÃ(wr). Consider the
choices for cσ1 , . . . , cσℓ

to be the budgets c̄ on these cells (in Step 4(ii)(g)).

In such settings of parameters Xr will be exactly the edges in sr0 selected by Ã. Further, by

induction hypothesis, D[wr, B
Ā
0 , . . . , BĀ

k , QÃ(wr), C̄(wr), T
Ã(wr)] will be at most the cost of edges

selected by Ã in the subtree below wr. Since the DP considers minimum cost of several choices,
the entry for this table entry for v will be at most the cost of edges selected by Ã in the subtree
below v.

We are now done because if we consider v as the root (note that the parameters B1, . . . , Bk, Q(v),
etc. will be empty now), Lemma 5.14 states thatD[v] is at most the cost of Ã. But now, Lemma 5.12
states that D[v] stores the cost of a feasible solution. Thus, we have a solution whose cost is at
most that of Ã, and now we are done by Claim 5.5.

6 Discussion

We give the first pseudo-polynomial time constant factor approximation algorithm for the weighted
flow-time problem on a single machine. The algorithm can be made to run in time polynomial in
n and W as well, where W is the ratio of the maximum to the minimum weight. The rough idea is
as follows. We have already assumed that the costs of the job segments are polynomially bounded
(this is without loss of generality). Since the cost of a job segment is its weight times its length, it
follows that the lengths of the job segments are also polynomially bounded, say in the range [1, nc].
Now we ignore all jobs of size less than 1/n2, and solve the remaining problem using our algorithm
(where P will be polynomially bounded). Now, we introduce these left out jobs, and show that
increase in weighted flow-time will be small. We leave the problem of obtaining a truly polynomial
time constant factor approximation algorithm as open.

References

[1] Nikhil Bansal and Kedar Dhamdhere. Minimizing weighted flow time. ACM Trans. Algorithms,
3(4):39, 2007.

[2] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM J. Comput., 43(5):1684–1698,
2014.

[3] Deeparnab Chakrabarty, Elyot Grant, and Jochen Könemann. On column-restricted and prior-
ity covering integer programs. In Integer Programming and Combinatorial Optimization, 14th

21

International Conference, IPCO 2010, Lausanne, Switzerland, June 9-11, 2010. Proceedings,
pages 355–368, 2010.

[4] Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capaci-
tated, priority, and geometric set cover via improved quasi-uniform sampling. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 1576–1585, 2012.

[5] Chandra Chekuri and Sanjeev Khanna. Approximation schemes for preemptive weighted flow
time. In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21,
2002, Montréal, Québec, Canada, pages 297–305, 2002.

[6] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow
time. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 84–93, 2001.

[7] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation algo-
rithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

22

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 An integer program

	3 A Different Integer Program
	4 Reduction to Demand Multi-cut on Trees
	5 Approximation Algorithm for the Demand Multi-cut problem
	5.1 Special Case of Line Graph
	5.2 The Dynamic Programming Algorithm
	5.2.1 Structure of Input Instances
	5.2.2 Properties of a near-optimal solution

	5.3 The Dynamic Program
	5.3.1 Running Time Analysis
	5.3.2 Correctness and Approximation Ratio

	6 Discussion

